A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
29065468
PubMed Central
PMC5666889
DOI
10.3390/ijms18102209
PII: ijms18102209
Knihovny.cz E-resources
- Keywords
- antioxidant, donkeys, horses, metallomics, oxidative stress, ruminants, selenium,
- MeSH
- Humans MeSH
- Dietary Supplements MeSH
- Mammals metabolism MeSH
- Selenium deficiency metabolism physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Selenium MeSH
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Department of Physics University of the Free State P Bag X13 Phuthaditjhaba 9866 South Africa
School of Pharmacy and Life Sciences Robert Gordon University Garthdee Road Aberdeen AB107GJ UK
See more in PubMed
Lu J., Holmgren A. Selenoproteins. J. Biol. Chem. 2009;284:723–727. doi: 10.1074/jbc.R800045200. PubMed DOI
Rayman M.P. The importance of selenium to human health. Lancet. 2000;356:233–241. doi: 10.1016/S0140-6736(00)02490-9. PubMed DOI
Abuelo A., Alves-Nores V., Hernandez J., Muiño R., Benedito J.L., Castillo C. Effect of parenteral antioxidant supplementation during the dry period on postpartum glucose tolerance in dairy cows. J. Vet. Int. Med. 2016;30:892–898. doi: 10.1111/jvim.13922. PubMed DOI PMC
Battin E.E., Brumaghim J.L. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 2009;55:1–23. doi: 10.1007/s12013-009-9054-7. PubMed DOI
De Camargo E.V., Lopes S.T., Costa M.M., Paim F., Barbosa C.S., Leal M.L. Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010;94:e1–e6. doi: 10.1111/j.1439-0396.2010.00986.x. PubMed DOI
Dkhil M.A., Zrieq R., Al-Quraishy S., Abdel Moneim A.E. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules. 2016;21:1517. doi: 10.3390/molecules21111517. PubMed DOI PMC
Hasanvand A., Abbaszadeh A., Darabi S., Nazari A., Gholami M., Kharazmkia A. Evaluation of selenium on kidney function following ischemic injury in rats; protective effects and antioxidant activity. J. Ren. Inj. Prev. 2016;6:93–98. doi: 10.15171/jrip.2017.18. PubMed DOI PMC
Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2000;2:811–820. doi: 10.1089/ars.2000.2.4-811. PubMed DOI
Leal M.L., de Camargo E.V., Ross D.H., Molento M.B., Lopes S.T., da Rocha J.B. Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. Vet. Res. Commun. 2010;34:549–555. doi: 10.1007/s11259-010-9426-x. PubMed DOI
Lu X., Zhang E., Yin S., Fan L., Hu H. Methylseleninic Acid prevents patulin-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress and inactivation of p53 and MAPKs. J. Agric. Food Chem. 2017;65:5299–5305. doi: 10.1021/acs.jafc.7b01338. PubMed DOI
Ju W., Li X., Li Z., Wu G.R., Fu X.F., Yang X.M., Zhang X.Q., Gao X.B. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2017;44:8–16. doi: 10.1016/j.jtemb.2017.04.009. PubMed DOI
Stefanello S.T., Dobrachinski F., de Carvalho N.R., Amaral G.P., Barcelos R.P., Oliveira V.A., Oliveira C.S., Giordani C.F., Pereira M.E., Rodrigues O.E., et al. Free radical scavenging in vitro and biological activity of diphenyl diselenide-loaded nanocapsules: DPDS-NCS Antioxidant and toxicological effects. Int. J. Nanomed. 2015;10:5663–5670. doi: 10.2147/IJN.S87190. PubMed DOI PMC
Traulsen H., Steinbrenner H., Buchczyk D.P., Klotz L.O., Sies H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res. 2004;38:123–128. doi: 10.1080/10715760320001634852. PubMed DOI
Xu H. ROS responsive selenium-containing polymers. Nanomedicine. 2016;12:465. doi: 10.1016/j.nano.2015.12.057. DOI
Aaseth J., Alexander J., Bjørklund G., Hestad K., Dusek P., Roos P.M., Alehagen U. Treatment strategies in Alzheimer’s disease: A review with focus on selenium supplementation. Biometals. 2016;29:827–839. doi: 10.1007/s10534-016-9959-8. PubMed DOI PMC
Chu F.F., Esworthy R.S., Doroshow J.H. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic. Biol. Med. 2004;36:1481–1495. doi: 10.1016/j.freeradbiomed.2004.04.010. PubMed DOI
Duntas L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. 2009;41:443–447. doi: 10.1055/s-0029-1220724. PubMed DOI
El-Ghazaly M.A., Fadel N., Rashed E., El-Batal A., Kenawy S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol. 2017;95:101–110. doi: 10.1139/cjpp-2016-0183. PubMed DOI
Gao X., Zhang Z., Xing H., Yu J., Zhang N., Xu S. Selenium Deficiency-induced inflammation and increased expression of regulating inflammatory cytokines in the chicken gastrointestinal tract. Biol. Trace Elem. Res. 2016;173:210–218. doi: 10.1007/s12011-016-0651-1. PubMed DOI
Leyck S., Parnham M.J. Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions. 1990;30:426–431. doi: 10.1007/BF01966308. PubMed DOI
Liu J., Yang Y., Zeng X., Bo L., Jiang S., Du X., Xie Y., Jiang R., Zhao J., Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. Environ. Sci. Pollut. Res. Int. 2017;24:4008–4017. doi: 10.1007/s11356-016-8173-0. PubMed DOI
Malhotra S., Welling M.N., Mantri S.B., Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2016;104:993–1003. doi: 10.1002/jbm.b.33448. PubMed DOI
Rooke J.A., Robinson J.J., Arthur J.R. Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. J. Agric. Sci. 2004;142:153–262. doi: 10.1017/S0021859604004368. DOI
Speckmann B., Steinbrenner H. Selenium and selenoproteins in inflammatory bowel diseases and experimental colitis. Inflamm. Bowel Dis. 2014;20:1110–1119. doi: 10.1097/MIB.0000000000000020. PubMed DOI
Vunta H., Belda B.J., Arner R.J., Channa Reddy C., Vanden Heuvel J.P., Sandeep Prabhu K. Selenium attenuates pro-inflammatory gene expression in macrophages. Mol. Nutr. Food Res. 2008;52:1316–1323. doi: 10.1002/mnfr.200700346. PubMed DOI
Peng F., Guo X., Li Z., Li C., Wang C., Lv W., Wang J., Xiao F., Kamal M.A., Yuan C. Antimutagenic effects of selenium-enriched polysaccharides from pyracantha fortuneana through suppression of cytochrome P450 1A subfamily in the mouse liver. Molecules. 2016;21:1731. doi: 10.3390/molecules21121731. PubMed DOI PMC
Schrauzer G.N. Effects of selenium and low levels of lead on mammary tumor development and growth in MMTV-infected female mice. Biol. Trace Elem. Res. 2008;125:268–275. doi: 10.1007/s12011-008-8172-1. PubMed DOI
Ahmad M.S., Yasser M.M., Sholkamy E.N., Ali A.M., Mehanni M.M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomed. 2015;10:3389–3401. doi: 10.2147/IJN.S82707. PubMed DOI PMC
Hassan C.E., Webster T.J. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. Int. J. Nanomed. 2016;11:3641–3654. doi: 10.2147/IJN.S105173. PubMed DOI PMC
Kong L., Yuan Q., Zhu H., Li Y., Guo Q., Wang Q., Bi X., Gao X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials. 2011;32:6515–6522. doi: 10.1016/j.biomaterials.2011.05.032. PubMed DOI
Ramamurthy C., Sampath K.S., Arunkumar P., Kumar M.S., Sujatha V., Premkumar K., Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013;36:1131–1139. doi: 10.1007/s00449-012-0867-1. PubMed DOI
Stolzoff M., Webster T.J. Reducing bone cancer cell functions using selenium nanocomposites. J. Biomed. Mater. Res. A. 2016;104:476–482. doi: 10.1002/jbm.a.35583. PubMed DOI
Tran P.A., Sarin L., Hurt R.H., Webster T.J. Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int. J. Nanomed. 2010;5:351–358. PubMed PMC
Tran P., Webster T.J. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int. J. Nanomed. 2008;3:391–396. PubMed PMC
Vekariya K.K., Kaur J., Tikoo K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine. 2012;8:1125–1132. doi: 10.1016/j.nano.2011.12.003. PubMed DOI
Yang F., Tang Q., Zhong X., Bai Y., Chen T., Zhang Y., Li Y., Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed. 2012;7:835–844. doi: 10.2147/IJN.S28278. PubMed DOI PMC
Zheng J.S., Zheng S.Y., Zhang Y.B., Yu B., Zheng W., Yang F., Chen T. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Colloids Surf. B Biointerfaces. 2011;83:183–187. doi: 10.1016/j.colsurfb.2010.11.023. PubMed DOI
Combs G.F.J., Gray W.P. Chemopreventive agents: Selenium. Pharmacol. Ther. 1998;79:179–192. doi: 10.1016/S0163-7258(98)00014-X. PubMed DOI
Lü J., Jiang C. Selenium and cancer chemoprevention: Hypotheses integrating the actions of selenoproteins and selenium metabolites in epithelial and non-epithelial target cells. Antioxid. Redox Signal. 2005;7:1715–1727. doi: 10.1089/ars.2005.7.1715. PubMed DOI
Maiyo F., Singh M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine (Lond.) 2017;12:1075–1089. doi: 10.2217/nnm-2017-0024. PubMed DOI
Rao L., Puschner B., Prolla T.A. Gene expression profiling of low selenium status in the mouse intestine: Transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress. J. Nutr. 2001;131:3175–3181. PubMed
Sinha R., El-Bayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr. Cancer Drug Targets. 2004;4:13–28. doi: 10.2174/1568009043481614. PubMed DOI
Wang D., Taylor E.W., Wang Y., Wan X., Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int. J. Nanomed. 2012;7:1711–1721. doi: 10.2147/IJN.S29341. PubMed DOI PMC
Zheng S., Li X., Zhang Y., Xie Q., Wong Y.S., Zheng W., Chen T. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int. J. Nanomed. 2012;7:3939–3949. doi: 10.2147/IJN.S30940. PubMed DOI PMC
Cihalova K., Chudobova D., Michalek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC
Guisbiers G., Wang Q., Khachatryan E., Mimun L.C., Mendoza-Cruz R., Larese-Casanova P., Webster T.J., Nash K.L. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int. J. Nanomed. 2016;11:3731–3736. doi: 10.2147/IJN.S106289. PubMed DOI PMC
Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Rodrigo M.A., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI
Wang Q., Larese-Casanova P., Webster T.J. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. Int. J. Nanomed. 2015;10:2885–2894. doi: 10.2147/IJN.S78466. PubMed DOI PMC
Guisbiers G., Lara H.H., Mendoza-Cruz R., Naranjo G., Vincent B.A., Peralta X.G., Nash K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine. 2017;13:1095–1103. doi: 10.1016/j.nano.2016.10.011. PubMed DOI PMC
Shakibaie M., Salari Mohazab N., Ayatollahi Mousavi S.A. Antifungal Activity of Selenium Nanoparticles Synthesized by Bacillus species Msh-1 Against Aspergillus fumigatus and Candida albicans. Jundishapur J. Microbiol. 2015;8:e26381. doi: 10.5812/jjm.26381. PubMed DOI PMC
Beheshti N., Soflaei S., Shakibaie M., Yazdi M.H., Ghaffarifar F., Dalimi A., Shahverdi A.R. Efficacy of biogenic selenium nanoparticles against Leishmania major: In vitro and in vivo studies. J. Trace Elem. Med. Biol. 2013;27:203–207. doi: 10.1016/j.jtemb.2012.11.002. PubMed DOI
Dkhil M.A., Bauomy A.A., Diab M.S.M., Al-Quraishy S. Protective role of selenium nanoparticles against Schistosoma mansoni induced hepatic injury in mice. Biomed. Res. 2016;27:214–219.
Mahmoudvand H., Harandi M.F., Shakibaie M., Aflatoonian M.R., ZiaAli N., Sadat Makki M.S., Jahanbakhsh S. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int. J. Surg. 2014;12:399–403. doi: 10.1016/j.ijsu.2014.03.017. PubMed DOI
Pascual A., Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim. Biophys. Acta. 2013;1830:3908–3916. doi: 10.1016/j.bbagen.2012.03.012. PubMed DOI
Hefnawy A.E.G., Tórtora-Pérez J.L. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 2010;89:185–192. doi: 10.1016/j.smallrumres.2009.12.042. DOI
Arthur J.R. The glutathione peroxidases. Cell Mol. Life Sci. 2000;57:1825–1835. doi: 10.1007/PL00000664. PubMed DOI PMC
Hatfield D.L., Tsuji P.A., Carlson B.A., Gladyshev V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014;39:112–120. doi: 10.1016/j.tibs.2013.12.007. PubMed DOI PMC
Labunskyy V.M., Hatfield D.L., Gladyshev V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014;94:739–777. doi: 10.1152/physrev.00039.2013. PubMed DOI PMC
Mangiapane E., Pessione A., Pessione E. Selenium and selenoproteins: An overview on different biological systems. Curr. Protein. Pept. Sci. 2014;15:598–607. doi: 10.2174/1389203715666140608151134. PubMed DOI
Surai P.F. Selenium in Nutrition and Health. Nottingham University Press; Nottingham, UK: 2006. pp. 487–587.
Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18:3292–3311. doi: 10.3390/molecules18033292. PubMed DOI PMC
Shetty S.P., Shah R., Copeland P.R. Regulation of selenocysteine incorporationinto the selenium transport protein, selenoprotein P. J. Biol. Chem. 2014;289:25317–25326. doi: 10.1074/jbc.M114.590430. PubMed DOI PMC
Papp L.V., Lu J., Holmgren A., Khanna K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal. 2007;9:775–806. doi: 10.1089/ars.2007.1528. PubMed DOI
Allmang C., Krol A. Selenoprotein synthesis: UGA Does not end the story. Biochimie. 2006;88:1561–1571. doi: 10.1016/j.biochi.2006.04.015. PubMed DOI
Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigó R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–1443. doi: 10.1126/science.1083516. PubMed DOI
Squires J.E., Berry M.J. Eukaryotic selenoprotein synthesis: Mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life. 2008;60:232–235. doi: 10.1002/iub.38. PubMed DOI
Berry M.J., Banu L., Chen Y.Y., Mandel S.J., Kieffer J.D., Harney J.W., Larsen P.R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature. 1991;353:273–276. doi: 10.1038/353273a0. PubMed DOI
Bubenik J.L., Miniard A.C., Driscoll D.M. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2. RNA Biol. 2014;11:1402–1413. doi: 10.1080/15476286.2014.996472. PubMed DOI PMC
Nourbakhsh M., Ahmadpour F., Chahardoli B., Malekpour-Dehkordi Z., Nourbakhsh M., Hosseini-Fard S.R., Doustimotlagh A., Golestani A., Razzaghy-Azar M. Selenium and its relationship with selenoprotein P and glutathioneperoxidase in children and adolescents with Hashimoto’s thyroiditisand hypothyroidism. J. Trace Elem. Med. Biol. 2016;34:10–14. doi: 10.1016/j.jtemb.2015.10.003. PubMed DOI
Duntas L.H., Benvenga S. Selenium an element for life. Endocrine. 2015;48:756–775. doi: 10.1007/s12020-014-0477-6. PubMed DOI
Lin S.L., Wang C.W., Tan S.R., Liang Y., Yao H.D., Zhang Z.W., Xu S.W. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol. Trace Elem. Res. 2014;161:263–271. doi: 10.1007/s12011-014-0083-8. PubMed DOI
Rowntree J.E., Hill G.M., Hawkins D.R., Link J.E., Rincker M.J., Bednar G.W., Kreft R.A., Jr. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. J. Anim. Sci. 2004;82:2995–3005. doi: 10.2527/2004.82102995x. PubMed DOI
Guyot H., Rollin F. The diagnosis of selenium and iodine deficiencies in cattle. Ann. Med. Vet. 2007;151:166–191.
Bianco A.C., Salvatore D., Gereben B., Berry M.J., Larsen P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002;23:38–89. doi: 10.1210/edrv.23.1.0455. PubMed DOI
Larsen P.R., Zavacki A.M. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur. Thyroid J. 2012;1:232–242. doi: 10.1159/000343922. PubMed DOI PMC
Dentice M., Marsili A., Zavacki A., Larsen P.R., Salvatore D. The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim. Biophys. Acta. 2013;1830:3937–3945. doi: 10.1016/j.bbagen.2012.05.007. PubMed DOI PMC
Burmeister L.A., Pachucki J., St Germain D.L. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology. 1997;138:5231–5237. doi: 10.1210/endo.138.12.5602. PubMed DOI
Bianco A.C., Kim B.W. Deiodinases: Implications of the local control of thyroid hormone action. J. Clin. Investig. 2006;116:2571–2579. doi: 10.1172/JCI29812. PubMed DOI PMC
Shinde P.L., Dass R.S., Garg A.K. Effect of vitamin E and selenium supplementation on haematology, blood chemistry and thyroid hormones in male buffalo (Bubalus bubalis) calves. J. Anim. Feed Sci. 2009;18:241–256. doi: 10.22358/jafs/66388/2009. DOI
Sethy K., Dass R.S., Garg A.K., Sahu S., Gogoi S. Effect of different selenium sources (Selenium yeast and Sodium selenite) on haematology, blood chemistry and thyroid hormones in male goats (Capra hircus) Indian J. Anim. Res. 2015;49:788–792. doi: 10.18805/ijar.7040. DOI
Mittag J., Behrends T., Hoefig C.S., Vennström B., Schomburg L. Thyroid hormones regulate selenoprotein expression and selenium status in mice. PLoS ONE. 2010;5:e12931. doi: 10.1371/journal.pone.0012931. PubMed DOI PMC
Köhrle J., Gärtner R. Selenium and thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 2009;23:815–827. doi: 10.1016/j.beem.2009.08.002. PubMed DOI
Dercksen D.P., Counotte G.H., Hazebroek M.K., Arts W., van Rijn T. Selenium requirements of dairy goats [Article in Dutch] Tijdschr Diergeneeskd. 2007;132:468–471. PubMed
Effraimidis G., Wiersinga W.M. Mechanisms in endocrinology: Autoimmunethyroid disease: Old and new players. Eur. J. Endocrinol. 2014;170:R241–R252. doi: 10.1530/EJE-14-0047. PubMed DOI
Schomburg L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat. Rev. Endocrinol. 2012;8:160–171. doi: 10.1038/nrendo.2011.174. PubMed DOI
Radostits O.M., Gay C.C., Hinchcliff K.W., Constable P.D. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th ed. Saunders; Madrid, Spain: 2007. pp. 552–557.
Wang C., Liu Q., Yang W.Z., Dong Q., Yang X.M., He D.C., Zhang P., Dong K.H., Huang Y.X. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest. Sci. 2009;126:239–244. doi: 10.1016/j.livsci.2009.07.005. DOI
Aghwan Z.A., Sazili A.Q., Kadhim K.K., Alimon A.R., Goh Y.M., Adeyemi K.D. Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats. Anim. Sci. J. 2016;87:690–696. doi: 10.1111/asj.12484. PubMed DOI
Alhidary I.A., Shini S., Al Jassim R.A., Abudabos A.M., Gaughan J.B. Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J. Anim. Sci. 2015;93:576–588. doi: 10.2527/jas.2014-8419. PubMed DOI
Alimohamady R., Aliarabi H., Bahari A., Dezfoulian A.H. Influence of different amounts and sources of selenium supplementation on performance, some blood parameters, and nutrient digestibility in lambs. Biol. Trace Elem. Res. 2013;154:45–54. doi: 10.1007/s12011-013-9698-4. PubMed DOI
Calvo L., Toldrá F., Rodríguez A.I., López-Bote C., Rey A.I. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs. Food Sci. Nutr. 2016;5:94–102. doi: 10.1002/fsn3.368. PubMed DOI PMC
Downs K.M., Hess J.B., Bilgili S.F. Selenium source effect on broiler carcass characteristics, meat quality and drip loss. J. Appl. Anim. Res. 2000;18:61–72. doi: 10.1080/09712119.2000.9706324. DOI
Habibian M., Sadeghi G., Ghazi S., Moeini M.M. Selenium as a feed supplement for heat-stressed poultry: A review. Biol. Trace Elem. Res. 2015;165:183–193. doi: 10.1007/s12011-015-0275-x. PubMed DOI
Hu H., Wang M., Zhan X., Li X., Zhao R. Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. Biol. Trace Elem. Res. 2011;142:471–480. doi: 10.1007/s12011-010-8803-1. PubMed DOI
James B.W., Goodband R.D., Unruh J.A., Tokach M.D., Nelssen J.L., Dritz S.S., O’Quinn P.R., Andrews B.S. Effects of creatine monohydrate on finishing pig growth performance, carcass characteristics and meat quality. Anim. Feed Sci. Technol. 2002;96:135–145. doi: 10.1016/S0377-8401(01)00346-7. DOI
Lv C.H., Wang T., Regmi N., Chen X., Huang K., Liao S.F. Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature. J. Anim. Physiol. Anim. Nutr. (Berl.) 2015;99:1161–1171. doi: 10.1111/jpn.12326. PubMed DOI
Mateo R.D., Spallholz J.E., Elder R., Yoon I., Kim S.W. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. J. Anim. Sci. 2007;85:1177–1183. doi: 10.2527/jas.2006-067. PubMed DOI
Revilla-Vázquez A., Ramírez-Bribiesca E., López-Arellano R., Hernández-Calva L.M., Tórtora-Pérez J., García-García E., Cruz M.R.G. Supplement of selenium with intraruminal bolus of sodium selenite in sheep. Agrociencia. 2008;42:629–635.
Song Y.X., Hou J.X., Zhang L., Wang J.G., Liu X.R., Zhou Z.Q., Cao B.Y. Effect of dietary selenomethionine supplementation on growth performance, tissue Se concentration, and blood glutathione peroxidase activity in kid boer goats. Biol. Trace Elem. Res. 2015;167:242–250. doi: 10.1007/s12011-015-0316-5. PubMed DOI
Suchý P., Straková E., Herzig I. Selenium in poultry nutrition: A review. Czech J. Anim. Sci. 2014;59:495–503.
Tufarelli V., Laudadio V. Dietary supplementation with selenium and vitamin E improves milk yield, composition and rheological properties of dairy Jonica goats. J. Dairy Res. 2011;78:144–148. doi: 10.1017/S0022029910000907. PubMed DOI
Wu X., Yao J., Yang Z., Yue W., Ren Y., Zhang C., Liu X., Wang H., Zhao X., Yuan S., et al. Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se) Livest. Sci. 2011;142:270–275. doi: 10.1016/j.livsci.2011.08.005. DOI
Zhan X.A., Wang M., Zhao R.Q., Li W.F., Xu Z.R. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim. Feed Sci. Technol. 2007;132:202–211. doi: 10.1016/j.anifeedsci.2006.03.020. DOI
Kommisrud E., Osterås O., Vatn T. Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet. Scand. 2005;46:229–240. doi: 10.1186/1751-0147-46-229. PubMed DOI PMC
Ahsan U., Kamran Z., Raza I., Ahmad S., Babar W., Riaz M.H., Iqbal Z. Role of selenium in male reproduction—A review. Anim. Reprod. Sci. 2014;146:55–62. doi: 10.1016/j.anireprosci.2014.01.009. PubMed DOI
Bourne N., Wathes D.C., Lawrence K.E., McGowan M., Laven R.A. The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Vet. J. 2008;177:381–387. doi: 10.1016/j.tvjl.2007.06.006. PubMed DOI
Cerny K.L., Anderson L., Burris W.R., Rhoads M., Matthews J.C., Bridges P.J. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology. 2016;85:800–806. doi: 10.1016/j.theriogenology.2015.10.022. PubMed DOI
Chandra G., Aggarwal A., Singh A., Singh A.K., Kumar M., Kushwaha R., Singh Y.K. Oxidative stress in sperm biology—A review. Agric. Rev. 2012;33:54–61.
El-Sharawy M., Eid E., Darwish S., Abdel-Razek I., Islam M.R., Kubota K., Yamauchi N., El-Shamaa I. Effect of organic and inorganic selenium supplementation on semen quality and blood enzymes in buffalo bulls. Anim. Sci. J. 2016;21 doi: 10.1111/asj.12736. PubMed DOI
Foresta C., Flohé L., Garolla A., Roveri A., Ursini F., Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod. 2002;67:967–971. doi: 10.1095/biolreprod.102.003822. PubMed DOI
Giadinis N.D., Loukopoulos P., Petridou E.J., Panousis N., Konstantoudaki K., Filioussis G., Tsousis G., Brozos C., Koutsoumpas A.T., Chaintoutis S.C., et al. Abortions in three beef cattle herds attributed to selenium deficiency. Pak. Vet. J. 2016;36:145–148.
Grazul-Bilska A.T., Neville T.L., Borowczyk E., Sharma A., Reynolds L.P., Caton J.S., Redmer D.A., Vonnahme K.A. Ovarian and uterine characteristics and onset of puberty in adolescent offspring: Effects of maternal diet and selenium supplementation in sheep. Theriogenology. 2014;81:887–895. doi: 10.1016/j.theriogenology.2013.12.024. PubMed DOI
Hemingway R.G. The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep. Vet. Res. Commun. 2003;27:159–174. doi: 10.1023/A:1022871406335. PubMed DOI
Mahan D.C., Peters J.C. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. J. Anim. Sci. 2004;82:1343–1358. doi: 10.2527/2004.8251343x. PubMed DOI
Marin-Guzman J., Mahan D.C., Pate J.L. Effect of dietary selenium and vitamin E on spermatogenic development in boars. J. Anim. Sci. 2000;78:1537–1543. doi: 10.2527/2000.7861537x. PubMed DOI
Mehdi Y., Dufrasne I. Selenium in Cattle: A Review. Molecules. 2016;21:545. doi: 10.3390/molecules21040545. PubMed DOI PMC
Moeini M.M., Karami H., Mikaeili E. Effect of selenium and vitamin E supplementation during the late pregnancy on reproductive indices and milk production in heifers. Anim. Reprod. Sci. 2009;114:109–114. doi: 10.1016/j.anireprosci.2008.09.012. PubMed DOI
Patterson H.H., Adams D.C., Klopfenstein T.J., Clark R.T., Teichert B. Supplementation to meet metabolizable protein requirements of primiparous beef heifers: II. Pregnancy and economics. J. Anim. Sci. 2003;81:563–570. doi: 10.2527/2003.813563x. PubMed DOI
Shi L., Yue W., Zhang C., Ren Y., Zhu X., Wang Q., Shi L., Lei F. Effects of maternal and dietary selenium (Se-enriched yeast) on oxidative status in testis and apoptosis of germ cells during spermatogenesis of their offspring in goats. Anim. Reprod. Sci. 2010;119:212–218. doi: 10.1016/j.anireprosci.2010.02.012. PubMed DOI
Shi L., Song R., Yao X., Ren Y. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology. 2017;93:24–32. doi: 10.1016/j.theriogenology.2017.01.022. PubMed DOI
Spears J.W., Weiss W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008;176:70–76. doi: 10.1016/j.tvjl.2007.12.015. PubMed DOI
Speight S.M., Estienne M.J., Harper A.F., Crawford R.J., Knight J.W., Whitaker B.D. Effects of dietary supplementation with an organic source of selenium on characteristics of semen quality and in vitro fertility in boars. J. Anim. Sci. 2012;90:761–770. doi: 10.2527/jas.2011-3874. PubMed DOI
Surai P.F., Fisinin V.I. Selenium in Pig Nutrition and reproduction: Boars and semen quality—A Review. Asian-Australas. J. Anim. Sci. 2015;28:730–746. doi: 10.5713/ajas.14.0593. PubMed DOI PMC
Talukdar D.J., Talukdar P., Ahmed K. Minerals and its impact on fertility of livestock: A review. Agric. Rev. 2016;37:333–337. doi: 10.18805/ag.v37i4.6464. DOI
Zubair M., Ali M., Ahmad M., Sajid S.M., Ahmad I., Gul S.T. Effect of Selenium and Vitamin E on cryopreservation of semen and reproductive performance of animals (a review) J. Entomol. Zool. Stud. 2015;3:82–86.
Bao R.K., Zheng S.F., Wang X.Y. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ. Sci. Pollut. Res. Int. 2017;13 doi: 10.1007/s11356-017-9422-6. PubMed DOI
Bjørklund G., Aaseth J., Ajsuvakova O.P., Nikonorov A.A., Skalny A.V., Skalnaya M.G., Tinkov A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev. 2017;332:30–37. doi: 10.1016/j.ccr.2016.10.009. DOI
Dai X., Thongchot S., Dokduang H., Loilome W., Khuntikeo N., Titapun A., Ungarreevittaya P., Yongvanit P., Techasen A., Namwat N. Potential of selenium compounds as new anticancer agents for cholangiocarcinoma. Anticancer Res. 2016;36:5981–5988. doi: 10.21873/anticanres.11186. PubMed DOI
Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017;104:144–164. doi: 10.1016/j.freeradbiomed.2017.01.004. PubMed DOI
Gao Z., Li J., Song X., Zhang J., Wang X., Jing H., Ren Z., Li S., Zhang C., Jia L. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int. J. Biol. Macromol. 2017;104:1158–1164. doi: 10.1016/j.ijbiomac.2017.07.029. PubMed DOI
Gu L.X., Wen Z.S., Xiang X.W., Ma L., Wang X.B., Ma J.Y., Qu Y.L. Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharides in intestinal epithelial cells. Int. J. Biol. Macromol. 2017;99:570–577. doi: 10.1016/j.ijbiomac.2017.03.008. PubMed DOI
Guastamacchia E., Giagulli V.A., Licchelli B., Triggiani V. Selenium and iodine in autoimmune thyroiditis. Endocr. Metab. Immune Disord. Drug Targets. 2015;15:288–292. doi: 10.2174/1871530315666150619094242. PubMed DOI
Hegedüs V., Prokisch J., Fébel H., Kleiner D., Ditrói K., Szijártó A., Blázovics A. Nanoselenium treatment in fatty liver. Z. Gastroenterol. 2012;50 doi: 10.1055/s-0032-1312383. DOI
Lee J.M., Chun H.J., Choi H.S., Kim E.S., Seo Y.S., Jeen Y.T., Lee H.S., Um S.H., Kim C.H., Sul D. Selenium administration attenuates 5-flurouracil-induced intestinal mucositis. Nutr. Cancer. 2017;69:616–622. doi: 10.1080/01635581.2017.1300289. PubMed DOI
Orct T., Lazarus M., Ljubojević M., Sekovanić A., Sabolić I., Blanuša M. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium. Biometals. 2015;28:701–712. doi: 10.1007/s10534-015-9859-3. PubMed DOI
Tran A.P., Webster T. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC
Wu C., Xu Z., Huang K. Effects of Dietary Selenium on inflammation and hydrogen sulfide in the gastrointestinal tract in chickens. Biol. Trace Elem. Res. 2016;174:428–435. doi: 10.1007/s12011-016-0735-y. PubMed DOI
Zhu K., Jiang L., Chu Y., Zhang Y.S. Protective effect of selenium against cisplatin-induced nasopharyngeal cancer in male albino rats. Oncol. Lett. 2016;12:5068–5074. doi: 10.3892/ol.2016.5346. PubMed DOI PMC
Chan J.M., Darke A.K., Penney K.L., Tangen C.M., Goodman P.J., Lee G.S., Sun T., Peisch S., Tinianow A.M., Rae J.M., et al. Selenium- or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in SELECT. Cancer Epidemiol. Biomark. Prev. 2016;25:1050–1058. doi: 10.1158/1055-9965.EPI-16-0104. PubMed DOI PMC
Fernandes A.P., Wallenberg M., Gandin V., Misra S., Tisato F., Marzano C., Rigobello M.P., Kumar S., Björnstedt M. Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems. PLoS ONE. 2012;7:e50727. doi: 10.1371/journal.pone.0050727. PubMed DOI PMC
Weekley C.M., Jeong G., Tierney M.E., Hossain F., Maw A.M., Shanu A., Harris H.H., Witting P.K. Selenite-mediated production of superoxide radical anions in A549 cancer cells is accompanied by a selective increase in SOD1 concentration, enhanced apoptosis and Se-Cu bonding. J. Biol. Inorg. Chem. 2014;19:813–828. doi: 10.1007/s00775-014-1113-x. PubMed DOI
Park S.H., Kim J.H., Chi G.Y., Kim G.Y., Chang Y.C., Moon S.K., Nam S.W., Kim W.J., Yoo Y.H., Choi Y.H. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol. Lett. 2012;212:252–261. doi: 10.1016/j.toxlet.2012.06.007. PubMed DOI
Shen H.M., Yang C.F., Ding W.X., Liu J., Ong C.N. Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG(2) cells: Mitochondria serve as the main target. Free Radic. Biol. Med. 2001;30:9–21. doi: 10.1016/S0891-5849(00)00421-4. PubMed DOI
Wang H.T., Yang X.L., Zhang Z.H., Lu J.L., Xu H.B. Reactive oxygen species from mitochondria mediate SW480 cells apoptosis induced by Na2SeO3. Biol. Trace Elem. Res. 2002;85:241–254. doi: 10.1385/BTER:85:3:241. PubMed DOI
Zhong W., Oberley T.D. Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 2001;61:7071–7078. PubMed
Zhu Y., Xu H., Huang K. Mitochondrial permeability transition and cytochrome c release induced by selenite. J. Inorg. Biochem. 2002;90:43–50. doi: 10.1016/S0162-0134(02)00407-5. PubMed DOI
Husbeck B., Nonn L., Peehl D.M., Knox S.J. Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells. Prostate. 2006;66:218–225. doi: 10.1002/pros.20337. PubMed DOI
Nilsonne G., Sun X., Nyström C., Rundlöf A.K., Potamitou Fernandes A., Björnstedt M., Dobra K. Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radic. Biol. Med. 2006;41:874–885. doi: 10.1016/j.freeradbiomed.2006.04.031. PubMed DOI
Ip C., Ganther H.E. Activity of methylated forms of selenium in cancer prevention. Cancer Res. 1990;50:1206–1211. PubMed
Xiang N., Zhao R., Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother. Pharmacol. 2009;63:351–362. doi: 10.1007/s00280-008-0745-3. PubMed DOI PMC
Li J., Zuo L., Shen T., Xu C.M., Zhang Z.N. Induction of apoptosis by sodium selenite in human acute promyelocytic leukemia NB4 cells: Involvement of oxidative stress and mitochondria. J. Trace Elem. Med. Biol. 2003;17:19–26. doi: 10.1016/S0946-672X(03)80041-X. PubMed DOI
Kim E.H., Sohn S., Kwon H.J., Kim S.U., Kim M.J., Lee S.J., Choi K.S. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res. 2007;67:6314–6324. doi: 10.1158/0008-5472.CAN-06-4217. PubMed DOI
Björnstedt M., Kumar S., Holmgren A. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J. Biol. Chem. 1992;267:8030–8034. PubMed
Ganther H.E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry. 1971;10:4089–4098. doi: 10.1021/bi00798a013. PubMed DOI
Horky P., Jancikova P., Sochor J., Hynek D., Chavis G.J., Ruttkay-Nedecky B., Cernei N., Zitka O., Zeman L., Adam V., et al. Effect of organic and inorganic form of selenium on antioxidant status of breeding boars ejaculate revealed by electrochemistry. Int. J. Electrochem. Sci. 2012;7:9643–9657.
Kim J.H., Wang S.Y., Kim I.C., Ki J.S., Raisuddin S., Lee J.S., Han K.N. Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere. 2008;71:1251–1259. doi: 10.1016/j.chemosphere.2007.11.067. PubMed DOI
Agarwal R., Raisuddin S., Tewari S., Goel S.K., Raizada R.B., Behari J.R. Evaluation of comparative effect of pre- and posttreatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J. Biochem. Mol. Toxicol. 2010;24:123–135. doi: 10.1002/jbt.20320. PubMed DOI
Bjørklund G. Selenium as an antidote in the treatment of mercury intoxication. Biometals. 2015;28:605–614. doi: 10.1007/s10534-015-9857-5. PubMed DOI
Burk R.F., Hill K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta. 2009;1790:1441–1447. doi: 10.1016/j.bbagen.2009.03.026. PubMed DOI PMC
El-Ansary A., Bjørklund G., Tinkov A.A., Skalny A.V., Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis. 2017;32:1073–1080. doi: 10.1007/s11011-017-9996-1. PubMed DOI
Burk R.F., Hill K.E., Motley A.K., Winfrey V.P., Kurokawa S., Mitchell S.L., Zhang W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014;28:3579–3588. doi: 10.1096/fj.14-252874. PubMed DOI PMC
Hassanin K.M., Abd El-Kawi S.H., Hashem K.S. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int. J. Nanomed. 2013;8:1713–1720. PubMed PMC
Hao P., Zhu Y., Wang S., Wan H., Chen P., Wang Y., Cheng Z., Liu Y., Liu J. Selenium Administration Alleviates Toxicity of Chromium(VI) in the Chicken Brain. Biol. Trace Elem. Res. 2017;178:127–135. doi: 10.1007/s12011-016-0915-9. PubMed DOI
Wan H., Zhu Y., Chen P., Wang Y., Hao P., Cheng Z., Liu Y., Liu J. Effect of various selenium doses on chromium(IV)-induced nephrotoxicity in a male chicken model. Chemosphere. 2017;174:306–314. doi: 10.1016/j.chemosphere.2017.01.143. PubMed DOI
Lynch S.J., Horgan K.A., White B., Walls D. Selenium source impacts protection of porcine jejunal epithelial cells from cadmium-induced DNA damage, with maximum protection exhibited with yeast-derived selenium compounds. Biol. Trace Elem. Res. 2017;176:311–320. doi: 10.1007/s12011-016-0828-7. PubMed DOI
Wang X., Bao R., Fu J. The antagonistic effect of selenium on cadmium-induced damage and mRNA levels of selenoprotein genes and inflammatory factors in chicken kidney Tissue. Biol. Trace Elem. Res. 2017;16 doi: 10.1007/s12011-017-1041-z. PubMed DOI
Sadek K.M., Lebda M.A., Abouzed T.K., Nasr S.M., Shoukry M. Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab. Brain Dis. 2017;28 doi: 10.1007/s11011-017-0053-x. PubMed DOI
Özkan-Yilmaz F., Özlüer-Hunt A., Gündüz S.G., Berköz M., Yalin S. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol. Biochem. 2014;40:355–363. doi: 10.1007/s10695-013-9848-9. PubMed DOI
Danzeisen R., Achsel T., Bederke U., Cozzolino M., Crosio C., Ferri A., Frenzel M., Gralla E.B., Huber L., Ludolph A., et al. Superoxide dismutase 1 modulates expression of transferrin receptor. J. Biol. Inorg. Chem. 2006;11:489–498. doi: 10.1007/s00775-006-0099-4. PubMed DOI
Roy C.N., Enns C.A. Iron homeostasis: New tales from the crypt. Blood. 2000;96:4020–4027. PubMed
Bartfay W.J. Selenium status and the pathogenesis of iron-overload cardiomyopathies: Cause or Consequence. Queen’s Health Sci. J. 2003;6:40–46.
Bartfay W.J., Bartfay E. Decreasing effects of iron toxicosis on selenium and glutathione peroxidase activity. West. J. Nurs. Res. 2002;24:119–131. doi: 10.1177/01939450222045789. PubMed DOI
Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI
Speckmann B., Grune T. Epigenetic effects of selenium and their implications for health. Epigenetics. 2015;10:179–190. doi: 10.1080/15592294.2015.1013792. PubMed DOI PMC
Dozmorov M.G., Wren J.D., Alarcón-Riquelme M.E. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes. Epigenetics. 2014;9:276–285. doi: 10.4161/epi.27021. PubMed DOI PMC
Häsler R., Feng Z., Bäckdahl L., Spehlmann M.E., Franke A., Teschendorff A., Rakyan V.K., Down T.A., Wilson G.A., Feber A., et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22:2130–2137. doi: 10.1101/gr.138347.112. PubMed DOI PMC
Nilsson E., Jansson P.A., Perfilyev A., Volkov P., Pedersen M., Svensson M.K., Poulsen P., Ribel-Madsen R., Pedersen N.L., Almgren P., et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63:2962–2976. doi: 10.2337/db13-1459. PubMed DOI
Whayne T.F. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol. Biol. Rep. 2015;42:765–776. doi: 10.1007/s11033-014-3727-z. PubMed DOI
Arai E., Kanai Y. DNA methylation profiles in precancerous tissue and cancers: Carcinogenetic risk estimation and prognostication based on DNA methylation status. Epigenomics. 2010;2:467–481. doi: 10.2217/epi.10.16. PubMed DOI
Timp W., Feinberg A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer. 2013;13:497–510. doi: 10.1038/nrc3486. PubMed DOI PMC
Conrad M., Jakupoglu C., Moreno S.G., Lippl S., Banjac A., Schneider M., Beck H., Hatzopoulos A.K., Just U., Sinowatz F., et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 2004;24:9414–9423. doi: 10.1128/MCB.24.21.9414-9423.2004. PubMed DOI PMC
Bösl M.R., Takaku K., Oshima M., Nishimura S., Taketo M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp) Proc. Natl. Acad. Sci. USA. 1997;94:5531–5534. doi: 10.1073/pnas.94.11.5531. PubMed DOI PMC
Davis C.D., Uthus E.O., Finley J.W. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J. Nutr. 2000;130:2903–2909. PubMed
Uthus E.O., Ross S.A., Davis C.D. Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats. Biol. Trace Elem. Res. 2006;109:201–214. doi: 10.1385/BTER:109:3:201. PubMed DOI
Armstrong K.M., Bermingham E.N., Bassett S.A., Treloar B.P., Roy N.C., Barnett M.P. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol. J. 2011;6:113–117. doi: 10.1002/biot.201000267. PubMed DOI
Xiang N., Zhao R., Song G., Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis. 2008;29:2175–2181. doi: 10.1093/carcin/bgn179. PubMed DOI PMC
Arai Y., Ohgane J., Yagi S., Ito R., Iwasaki Y., Saito K., Akutsu K., Takatori S., Ishii R., Hayashi R., et al. Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J. Rep. Dev. 2011;57:507–517. doi: 10.1262/jrd.11-034A. PubMed DOI
Zeng H., Yan L., Cheng W.H., Uthus E.O. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa. J. Nutr. 2011;141:1464–1468. doi: 10.3945/jn.111.140715. PubMed DOI
Du J., Patel D.J. Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. Biochim. Biophys. Acta. 2014;1839:719–727. doi: 10.1016/j.bbagrm.2014.04.011. PubMed DOI PMC
Falkenberg K.J., Johnstone R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014;13:673–691. doi: 10.1038/nrd4360. PubMed DOI
Gowda R., Madhunapantula S.V., Desai D., Amin S., Robertson G.P. Selenium-containing histone deacetylase inhibitors for melanoma management. Cancer Biol. Ther. 2012;13:756–765. doi: 10.4161/cbt.20558. PubMed DOI PMC
Kassam S., Goenaga-Infante H., Maharaj L., Hiley C.T., Juliger S., Joel S.P. Methylseleninic acid inhibits HDAC activity in diffuse large B-cell lymphoma cell lines. Cancer Chemother. Pharmacol. 2011;68:815–821. doi: 10.1007/s00280-011-1649-1. PubMed DOI
Desai D., Salli U., Vrana K.E., Amin S. SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 2010;20:2044–2047. doi: 10.1016/j.bmcl.2009.07.068. PubMed DOI PMC
Maciel-Dominguez A., Swan D., Ford D., Hesketh J. Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol. Nutr. Food Res. 2013;57:2195–2205. doi: 10.1002/mnfr.201300168. PubMed DOI
Li Q., Wang J.X., He Y.Q., Feng C., Zhang X.J., Sheng J.Q., Li P.F. MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 2014;5:e1197. doi: 10.1038/cddis.2014.148. PubMed DOI PMC
Qu F., Cui X., Hong Y., Wang J., Li Y., Chen L., Liu Y., Gao Y., Xu D., Wang Q. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol. Cell Biochem. 2013;377:121–130. doi: 10.1007/s11010-013-1576-z. PubMed DOI
Combs G.F., Jr. The Vitamins: Fundamental Aspects in Nutrition and Health. 3rd ed. Elsevier Academic Press; Cambridge, MA, USA: 2008. p. 583.
Au Yeung K.J., Smith A., Zhao A., Madden K.B., Elfrey J., Sullivan C., Levander O., Urban J.F., Shea-Donohue T. Impact of vitamin E or selenium deficiency on nematode-induced alterations in murine intestinal function. Exp. Parasitol. 2005;109:201–208. doi: 10.1016/j.exppara.2004.12.015. PubMed DOI
Smith A., Madden K.B., Yeung K.J., Zhao A., Elfrey J., Finkelman F., Levander O., Shea-Donohue T., Urban J.F., Jr. Deficiencies in selenium and/or vitamin E lower the resistance of mice to Heligmosomoides polygyrus infections. J. Nutr. 2005;135:830–836. PubMed
Abutarbush S.M., Radostits O.M. Congenital nutritional muscular dystrophy in a beef calf. Can. Vet. J. 2003;44:738–739. PubMed PMC
Radostits O.M., Gay C.C., Blood D.C., Hinchcliff K.W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. 9th ed. WB Saunders; London, UK: 2000.
Streeter R.M., Divers T.J., Mittel L., Korn A.E., Wakshlag J.J. Selenium deficiency associations with gender, breed, serum vitamin E and creatine kinase, clinical signs and diagnoses in horses of different age groups: A retrospective examination 1996–2011. Equine Vet. J. Suppl. 2012;44:31–35. doi: 10.1111/j.2042-3306.2012.00643.x. PubMed DOI
Cardona Á.J., Reza G.L. Esteatosis en un burro (Equus asinus). Primer reporte en Colombia (Steatosis in donkey (Equus asinus). First report in Colombia) Rev. MVZ Cordoba. 2011;16:2793–2798. doi: 10.21897/rmvz.280. DOI
Sobiech P., Kuleta Z. Levels of selected biochemical indicators of serum and blood during subclinical form of nutritional muscular dystrophy in lambs. Pol. J. Vet. Sci. 1999;2:37–41.
Żarczyńska K., Sobiech P., Radwińska J., Rękawek W. Effects of selenium on animal health. J. Elementol. 2013;18:329–340. doi: 10.5601/jelem.2013.18.2.12. DOI
Kojouri G.A., Rezakhani A., Ahmadi H. Arrhythmias in advance stiff lamb disease. Small Rumin. Res. 2009;84:65–69. doi: 10.1016/j.smallrumres.2009.06.005. DOI
Van Loon G., Lefère L., Bauwens C., Kleyn K., Broux B., De Clercq D., Deprez P. Yellow fat disease (steatitis): Description of 20 cases with emphasis on typical ultrasonographic findings. Equine Vet. J. 2015;47 doi: 10.1111/evj.12486_43. PubMed DOI
Bruijn C., Veldhuis E., Sloet M. Yellow fat disease in equides. Equine Vet. Educ. 2006;18:38–44. doi: 10.1111/j.2042-3292.2006.tb00413.x. DOI
Fajt Z., Svoboda M., Drábek J., Dubanský V. Selen a jeho význam pro zdravotní stav prasat—Review. Veterinarstvi. 2009;59:221–224.
Kamada H., Nonaka I., Takenouchi N., Amari M. Effects of selenium supplementation on plasma progesterone concentrations in pregnant heifers. Anim. Sci. J. 2014;85:241–246. doi: 10.1111/asj.12139. PubMed DOI
Uematsu M., Kitahara G., Sameshima H., Osawa T. Serum selenium and liposoluble vitamins in Japanese Black cows that had stillborn calves. J. Vet. Med. Sci. 2016;78:1501–1504. doi: 10.1292/jvms.15-0268. PubMed DOI PMC
Underwood E.J., Suttle N.F. The Mineral Nutrition of Livestock. 3rd ed. CABI Publishing; Wallingford, UK: 2004. Selenium; pp. 421–475.
Kamada H. Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows. Asian-Australas. J. Anim. Sci. 2017;30:347–354. doi: 10.5713/ajas.16.0372. PubMed DOI PMC
Wilde D. Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim. Reprod. Sci. 2006;96:240–249. doi: 10.1016/j.anireprosci.2006.08.004. PubMed DOI
Ceko M.J., Hummitzsch K., Hatzirodos N., Bonner W.M., Aitken J.B., Russell D.L., Lane M., Rodgers R.J., Harris H.H. X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics. 2015;7:66–77. PubMed
Davis C.D., Tsuji P.A., Milner J.A. Selenoproteins and cancer prevention. Annu. Rev. Nutr. 2012;32:73–95. doi: 10.1146/annurev-nutr-071811-150740. PubMed DOI
Fairweather-Tait S.J., Collings R., Hurst R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010;91:1484S–1491S. doi: 10.3945/ajcn.2010.28674J. PubMed DOI
Badade Z.G., More K., Narshetty J. Oxidative stress adversely affects spermatogenesis in male infertility. Biomed. Res. 2011;22:323–328.
Brouwers J.F., Gadella B.M. In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 2003;35:1382–1391. doi: 10.1016/j.freeradbiomed.2003.08.010. PubMed DOI
Cerolini S., Maldjian A., Surai P., Noble R. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 2000;58:99–111. doi: 10.1016/S0378-4320(99)00035-4. PubMed DOI
Kemal Duru N., Morshedi M., Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0. PubMed DOI
Kefer J.C., Agarwal A., Sabanegh E. Role of antioxidants in the treatment of male infertility. Int. J. Urol. 2009;16:449–457. doi: 10.1111/j.1442-2042.2009.02280.x. PubMed DOI
Agarwal A., Nallella K.P., Allamaneni S.S., Said T.M. Role of antioxidants in treatment of male infertility: An overview of the literature. Reprod. Biomed. Online. 2004;8:616–627. doi: 10.1016/S1472-6483(10)61641-0. PubMed DOI
Koracevic D., Koracevic G., Djordjevic V., Andrejevic S., Cosic V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001;54:356–361. doi: 10.1136/jcp.54.5.356. PubMed DOI PMC
Youssef H.A.A., Elshazly M.I., Rashed L.A., Sabry I.M., Ibrahim E.K. Thiobarbituric acid reactive substance (TBARS) a marker of oxidative stress in obstructive sleep apnea. Egypt. J. Chest Dis. Tuberc. 2014;63:119–124. doi: 10.1016/j.ejcdt.2013.10.012. DOI
Bhutia R.D., Upadhyay B., Maneesh M. Association of plasma level of thiobarbituric acid reactive substances with extent of hepatocellular injury in preterm infants with cholestatic jaundice. Indian J. Clin. Biochem. 2006;21:39–41. doi: 10.1007/BF02912909. PubMed DOI PMC
Shang X.J., Li K., Ye Z.Q., Chen Y.G., Yu X., Huang Y.F. Analysis of lipid peroxidative levels in seminal plasma of infertile men by high-performance liquid chromatography. Arch. Androl. 2004;50:411–416. doi: 10.1080/01485010490484138. PubMed DOI
Tavilani H., Goodarzi M.T., Vaisi-Raygani A., Salimi S., Hassanzadeh T. Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxidation of spermatozoa. Int. Braz. J. Urol. 2008;34:485–491. doi: 10.1590/S1677-55382008000400011. PubMed DOI
Breininger E., Beorlegui N.B., O’Flaherty C.M., Beconi M.T. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology. 2005;63:2126–2135. doi: 10.1016/j.theriogenology.2004.08.016. PubMed DOI
Kumaresan A., Kadirvel G., Bujarbaruah K.M., Bardoloi R.K., Das A., Kumar S., Naskar S. Preservation of boar semen at 18 degrees C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci. 2009;110:162–171. doi: 10.1016/j.anireprosci.2008.01.006. PubMed DOI
Gómez-Fernández J., Gómez-Izquierdo E., Tomás C., Mocé E., de Mercado E. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars? Reprod. Domest. Anim. 2013;48:177–182. doi: 10.1111/j.1439-0531.2012.02126.x. PubMed DOI
Giadinis N.D., Panousis N., Petridou E.J., Siarkou V.I., Lafi S.Q., Pourliotis K., Hatzopoulou E., Fthenakis G.C. Selenium, vitamin E and vitamin A blood concentrations in dairy sheep flocks with increased or low clinical mastitis incidence. Small Rumin. Res. 2011;95:193–196. doi: 10.1016/j.smallrumres.2010.08.010. DOI
Meschy F. Nutrition Minérale des Ruminants. Editions Quae; Versaille, France: 2010. p. 208.
Sordillo L.M. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet. Med. Int. 2013;2013:154045. doi: 10.1155/2013/154045. PubMed DOI PMC
Salman S., Khol-Parisini A., Schafft H., Lahrssen-Wiederholt M., Hulan H.W., Dinse D., Zentek J. The role of dietary selenium in bovine mammary gland health and immune function. Anim. Health Res. Rev. 2009;10:21–34. doi: 10.1017/S1466252308001588. PubMed DOI
Passchyn P., Piepers S., De Vliegher S. Pathogen group-specific risk factors for intramammary infection in treated and untreated dairy heifers participating in a prepartum antimicrobial treatment trial. J. Dairy Sci. 2014;97:6260–6270. doi: 10.3168/jds.2014-8119. PubMed DOI
Ceballos-Márquez A., Barkema H.W., Stryhn H., Dohoo I.R., Keefe G.P., Wichtel J.J. Bulk tank milk selenium and its association with milk production parameters in Canadian dairy herds. Can. Vet. J. 2012;53:51–56. PubMed PMC
Erskine R.J., Eberhart R.J., Grasso P.J., Scholz R.W. Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets. Am. J. Vet. Res. 1989;50:2093–2100. PubMed
Erskine R.J., Eberhart R.J., Scholz R.W. Experimentally induced Staphylococcus aureus mastitis in selenium-deficient and selenium-supplemented dairy cows. Am. J. Vet. Res. 1990;51:1107–1111. PubMed
Ali-Vehmas T., Vikerpuur M., Fang W., Sandholm M. Giving selenium supplements to dairy cows strengthens the inflammatory response to intramammary infection and induces a growth-suppressing effect on mastitis pathogens in whey. Zentralbl. Veterinarmed. A. 1997;44:559–571. doi: 10.1111/j.1439-0442.1997.tb01142.x. PubMed DOI
Sordillo L.M., O’Boyle N., Gandy J.C., Corl C.M., Hamilton E. Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle. J. Dairy Sci. 2007;90:1186–1192. doi: 10.3168/jds.S0022-0302(07)71605-3. PubMed DOI
Ceballos A., Kruze J., Barkema H.W., Dohoo I.R., Sanchez J., Uribe D., Wichtel J.J., Wittwer F. Barium selenate supplementation and its effect on intramammary infection in pasture-based dairy cows. J. Dairy Sci. 2010;93:1468–1477. doi: 10.3168/jds.2009-2410. PubMed DOI
Ceballos-Marquez A., Barkema H.W., Stryhn H., Wichtel J.J., Neumann J., Mella A., Kruze J., Espindola M.S., Wittwer F. The effect of selenium supplementation before calving on early-lactation udder health in pastured dairy heifers. J. Dairy Sci. 2010;93:4602–4612. doi: 10.3168/jds.2010-3086. PubMed DOI
Machado V.S., Bicalho M.L., Pereira R.V., Caixeta L.S., Knauer W.A., Oikonomou G., Gilbert R.O., Bicalho R.C. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet. J. 2013;197:451–456. doi: 10.1016/j.tvjl.2013.02.022. PubMed DOI
Ran L., Wu X., Shen X., Zhang K., Ren F., Huang K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 2010;90:2214–2219. doi: 10.1002/jsfa.4073. PubMed DOI
Muñiz-Naveiro O., Domínguez-González R., Bermejo-Barrera A., Cocho J.A., Fraga J.M., Bermejo-Barrera P. Determination of total selenium and selenium distribution in the milk phases in commercial cow’s milk by HG-AAS. Anal. Bioanal. Chem. 2005;381:1145–1151. doi: 10.1007/s00216-004-3010-6. PubMed DOI
Eulogio G.L.J., Hugo C.V., Antonio C.N., Alejandro C.-I., Juan M.Q. Effects of the selenium and vitamin E in the production, physicochemical composition and somatic cell count in milk of Ayrshire cows. J. Anim. Vet. Adv. 2012;11:687–691.
Kim J., Van Soest P.J., Combs G.F., Jr. Studies on the effects of selenium on rumen microbial fermentation in vitro. Biol. Trace Elem. Res. 1997;56:203–213. doi: 10.1007/BF02785393. PubMed DOI
Van Soest P.J. Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press; Ithaca, NY, USA: 1994. p. 476.
Macfarlane G.T., Gibson G.R., Beatty E., Cummings J.H. Estimation of shortchain fatty production from protein by human intestinal bacteria on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 1992;101:81–88.
Galbraith M.L., Vorachek W.R., Estill C.T., Whanger P.D., Bobe G., Davis T.Z., Hall J.A. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biol. Trace Elem. Res. 2016;171:338–343. doi: 10.1007/s12011-015-0560-8. PubMed DOI
Hall J.A., Van Saun R.J., Bobe G., Stewart W.C., Vorachek W.R., Mosher W.D., Nichols T., Forsberg N.E., Pirelli G.J. Organic and inorganic selenium: I. Oral bioavailability in ewes. J. Anim. Sci. 2012;90:568–576. doi: 10.2527/jas.2011-4075. PubMed DOI
Hidiroglou M., Jenkins K.J. Fate of Se-75-selenomethionine in gastrointestinal-tract of sheep. Can. J. Anim. Sci. 1973;53:527–536. doi: 10.4141/cjas73-080. DOI
Turner R.J., Weiner J.H., Taylor D.E. Selenium metabolism in Escherichia coli. Biometals. 1998;11:223–227. doi: 10.1023/A:1009290213301. PubMed DOI
Eun J.S., Davis T.Z., Vera J.M., Miller D.N., Panter K.E., ZoBell D.R. Addition of high concentration of inorganic selenium in orchardgrass (Dactylis glomerata L.) hay diet does not interfere with microbial fermentation in mixed ruminal microorganisms in continuous cultures. Prof. Anim. Sci. 2013;29:39–45. doi: 10.15232/S1080-7446(15)30193-5. DOI
Mihaliková K., Grešáková Ľ., Boldižárová K., Faix Š., Leng Ľ., Kišidayová S. The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiol. 2005;50:353–356. doi: 10.1007/BF02931418. PubMed DOI
Faixová Z., Piešová E., Maková Z., Čobanová K., Faix Š. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep. Acta Vet. Brno. 2016;85:185–194. doi: 10.2754/avb201685020185. DOI
Karl J.P., Alemany J.A., Koenig C., Kraemer W.J., Frystyk J., Flyvbjerg A., Young A.J., Nindl B.C. Diet, body composition, and physical fitness influences on IGF-I bioactivity in women. Growth Horm. IGF Res. 2009;19:491–496. doi: 10.1016/j.ghir.2009.04.001. PubMed DOI
McElwee K., Hoffmann R. Growth factors in early hair follicle morphogenesis. Eur. J. Dermatol. 2000;10:341–350. PubMed
Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010. PubMed DOI
Lindner G., Botchkarev V.A., Botchkareva N.V., Ling G., van der Veen C., Paus R. Analysis of apoptosis during hair follicle regression (catagen) Am. J. Pathol. 1997;151:1601–1617. PubMed PMC
Ahn S.Y., Pi L.Q., Hwang S.T., Lee W.S. Effect of IGF-I on hair growth is related to the anti-apoptotic Effect of IGF-I and up-regulation of PDGF-A and PDGF-B. Ann. Dermatol. 2012;24:26–31. doi: 10.5021/ad.2012.24.1.26. PubMed DOI PMC
Kamp H., Geilen C.C., Sommer C., Blume-Peytavi U. Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp. Dermatol. 2003;12:662–672. doi: 10.1034/j.1600-0625.2003.00089.x. PubMed DOI
Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–212. doi: 10.1016/0092-8674(90)90801-K. PubMed DOI
Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 1995;16:3–34. doi: 10.1210/edrv-16-1-3. PubMed DOI
Ludvíková E., Pavlata L., Vyskočil M., Jahn P. Selenium status of horses in the Czech Republic. Acta Vet. Brno. 2005;74:369–375. doi: 10.2754/avb200574030369. DOI
Pavlata L., Pechová A., Illek J. Direct and indirect assessment of selenium status in cattle—A comparison. Acta Vet. Brno. 2000;69:281–287. doi: 10.2754/avb200069040281. DOI
Slavík P., Illek J., Rajmon R., Zelený T., Jílek F. Selenium dynamics in the blood of beef cows and calves fed diets supplemented with organic and inorganic selenium sources and the effect on reproduction. Acta Vet. Brno. 2008;77:11–15. doi: 10.2754/avb200877010011. DOI
Harapin I., Bauer M., Bedrica L., Potočnjak D. Correlation between glutathione peroxidase activity and the quantity of selenium in the whole blood of beef calves. Acta Vet. Brno. 2000;69:87–92. doi: 10.2754/avb200069020087. DOI
Jovanović B.I.V.M., Veličković M., Milanović S., Valčić O., Gvozdić D., Vranješ-Đurić S. Supplemental selenium reduces the levels of biomarkers of oxidative and general stress in peripartum dairy cows. Acta Vet. Beograd. 2015;65:191–201.
Pavlata L., Misurova L., Pechova A., Husakova T., Dvorak R. Direct and indirect assessment of selenium status in sheep—A comparison. Vet. Med. 2012;57:219–223.
Pechova A., Pavlata L., Illek J. Blood and tissue selenium determination by hydride generation atomic absorption spectrophotometry. Acta Vet. Brno. 2005;74:483–490. doi: 10.2754/avb200574040483. DOI
Slavík P., Illek J., Zelený T. Selenium status in heifers, late pregnancy cows and their calves in the Šumava Region, Czech Republic. Acta Vet. Brno. 2007;76:519–524. doi: 10.2754/avb200776040519. DOI
Chung J.Y., Kim J.H., Ko Y.H., Jang I.S. Effects of dietary supplemented inorganic and organic selenium on antioxidant defense systems in the intestine, serum, liver and muscle of Korean native goats. Asian Australas. J. Anim. 2007;20:52–59. doi: 10.5713/ajas.2007.52. DOI
Stockdale C.R., Gill H.S. Effect of duration and level of supplementation of diets of lactating dairy cows with selenized yeast on selenium concentrations in milk and blood after the withdrawal of supplementation. J. Dairy Sci. 2011;94:2351–2359. doi: 10.3168/jds.2010-3781. PubMed DOI
Balán J., Vosmanská M., Száková J., Mestek O. Speciační analýza selenu v odtučněném řepkovém šrotu. Chem. Listy. 2014;108:256–263.
Juniper D.T., Phipps R.H., Jones A.K., Bertin G. Selenium supplementation of lactating dairy cows: Effect on selenium concentration in blood, milk, urine, and feces. J. Dairy Sci. 2006;89:3544–3551. doi: 10.3168/jds.S0022-0302(06)72394-3. PubMed DOI
Konvičná J., Vargová M., Paulíková I., Kováč G., Kostecká Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno. 2015;84:133–140. doi: 10.2754/avb201584020133. DOI
Kralik Z., Kralik G., Biazik E., Straková E., Suchý P. Effects of organic selenium in broiler feed on the content of selenium and fatty acid profile in lipids of thigh muscle tissue. Acta Vet. Brno. 2013;82:277–282. doi: 10.2754/avb201382030277. DOI
Faixová Z., Faix Š., Bořutová R., Leng Ľ. Efficacy of dietary selenium to counteract toxicity of deoxynivalenol in growing broiler chickens. Acta Vet. Brno. 2007;76:349–356. doi: 10.2754/avb200776030349. DOI
Kuricová S., Boldižárová K., Grešáková Ľ., Levkut M., Leng Ľ. Chicken selenium satus when fed a diet supplemented with Se-yeast. Acta Vet. Brno. 2003;72:339–346. doi: 10.2754/avb200372030339. DOI
Liesegang A., Staub T., Wichert B., Wanner M., Kreuzer M. Effect of vitamin E supplementation of sheep and goats fed diets supplemented with polyunsaturated fatty acids and low in Se. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008;92:292–302. doi: 10.1111/j.1439-0396.2007.00770.x. PubMed DOI
Feldmann J., Salaün P., Lombi E. Critical review perspective: Elemental speciation analysis methods in environmental chemistry—Moving towards methodological integration. Environ. Chem. 2009;6:275–289. doi: 10.1071/EN09018. DOI
Sanz-Medel A. Trace element analytical speciation in biological systems: Importance, challenges and trends. Spectrochim. Acta Part B Atomic Spectrosc. 1998;53:197–211. doi: 10.1016/S0584-8547(97)00135-3. DOI
Szpunar J., McSheehy S., Połeć K., Vacchina V., Mounicou S., Rodriguez I., Łobiński R. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis—Advances and limitations. Spectrochim. Acta Part B Atomic Spectrosc. 2000;55:779–793. doi: 10.1016/S0584-8547(00)00210-X. DOI
Michalke B. The coupling of LC to ICP-MS in element speciation—Part II: Recent trends in application. Trends Anal. Chem. 2002;21:154–165. doi: 10.1016/S0165-9936(02)00303-5. DOI
Takahashi K., Suzuki N., Ogra Y. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. Int. J. Mol. Sci. 2017;18:506. doi: 10.3390/ijms18030506. PubMed DOI PMC
Kahakachchi C., Boakye H.T., Uden P.C., Tyson J.F. Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J. Chromatogr. A. 2004;1054:303–312. doi: 10.1016/S0021-9673(04)01287-7. PubMed DOI
Kotrebai M., Birringer M., Tyson J.F., Block E., Uden P.C. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125:71–78. doi: 10.1039/a906320j. PubMed DOI
Li H.F., Lombi E., Stroud J.L., McGrath S.P., Zhao F.J. Selenium speciation in soil and rice: Influence of water management and Se fertilization. J. Agric. Food Chem. 2010;58:11837–11843. doi: 10.1021/jf1026185. PubMed DOI
McSheehy S., Kelly J., Tessier L., Mester Z. Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography-mass spectrometry based proteomic analysis. Analyst. 2005;130:35–37. doi: 10.1039/b414246b. PubMed DOI
Montes-Bayón M., Molet M.J., González E.B., Sanz-Medel A. Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Alliumsativum and Brassicajuncea) and Se speciation by HPLC-ICP-MS. Talanta. 2006;68:1287–1293. doi: 10.1016/j.talanta.2005.07.040. PubMed DOI
Slekovec M., Goessler W. Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem. Speciat. Bioavailab. 2005;17:63–73. doi: 10.3184/095422905782774919. DOI
Cuderman P., Kreft I., Germ M., Kovacevic M., Stibilj V. Selenium species in selenium-enriched and drought-exposed potatoes. J. Agric. Food Chem. 2008;56:9114–9120. doi: 10.1021/jf8014969. PubMed DOI
Cuderman P., Ožbolt L., Kreft I., Stibilj V. Extraction of Se species in buckwheat sprouts grown from seeds soaked in various Se solutions. Food Chem. 2010;123:941–948. doi: 10.1016/j.foodchem.2010.04.063. DOI
Pedrero Z., Encinar J.R., Madrid Y., Cámara C. Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography-inductively coupled plasma mass spectrometry and [77Se]selenomethionine selenium oxide spikes. J. Chromatogr. A. 2007;1139:247–253. doi: 10.1016/j.chroma.2006.11.031. PubMed DOI
Smrkolj P., Stibilj V., Kreft I., Germ M. Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chem. 2006;96:675–681. doi: 10.1016/j.foodchem.2005.05.002. DOI
Montes-Bayón M., LeDuc D.L., Terry N., Caruso J.A. Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J. Anal. Atomic Spectrom. 2002;17:872–879. doi: 10.1039/B202608M. DOI
Van Saun R.J. Rational approach to selenium supplementation essential. Feedstuffs. 1990;15:15–17.
National Research Council (NRC) Selenium in Nutrition. Revised ed. National Academy Press; Washington, DC, USA: 1983. pp. 107–113.
Tracy M.L., Möller G. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part 1: Selenium. J. Assoc. Off. Anal. Chem. 1990;73:404–410. PubMed
Koh T.S. Interlaboratory study of blood selenium determinations. J. Assoc. Off. Anal. Chem. 1987;70:664–667. PubMed
Calamari L., Ferrari A., Bertin G. Effect of selenium source and dose on selenium status of mature horses. J. Anim. Sci. 2009;87:167–178. doi: 10.2527/jas.2007-0746. PubMed DOI
Constable P.D., Hinchcliff K.W., Done S.H., Grünberg W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats. 11th ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. p. 2356.
Kojouri G.A., Sharifi S. Preventing effects of nano-selenium particles on serum concentration of blood urea nitrogen, creatinine, and total protein during intense exercise in donkey. J. Equine Vet. Sci. 2013;33:597–600. doi: 10.1016/j.jevs.2012.09.008. DOI
Montgomery J.B., Wichtel J.J., Wichtel M.G., McNiven M.A., McClure J.T., Markham F., Horohov D.W. Effects of selenium source on measures of selenium status and immune function in horses. Can. J. Vet. Res. 2012;76:281–291. PubMed PMC
Maas J., Galey F.D., Peauroi J.R., Case J.T., Littlefield E.S., Gay C.C., Koller L.D., Crisman R.O., Weber D.W., Warner D.W., et al. The correlation between serum selenium and blood selenium in cattle. J. Vet. Diagn. Investig. 1992;4:48–52. doi: 10.1177/104063879200400111. PubMed DOI
Chadio S.E., Kotsampasi B.M., Menegatos J.G., Zervas G.P., Kalogiannis D.G. Effect of selenium supplementation on thyroid hormone levels and selenoenzyme activities in growing lambs. Biol. Trace Elem. Res. 2006;109:145–154. doi: 10.1385/BTER:109:2:145. PubMed DOI
Fortier M.E., Audet I., Giguère A., Laforest J.P., Bilodeau J.F., Quesnel H., Matte J.J. Effect of dietary organic and inorganic selenium on antioxidant status, embryo development, and reproductive performance in hyperovulatory first-parity gilts. J. Anim. Sci. 2012;90:231–240. doi: 10.2527/jas.2010-3340. PubMed DOI
Kim Y.Y., Mahan D.C. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 2001;79:942–948. doi: 10.2527/2001.794942x. PubMed DOI
Yin S.A., Sato I., Yamagushi K. Comparison of selenium level and glutathione peroxidase activity in tissues of vitamin B6 deficient rats fed sodium selenite or dl selenomethionine. J. Nutr. Biochem. 1992;3:633–639. doi: 10.1016/0955-2863(92)90082-T. DOI
Kim Y.Y., Mahan D.C. Prolonged feeding of high dietary levels of organic and inorganic selenium to gilts from 25 kg body weight through one parity. J. Anim. Sci. 2001;79:956–966. doi: 10.2527/2001.794956x. PubMed DOI
Pavlata L., Pechová A., Bečvář O., Illek J. Selenium status in cattle at slaughter: Analyses of blood, skeletal muscle, and liver. Acta Vet. Brno. 2001;70:277–284. doi: 10.2754/avb200170030277. DOI
Stowe H.D., Herdt T.H. Clinical assessment of selenium status of livestock. J. Anim. Sci. 1992;70:3928–3933. doi: 10.2527/1992.70123928x. PubMed DOI
Campbell J.R., Jim G.K., Booker C.W., Guichon P.T. A survey of the selenium status of beef cows in Alberta. Can. Vet. J. 1995;36:698–702. PubMed PMC
Gunter S.A., Beck P.A., Phillips J.K. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J. Anim. Sci. 2003;81:856–864. doi: 10.2527/2003.814856x. PubMed DOI
Premarathna H.L., McLaughlin M.J., Kirby J.K., Hettiarachchi G.M., Beak D., Stacey S., Chittleborough D.J. Potential availability of fertilizer selenium in field capacity and submerged soils. Soil. Sci. Soc. Am. J. 2010;74:1589–1596. doi: 10.2136/sssaj2009.0416. DOI
Roca-Perez L., Gil C., Cervera M.L., Gonzálvez A., Ramos-Miras J., Pons V., Bech J., Boluda R. Selenium and heavy metals content in some Mediterranean soils. J. Geochem. Explor. 2010;107:110–116. doi: 10.1016/j.gexplo.2010.08.004. DOI
Zachara B.A., Pawluk H., Bloch-Boguslawska E., Sliwka K.M., Korenkiewicz J., Skok Z., Ryć K. Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch. Environ. Health. 2001;56:461–466. doi: 10.1080/00039890109604483. PubMed DOI
Gupta U.C., Gupta S.C. Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Commun. Soil Sci. Plant Anal. 2000;31:1791–1807. doi: 10.1080/00103620009370538. DOI
Delesalle C., de Bruijn M., Wilmink S., Vandendriessche H., Mol G., Boshuizen B., Plancke L., Grinwis G. White muscle disease in foals: Focus on selenium soil content. A case series. BMC Vet. Res. 2017;13 doi: 10.1186/s12917-017-1040-5. PubMed DOI PMC
Jones G.D., Droz B., Greve P., Gottschalk P., Poffet D., McGrath S.P., Seneviratne S.I., Smith P., Winkel L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA. 2017;114:2848–2853. doi: 10.1073/pnas.1611576114. PubMed DOI PMC
Supriatin S., Weng L., Comans R.N. Selenium speciation and extractability in Dutch agricultural soils. Sci. Total Environ. 2015;532:368–382. doi: 10.1016/j.scitotenv.2015.06.005. PubMed DOI
Dinh Q.T., Li Z., Tran T.A.T., Wang D., Liang D. Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere. 2017;184:618–635. doi: 10.1016/j.chemosphere.2017.06.034. PubMed DOI
Awadeh F.T., Kincaid R.L., Johnson K.A. Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. J. Anim. Sci. 1998;76:1204–1215. doi: 10.2527/1998.7641204x. PubMed DOI
Ursini F., Maiorino M., Roveri A. Phospholipid hydroperoxide glutathione peroxidase (PHGPx): More than an antioxidant enzyme? Biomed. Environ. Sci. 1997;10:327–332. PubMed
Maas J., Peauroi J.R., Tonjes T., Karlonas J., Galey F.D., Han B. Intramuscular selenium administration in selenium-deficient cattle. J. Vet. Int. Med. 1993;7:342–348. doi: 10.1111/j.1939-1676.1993.tb01029.x. PubMed DOI
Hogan J.S., Smith K.L., Weiss W.P., Todhunter D.A., Schockey W.L. Relationships among vitamin E, selenium, and bovine blood neutrophils. J. Dairy Sci. 1990;73:2372–2378. doi: 10.3168/jds.S0022-0302(90)78920-5. PubMed DOI
Ellison R.S. A review of copper and selenium reference ranges in cattle and sheep. Vet. Contin. Educ. Massey Univ. 1992;145:3–27.
Juniper D.T., Phipps R.H., Givens D.I., Jones A.K., Green C., Bertin G. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. J. Anim. Sci. 2008;86:197–204. doi: 10.2527/jas.2006-773. PubMed DOI
Brigelius-Flohé R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI
Bermingham E.N., Hesketh J.E., Sinclair B.R., Koolaard J.P., Roy N.C. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: A meta-analysis. Nutrients. 2014;6:4002–4031. doi: 10.3390/nu6104002. PubMed DOI PMC
Han D., Xie S., Liu M., Xiao X., Liu H., Zhu X., Yang Y. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio) Aquac. Nutr. 2011;17:e741–e749. doi: 10.1111/j.1365-2095.2010.00841.x. DOI
Dalto B.D., Tsoi S., Audet I., Dyck M.K., Foxcroft G.R., Matte J.J. Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine. Reproduction. 2015;149:31–42. doi: 10.1530/REP-14-0408. PubMed DOI
Ibrahim M., Muhammad N., Naeem M., Deobald A.M., Kamdem J.P., Rocha J.B. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol. In Vitro. 2015;29:947–952. doi: 10.1016/j.tiv.2015.03.017. PubMed DOI
Méplan C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients. 2015;7:3621–3651. doi: 10.3390/nu7053621. PubMed DOI PMC
Acda S.P., Chae B.J. A review on the applications of organic trace minerals in pig nutrition. Pak. J. Nutr. 2002;1:25–30.
Schoonheere N., Dotreppe O., Pincemail J., Istasse L., Hornick J.L. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): Effects on plasma antioxidant markers after a standardised simulation of a flying effort. J. Anim. Physiol. Anim. Nutr. (Berl.) 2009;93:325–330. doi: 10.1111/j.1439-0396.2008.00879.x. PubMed DOI
Svoboda M., Ficek R., Drabek J. Efficacy of selenium from Se-enriched yeast on selenium transfer from sows to piglets. Acta Vet. Brno. 2008;77:515–521. doi: 10.2754/avb200877040515. DOI
Todd S.E., Thomas D.G., Hendriks W.H. Selenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound selenium. J. Anim. Physiol. Anim. Nutr. (Berl.) 2012;96:148–158. doi: 10.1111/j.1439-0396.2011.01132.x. PubMed DOI
Ashton K., Hooper L., Harvey L.J., Hurst R., Casgrain A., Fairweather-Tait S.J. Methods of assessment of selenium status in humans: A systematic review. Am. J. Clin. Nutr. 2009;89:2025S–2039S. doi: 10.3945/ajcn.2009.27230F. PubMed DOI
Lee D.N., Hung Y.S., Yang T.S., Lin J.H., Weng C.F. Aspergillus awamori-fermented mung bean seed coats enhance the antioxidant and immune responses of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 2017;7 doi: 10.1111/jpn.12611. PubMed DOI
Wang L., Xu X., Su G., Shi B., Shan A. High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. J. Dairy Res. 2017;84:8–13. doi: 10.1017/S0022029916000650. PubMed DOI
Ocheja O.B., Ayo J.O., Aluwong T., Minka N.S. Effects of L-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season. Trop. Anim. Health Prod. 2017;12 doi: 10.1007/s11250-017-1325-5. PubMed DOI
Dalto D.B., Lapointe J., Matte J.J. Assessment of antioxidative and selenium status by seleno-dependent glutathione peroxidase activity in different blood fractions using a pig model: Issues for clinical nutrition and research. J. Anim. Physiol. Anim. Nutr. (Berl.) 2017;17 doi: 10.1111/jpn.12677. PubMed DOI
Nazifi S., Ghafari N., Farshneshani F., Rahsepar M., Razavi S.M. Reference values of oxidative stress parameters in adult Iranian fat-tailed sheep. Pak. Vet. J. 2010;30:13–16.
Esworthy R.S., Chu F.-F., Doroshow J.H. Analysis of glutathione-related enzymes. In: Costa E., Hodgson E., Lawrence D.A., Reed D.J., GreenLee W.F., editors. Current Protocols in Toxicology. John Wiley & Sons; Hoboken, NJ, USA: 1999. Item 7.1.17. PubMed
King J.C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 2000;71:1218S–1225S. PubMed
Gerloff B.J. Effect of selenium supplementation on dairy cattle. J. Anim. Sci. 1992;70:3934–3940. doi: 10.2527/1992.70123934x. PubMed DOI
Scholz R.W., Hutchinson L.J. Distribution of glutathione peroxidase activity and selenium in the blood of dairy cows. Am. J. Vet. Res. 1979;40:245–249. PubMed
Cowell R.L. Veterinary Clinical Pathology Secrets. Elsevier, Inc.; Amsterdam, The Netherlands: 2004. p. 408. Questions and Answers Reveal the Secrets of Veterinary Clinical Pathology.
Scholz R.W., Cook L.S., Todhunter D.A. Distribution of selenium-dependent and nonselenium-dependent glutathione peroxidase activity in tissues of young cattle. Am. J. Vet. Res. 1981;42:1724–1729. PubMed
Dalto D.B., Audet I., Lapointe J., Matte J.J. The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts. J. Trace Elem. Med. Biol. 2016;34:79–89. doi: 10.1016/j.jtemb.2016.01.001. PubMed DOI
Dalto D.B., Roy M., Audet I., Palin M.F., Guay F., Lapointe J., Matte J.J. Interaction between vitamin B6 and source of selenium on the response of the selenium-dependent glutathione peroxidase system to oxidative stress induced by oestrus in pubertal pig. J. Trace Elem. Med. Biol. 2015;32:21–29. doi: 10.1016/j.jtemb.2015.05.002. PubMed DOI
Dalto D.B., Matte J.J. Pyridoxine (vitamin B6) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients. 2017;9:189. doi: 10.3390/nu9030189. PubMed DOI PMC
Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. PubMed
Abd Ellah M.R., Niishimori K., Goryo M., Okada K., Yasuda J. Glutathion peroxidase and glucose-6-phosphate dehydrogenase activities in bovine blood and liver. J. Vet. Med. Sci. 2004;66:1219–1221. doi: 10.1292/jvms.66.1219. PubMed DOI
Nemec Svete A., Čebulj-Kadunc N., Frangež R., Kruljc P. Serum cortisol and haematological, biochemical and antioxidant enzyme variables in horse blood sampled in a slaughterhouse lairage, immediately before stunning and during exsanguination. Animal. 2012;6:1300–1306. doi: 10.1017/S1751731112000079. PubMed DOI
Niedźwiedź A., Nicpoń J., Zawadzki M., Służewska-Niedźwiedź M., Januszewska L. The influence of road transport on the activities of glutathione reductase, glutathione peroxidase, and glutathione-S-transferase in equine erythrocytes. Vet. Clin. Pathol. 2012;41:123–126. doi: 10.1111/j.1939-165X.2011.00396.x. PubMed DOI
Richardson S.M., Siciliano P.D., Engle T.E., Larson C.K., Ward T.L. Effect of selenium supplementation and source on the selenium status of horses. J. Anim. Sci. 2006;84:1742–1748. doi: 10.2527/jas.2005-413. PubMed DOI
Luo Z., Zhu W., Guo Q., Luo W., Zhang J., Xu W., Xu J. Weaning induced hepatic oxidative stress, apoptosis, and aminotransferases through MAPK signaling pathways in piglets. Oxid. Med. Cell. Longev. 2016;2016:4768541. doi: 10.1155/2016/4768541. PubMed DOI PMC
Shi L.G., Yang R.J., Yue W.B., Xun W.J., Zhang C.X., Ren Y.S., Shi L., Lei F.L. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim. Reprod. Sci. 2010;118:248–254. doi: 10.1016/j.anireprosci.2009.10.003. PubMed DOI
Zhao J., Jin Y., Du M., Liu W., Ren Y., Zhang C., Zhang J. The effect of dietary grape pomace supplementation on epididymal sperm quality and testicular antioxidant ability in ram lambs. Theriogenology. 2017;97:50–56. doi: 10.1016/j.theriogenology.2017.04.010. PubMed DOI
Hough C.D., Cho K.R., Zonderman A.B., Schwartz D.R., Morin P.J. Coordinately up-regulated genes in ovarian cancer. Cancer Res. 2001;61:3869–3876. PubMed
Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 1999;27:951–965. doi: 10.1016/S0891-5849(99)00173-2. PubMed DOI
Humann-Ziehank E., Renko K., Mueller A.S., Roehrig P., Wolfsen J., Ganter M. Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep. J. Trace Elem. Med. Biol. 2013;27:380–390. doi: 10.1016/j.jtemb.2013.03.003. PubMed DOI
Chu F.F., Esworthy R.S., Doroshow J.H., Doan K., Liu X.F. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood. 1992;79:3233–3238. PubMed
Miranda S.G., Wang Y.J., Purdie N.G., Osborne V.R., Coomber B.L., Cant J.P. Selenomethionine stimulates expression of glutathione peroxidase 1 and 3 and growth of bovine mammary epithelial cells in primary culture. J. Dairy Sci. 2009;92:2670–2683. doi: 10.3168/jds.2008-1901. PubMed DOI
Bruzelius K., Hoac T., Sundler R., Onning G., Akesson B. Occurrence of selenoprotein enzyme activities and mRNA in bovine mammary tissue. J. Dairy Sci. 2007;90:918–927. doi: 10.3168/jds.S0022-0302(07)71575-8. PubMed DOI
Naiki-Ito A., Asamoto M., Hokaiwado N., Takahashi S., Yamashita H., Tsuda H., Ogawa K., Shirai T. Gpx2 is an overexpressed gene in rat breast cancers induced by three different chemical carcinogens. Cancer Res. 2007;67:11353–11358. doi: 10.1158/0008-5472.CAN-07-2226. PubMed DOI
Bickhardt K., Ganterm M., Sallmann P. Investigation of the manifestation of vitamin E and selenium deficiency in sheep and goats. Dtsch.-Tierarztliche-Wochenschr. 1999;106:242–247. PubMed
Fraga C.G., Ariass R.F., Llesuy S.F. Effect of vitamin E and Se deficiency on rat liver chemiluminescence. Biochem. G. 1987;242:383–392. doi: 10.1042/bj2420383. PubMed DOI PMC
Hodgson J.C., Watkins C.A., Bayne C.W. Contribution of respiratory burst activity to innate immune function and the effects of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro. Vet. Immunol. Immunopathol. 2006;112:12–23. doi: 10.1016/j.vetimm.2006.03.008. PubMed DOI
Ivancic J.J., Weiss W.P. Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. J. Dairy Sci. 2001;84:225–232. doi: 10.3168/jds.S0022-0302(01)74472-4. PubMed DOI
Schrauzer G.N. Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit. Rev. Biotechnol. 2009;29:10–17. doi: 10.1080/07388550802658048. PubMed DOI
National Research Council (NRC) Nutrient Requirements of Dairy Cattle. 7th Revised ed. National Academy Press; Washington, DC, USA: 2001.
Suttle N.F. Mineral Nutrition of Livestock. 4th ed. British Library; London, UK: 2010.
National Research Council (NRC) Nutrient Requirements of Sheep. 6th ed. National Academy Press; Washington, DC, USA: 1985.
Papazafeiriou A.Z., Lakis C., Stefanou S., Yiakoulaki M., Mpokos P., Papanikolaou K. Trace elements content of plant material growing on alkaline organix soils and its suitabilty for small ruminant extensive farming. Bulg. J. Agric. Sci. 2016;22:733–739.
National Research Council (NRC) Minerals. In: National Research Council, editor. Nutrient Requirements of Horses. 6th ed. National Academies Press; Washington, DC, USA: 2007. pp. 94–97.
Pagan J.D., Karnezos P., Kennedy M.A.P., Currier T., Hoekstra K.E. Effect of selenium source on selenium digestibility and retention in exercised Thoroughbreds; Proceedings of the Equine Nutrition and Physiology Society; Raleigh, NC, USA. 2–5 June 1999; pp. 135–140.
Geor R.J., Coenen M., Harris P. Equine Applied and Clinical Nutrition E-Book: Health, Welfare and Performance. Elsevier Ltd.; Amsterdam, The Netherlands: 2013. p. 592.
Guyot H., Spring P., Andrieu S., Rollin F. Comparative responses to sodium selenite and organic selenium supplements in Belgium Blue cows and calves. Livest. Sci. 2007;111:259–263.
National Research Council (NRC) Mineral Tolerances of Animals. 2nd Revised ed. National Academy Press; Washington, DC, USA: 2005.
Hill G.M., Link J.E., Meyer L., Fritsche K.L. Effect of vitamin E and selenium on iron utilization in neonatal pigs. J. Anim. Sci. 1999;77:1762–1768. doi: 10.2527/1999.7771762x. PubMed DOI
Mahan D.C. Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J. Anim. Sci. 2000;78:100–105. doi: 10.2527/2000.781100x. PubMed DOI
Tinggi U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008;13:102–108. doi: 10.1007/s12199-007-0019-4. PubMed DOI PMC
Yoon I., McMillan E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs. J. Anim. Sci. 2006;84:1729–1733. doi: 10.2527/jas.2005-311. PubMed DOI
Schrauzer G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000;130:1653–1656. PubMed
Knowles S.O., Grace N.D., Wurms K., Lee J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J. Dairy Sci. 1999;82:429–437. doi: 10.3168/jds.S0022-0302(99)75249-5. PubMed DOI
Svoboda M., Kotrbáček V., Ficek R., Drábek J. Effect of Organic Selenium from Se-enriched Alga (Chlorella spp.) on Selenium Transfer from Sows to Their Progeny. Acta Vet. Brno. 2009;78:373–377. doi: 10.2754/avb200978030373. DOI
Trávníček J., Racek J., Trefil L., Rodinová H., Kroupová V., Illek J., Doucha J., Písek L. Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Czech J. Anim. Sci. 2008;53:292–298.
Valčić O., Jovanović I., Milanović S., Gvozdić D. Selenium status of feedstuffs and grazing ewes in Serbia. Acta Vet. Beaograd. 2013;63:665–675.
Değer Y., Ertekin A., Değer S., Mert H. Lipid peroxidation and antioxidant potential of sheep liver infected naturally with distomatosis. Turk. Parazitol. Derg. 2008;32:23–26. PubMed
Yaralioglu-Gurgoze S., Cetin H., Cen O., Yilmaz S., Atli M.O. Changes in malondialdehyde concentrations and glutathione peroxidase activity in purebred Arabian mares with endometritis. Vet. J. 2005;170:135–137. doi: 10.1016/j.tvjl.2004.04.002. PubMed DOI
Mélo S.K., Diniz A.I., de Lira V.L., de Oliveira Muniz S.K., da Silva G.R., Manso H.E., Manso Filho H.C. Antioxidant and haematological biomarkers in different groups of horses supplemented with polyunsaturated oil and vitamin E. J. Anim. Physiol. Anim. Nutr. (Berl.) 2016;100:852–859. doi: 10.1111/jpn.12456. PubMed DOI
El-Bahr S.M., El-Deeb W.M. Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra. Theriogenology. 2016;86:1132–1136. doi: 10.1016/j.theriogenology.2016.04.002. PubMed DOI
El-Deeb W.M., El-Bahr S.M. Investigation of selected biochemical indicators of Equine Rhabdomyolysis in Arabian horses: Pro-inflammatory cytokines and oxidative stress markers. Vet. Res. Commun. 2010;34:677–689. doi: 10.1007/s11259-010-9439-5. PubMed DOI
Janiak M., Suska M., Dudzińska W., Skotnicka E. Blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010;94:137–145. doi: 10.1111/j.1439-0396.2008.00889.x. PubMed DOI
Kojouri G.A., Faramarzi P., Ahadi A.M., Parchami A. Effect of selenium nanoparticles on expression of HSP90 gene in myocytes after an intense exercise. J. Equine Vet. Sci. 2013;33:1054–1056. doi: 10.1016/j.jevs.2013.04.001. DOI
Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. PubMed
Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 1998;108:101–106. doi: 10.1385/0-89603-472-0:101. PubMed DOI
Augustin K., Blank R., Boesch-Saadatmandi C., Frank J., Wolffram S., Rimbach G. Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008;92:705–711. doi: 10.1111/j.1439-0396.2007.00768.x. PubMed DOI
Beers R.F.J., Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195:133–140. PubMed
Placer Z.A., Cushman L.L., Johnson B.C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966;16:359–364. doi: 10.1016/0003-2697(66)90167-9. PubMed DOI
Günzler W.A., Kremers H., Flohé L. An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood. Z. Klin. Chem. Klin. Biochem. 1974;12:444–448. PubMed
Sankari S., Atroshi F. Effect of dietary selenium on erythrocyte glutathione peroxidase and blood selenium in two types of Finnisheep genetically selected for high and low glutathione peroxidase activity. Zbl. Vet. Med. A. 1983;30:452. doi: 10.1111/j.1439-0442.1983.tb01005.x. PubMed DOI
Jain S.K., McVie R., Duett J., Herbst J.J. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes. 1989;38:1539–1543. doi: 10.2337/diab.38.12.1539. PubMed DOI
Martin J.P.J., Dailey M., Sugarman E. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 1987;255:329–336. doi: 10.1016/0003-9861(87)90400-0. PubMed DOI
Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990;9:515–540. doi: 10.1016/0891-5849(90)90131-2. PubMed DOI
Tietze F. Enzymatic method for the quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969;27:502–522. doi: 10.1016/0003-2697(69)90064-5. PubMed DOI
Botsoglou N.A. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994;42:1931–1937. doi: 10.1021/jf00045a019. DOI
Jentzsch A.M., Bachmann H., Fürst P., Biesalski H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996;20:251–256. doi: 10.1016/0891-5849(95)02043-8. PubMed DOI
Gérard-Monnier D., Erdelmeier I., Régnard K., Moze-Henry N., Yadan J.C., Chaudière J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998;11:1176–1183. doi: 10.1021/tx9701790. PubMed DOI
Reaner D.C., Veillon C. Elimination of perchloric acid in digestion of biological fluids for fluorometric determination of selenium. Anal. Chem. 1983;55:1605–1606. doi: 10.1021/ac00260a037. PubMed DOI
Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333. PubMed
Sun Y., Oberley L.W., Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988;34:497–500. PubMed
Wills E.D. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 1966;99:667–676. doi: 10.1042/bj0990667. PubMed DOI PMC
Beutler E. A Manual of Biochemical Methods. Grunef Strottan; New York, NY, USA: 1975. Glutathione in Red Blood Cell Metabolism; pp. 112–114.
Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta. 1978;90:37–43. PubMed
Yagi K. Assay for blood plasma or serum. Methods Enzymol. 1984;105:328–331. PubMed
McCord J.M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem. 1969;244:6056–6063. PubMed
Nishikimi M., Appaji N., Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972;46:849–854. doi: 10.1016/S0006-291X(72)80218-3. PubMed DOI
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Brown M.W., Watkinson J.H. Automated fluorometric method for determination of nanogram quantities of Se. Anal. Chim. Acta. 1977;89:29–35. doi: 10.1016/S0003-2670(01)83067-1. DOI
Beilstein M.A., Whanger P.D. Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins. J. Nutr. 1986;116:1701–1710. PubMed