• This record comes from PubMed

Characterization of Two Historic Smallpox Specimens from a Czech Museum

. 2017 Jul 27 ; 9 (8) : . [epub] 20170727

Language English Country Switzerland Media electronic

Document type Historical Article, Journal Article, Research Support, Non-U.S. Gov't

Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.

Comment In

PubMed

See more in PubMed

Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox. World Health Organ; Geneva, Switzerland: 1988.

Geddes A.M. The history of smallpox. Clin. Dermatol. 2006;24:152–157. doi: 10.1016/j.clindermatol.2005.11.009. PubMed DOI

Henderson D.A., Arita I. The Smallpox Threat: A Time to Reconsider Global Policy. Biosecur. Bioterror. Biodef. Strateg. Pract. Sci. 2014;12:117–121. doi: 10.1089/bsp.2014.1509.comm. PubMed DOI

Esposito J.J. Genome Sequence Diversity and Clues to the Evolution of Variola (Smallpox) Virus. Science. 2006;313:807–812. doi: 10.1126/science.1125134. PubMed DOI

Babkin V.I., Babkina N.I. A retrospective study of the orthopoxvirus molecular evolution. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2012;12:1597–1604. doi: 10.1016/j.meegid.2012.07.011. PubMed DOI

Babkin I.V., Nepomnyashchikh T.S., Maksyutov R.A., Gutorov V.V., Babkina I.N., Shchelkunov S.N. Comparative analysis of variable regions in the variola virus genome. Mol. Biol. 2008;42:543–553. doi: 10.1134/S0026893308040092. PubMed DOI

Li Y., Carroll D.S., Gardner S.N., Walsh M.C., Vitalis E.A., Damon I.K. On the origin of smallpox: Correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA. 2007;104:15787–15792. doi: 10.1073/pnas.0609268104. PubMed DOI PMC

Babkin V.I., Shchelkunov N.S. [Molecular evolution of poxviruses] Genetika. 2008;44:1029–1044. doi: 10.1134/S1022795408080036. PubMed DOI

Shchelkunov S.N. How long ago did smallpox virus emerge? Arch. Virol. 2009;154:1865–1871. doi: 10.1007/s00705-009-0536-0. PubMed DOI

Duggan A.T., Perdomo M.F., Piombino-Mascali D., Marciniak S., Poinar D., Emery M.V., Buchmann J.P., Duchêne S., Jankauskas R., Humphreys M., et al. 17th Century Variola Virus Reveals the Recent History of Smallpox. Curr. Biol. 2016;26:3407–3412. doi: 10.1016/j.cub.2016.10.061. PubMed DOI PMC

Biagini P., Thèves C., Balaresque P., Géraut A., Cannet C., Keyser C., Nikolaeva D., Gérard P., Duchesne S., Orlando L., et al. Variola Virus in a 300-Year-Old Siberian Mummy. N. Engl. J. Med. 2012;367:2057–2059. doi: 10.1056/NEJMc1208124. PubMed DOI

Enserink M., Stone R. Dead Virus Walking. Science. 2002;295:2001–2005. doi: 10.1126/science.295.5562.2001. PubMed DOI

Fornaciari G., Marchetti A. Intact smallpox virus particles in an Italian mummy of sixteenth century. Lancet. 1986;328:625. doi: 10.1016/S0140-6736(86)92443-8. PubMed DOI

McCollum A.M., Li Y., Wilkins K., Karem K.L., Davidson W.B., Paddock C.D., Reynolds M.G., Damon I.K. Poxvirus Viability and Signatures in Historical Relics. Emerg. Infect. Dis. 2014;20:177–184. doi: 10.3201/eid2002.131098. PubMed DOI PMC

Schoepp R.J., Morin M.D., Martinez M.J., Kulesh D.A., Hensley L., Geisbert T.W., Brady D.R., Jahrling P.B. Detection and identification of Variola virus in fixed human tissue after prolonged archival storage. Lab. Investig. 2004;84:41–48. doi: 10.1038/labinvest.3700008. PubMed DOI

Thèves C., Biagini P., Crubézy E. The rediscovery of smallpox. Clin. Microbiol. Infect. 2014;20:210–218. doi: 10.1111/1469-0691.12536. PubMed DOI

Smrčka V., Kuželka V., Povýšil C. Atlas of Diseases in Dry Bones: Upper and Lower Extremities. Academia; Prague, Czech Republic: 2009. Introduction; pp. 15–33.

Fedele C.G., Negredo A., Molero F., Sanchez-Seco M.P., Tenorio A. Use of Internally Controlled Real-Time Genome Amplification for Detection of Variola Virus and Other Orthopoxviruses Infecting Humans. J. Clin. Microbiol. 2006;44:4464–4470. doi: 10.1128/JCM.00276-06. PubMed DOI PMC

Olson A.V., Laue T., Laker T.M., Babkin V.I., Drosten C., Shchelkunov N.S., Niedrig M., Damon K.I., Meyer H. Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus. J. Clin. Microbiol. 2004;42:1940–1946. doi: 10.1128/JCM.42.5.1940-1946.2004. PubMed DOI PMC

Damaso C.R.A., Esposito J.J., Condit R.C., Moussatché N. An Emergent Poxvirus from Humans and Cattle in Rio de Janeiro State: Cantagalo Virus May Derive from Brazilian Smallpox Vaccine. Virology. 2000;277:439–449. doi: 10.1006/viro.2000.0603. PubMed DOI

Pilin A., Čabala R., Pudil F., Bencko V. The Use of the d-, l- Aspartic Ratio in Decalcified Collagen from Human Dentin as an Estimator of Human Age. J. Forensic Sci. 2001;46:1228–1231. doi: 10.1520/JFS15126J. PubMed DOI

Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. Cornell University Library; Ithaca, NY, USA: 2013. ArXiv13033997 Q-Bio.

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov S.A., Lesin M.V., Nikolenko I.S., Pham S., Prjibelski D.A., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Walker J.B., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo A.C., Zeng Q., Wortman J., Young K.S., Earl M.A. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Kumar S., Nei M., Dudley J., Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008;9:299–306. doi: 10.1093/bib/bbn017. PubMed DOI PMC

Tcherepanov V., Ehlers A., Upton C. Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genom. 2006;7:150. doi: 10.1186/1471-2164-7-150. PubMed DOI PMC

Upton C., Slack S., Hunter A.L., Ehlers A., Roper R.L. Poxvirus Orthologous Clusters: toward Defining the Minimum Essential Poxvirus Genome. J. Virol. 2003;77:7590–7600. doi: 10.1128/JVI.77.13.7590-7600.2003. PubMed DOI PMC

Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC

Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006;4:e88. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC

Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174. doi: 10.1007/BF02101694. PubMed DOI

Wiśniewski J.R., Zougman A., Mann M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 2009;8:5674–5678. doi: 10.1021/pr900748n. PubMed DOI

MacLean B., Tomazela D.M., Shulman N., Chambers M., Finney G.L., Frewen B., Kern R., Tabb D.L., Liebler D.C., MacCoss M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinform. Oxf. Engl. 2010;26:966–968. doi: 10.1093/bioinformatics/btq054. PubMed DOI PMC

Massung R.F., Knight J.C., Esposito J.J. Topography of Variola Smallpox Virus Inverted Terminal Repeats. Virology. 1995;211:350–355. doi: 10.1006/viro.1995.1416. PubMed DOI

Lefkowitz E.J., Wang C., Upton C. Poxviruses: Past, present and future. Virus Res. 2006;117:105–118. doi: 10.1016/j.virusres.2006.01.016. PubMed DOI

Smithson C., Purdy A., Verster A.J., Upton C. Prediction of Steps in the Evolution of Variola Virus Host Range. PLoS ONE. 2014;9:e91520. doi: 10.1371/journal.pone.0091520. PubMed DOI PMC

Turashvili G., Yang W., McKinney S., Kalloger S., Gale N., Ng Y., Chow K., Bell L., Lorette J., Carrier M., et al. Nucleic acid quantity and quality from paraffin blocks: defining optimal fixation, processing and DNA/RNA extraction techniques. Exp. Mol. Pathol. 2012;92:33–43. doi: 10.1016/j.yexmp.2011.09.013. PubMed DOI

Howat W.J., Wilson B.A. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods (San Diego Calif.) 2014;70:12–19. doi: 10.1016/j.ymeth.2014.01.022. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum

. 2017 Sep 28 ; 9 (10) : . [epub] 20170928

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...