• This record comes from PubMed

A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review

. 2017 Oct 21 ; 18 (10) : . [epub] 20171021

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.

See more in PubMed

Lu J., Holmgren A. Selenoproteins. J. Biol. Chem. 2009;284:723–727. doi: 10.1074/jbc.R800045200. PubMed DOI

Rayman M.P. The importance of selenium to human health. Lancet. 2000;356:233–241. doi: 10.1016/S0140-6736(00)02490-9. PubMed DOI

Abuelo A., Alves-Nores V., Hernandez J., Muiño R., Benedito J.L., Castillo C. Effect of parenteral antioxidant supplementation during the dry period on postpartum glucose tolerance in dairy cows. J. Vet. Int. Med. 2016;30:892–898. doi: 10.1111/jvim.13922. PubMed DOI PMC

Battin E.E., Brumaghim J.L. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 2009;55:1–23. doi: 10.1007/s12013-009-9054-7. PubMed DOI

De Camargo E.V., Lopes S.T., Costa M.M., Paim F., Barbosa C.S., Leal M.L. Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010;94:e1–e6. doi: 10.1111/j.1439-0396.2010.00986.x. PubMed DOI

Dkhil M.A., Zrieq R., Al-Quraishy S., Abdel Moneim A.E. Selenium nanoparticles attenuate oxidative stress and testicular damage in streptozotocin-induced diabetic rats. Molecules. 2016;21:1517. doi: 10.3390/molecules21111517. PubMed DOI PMC

Hasanvand A., Abbaszadeh A., Darabi S., Nazari A., Gholami M., Kharazmkia A. Evaluation of selenium on kidney function following ischemic injury in rats; protective effects and antioxidant activity. J. Ren. Inj. Prev. 2016;6:93–98. doi: 10.15171/jrip.2017.18. PubMed DOI PMC

Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid. Redox Signal. 2000;2:811–820. doi: 10.1089/ars.2000.2.4-811. PubMed DOI

Leal M.L., de Camargo E.V., Ross D.H., Molento M.B., Lopes S.T., da Rocha J.B. Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. Vet. Res. Commun. 2010;34:549–555. doi: 10.1007/s11259-010-9426-x. PubMed DOI

Lu X., Zhang E., Yin S., Fan L., Hu H. Methylseleninic Acid prevents patulin-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress and inactivation of p53 and MAPKs. J. Agric. Food Chem. 2017;65:5299–5305. doi: 10.1021/acs.jafc.7b01338. PubMed DOI

Ju W., Li X., Li Z., Wu G.R., Fu X.F., Yang X.M., Zhang X.Q., Gao X.B. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2017;44:8–16. doi: 10.1016/j.jtemb.2017.04.009. PubMed DOI

Stefanello S.T., Dobrachinski F., de Carvalho N.R., Amaral G.P., Barcelos R.P., Oliveira V.A., Oliveira C.S., Giordani C.F., Pereira M.E., Rodrigues O.E., et al. Free radical scavenging in vitro and biological activity of diphenyl diselenide-loaded nanocapsules: DPDS-NCS Antioxidant and toxicological effects. Int. J. Nanomed. 2015;10:5663–5670. doi: 10.2147/IJN.S87190. PubMed DOI PMC

Traulsen H., Steinbrenner H., Buchczyk D.P., Klotz L.O., Sies H. Selenoprotein P protects low-density lipoprotein against oxidation. Free Radic. Res. 2004;38:123–128. doi: 10.1080/10715760320001634852. PubMed DOI

Xu H. ROS responsive selenium-containing polymers. Nanomedicine. 2016;12:465. doi: 10.1016/j.nano.2015.12.057. DOI

Aaseth J., Alexander J., Bjørklund G., Hestad K., Dusek P., Roos P.M., Alehagen U. Treatment strategies in Alzheimer’s disease: A review with focus on selenium supplementation. Biometals. 2016;29:827–839. doi: 10.1007/s10534-016-9959-8. PubMed DOI PMC

Chu F.F., Esworthy R.S., Doroshow J.H. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic. Biol. Med. 2004;36:1481–1495. doi: 10.1016/j.freeradbiomed.2004.04.010. PubMed DOI

Duntas L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. 2009;41:443–447. doi: 10.1055/s-0029-1220724. PubMed DOI

El-Ghazaly M.A., Fadel N., Rashed E., El-Batal A., Kenawy S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol. 2017;95:101–110. doi: 10.1139/cjpp-2016-0183. PubMed DOI

Gao X., Zhang Z., Xing H., Yu J., Zhang N., Xu S. Selenium Deficiency-induced inflammation and increased expression of regulating inflammatory cytokines in the chicken gastrointestinal tract. Biol. Trace Elem. Res. 2016;173:210–218. doi: 10.1007/s12011-016-0651-1. PubMed DOI

Leyck S., Parnham M.J. Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions. 1990;30:426–431. doi: 10.1007/BF01966308. PubMed DOI

Liu J., Yang Y., Zeng X., Bo L., Jiang S., Du X., Xie Y., Jiang R., Zhao J., Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. Environ. Sci. Pollut. Res. Int. 2017;24:4008–4017. doi: 10.1007/s11356-016-8173-0. PubMed DOI

Malhotra S., Welling M.N., Mantri S.B., Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2016;104:993–1003. doi: 10.1002/jbm.b.33448. PubMed DOI

Rooke J.A., Robinson J.J., Arthur J.R. Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. J. Agric. Sci. 2004;142:153–262. doi: 10.1017/S0021859604004368. DOI

Speckmann B., Steinbrenner H. Selenium and selenoproteins in inflammatory bowel diseases and experimental colitis. Inflamm. Bowel Dis. 2014;20:1110–1119. doi: 10.1097/MIB.0000000000000020. PubMed DOI

Vunta H., Belda B.J., Arner R.J., Channa Reddy C., Vanden Heuvel J.P., Sandeep Prabhu K. Selenium attenuates pro-inflammatory gene expression in macrophages. Mol. Nutr. Food Res. 2008;52:1316–1323. doi: 10.1002/mnfr.200700346. PubMed DOI

Peng F., Guo X., Li Z., Li C., Wang C., Lv W., Wang J., Xiao F., Kamal M.A., Yuan C. Antimutagenic effects of selenium-enriched polysaccharides from pyracantha fortuneana through suppression of cytochrome P450 1A subfamily in the mouse liver. Molecules. 2016;21:1731. doi: 10.3390/molecules21121731. PubMed DOI PMC

Schrauzer G.N. Effects of selenium and low levels of lead on mammary tumor development and growth in MMTV-infected female mice. Biol. Trace Elem. Res. 2008;125:268–275. doi: 10.1007/s12011-008-8172-1. PubMed DOI

Ahmad M.S., Yasser M.M., Sholkamy E.N., Ali A.M., Mehanni M.M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomed. 2015;10:3389–3401. doi: 10.2147/IJN.S82707. PubMed DOI PMC

Hassan C.E., Webster T.J. The effect of red-allotrope selenium nanoparticles on head and neck squamous cell viability and growth. Int. J. Nanomed. 2016;11:3641–3654. doi: 10.2147/IJN.S105173. PubMed DOI PMC

Kong L., Yuan Q., Zhu H., Li Y., Guo Q., Wang Q., Bi X., Gao X. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials. 2011;32:6515–6522. doi: 10.1016/j.biomaterials.2011.05.032. PubMed DOI

Ramamurthy C., Sampath K.S., Arunkumar P., Kumar M.S., Sujatha V., Premkumar K., Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013;36:1131–1139. doi: 10.1007/s00449-012-0867-1. PubMed DOI

Stolzoff M., Webster T.J. Reducing bone cancer cell functions using selenium nanocomposites. J. Biomed. Mater. Res. A. 2016;104:476–482. doi: 10.1002/jbm.a.35583. PubMed DOI

Tran P.A., Sarin L., Hurt R.H., Webster T.J. Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium. Int. J. Nanomed. 2010;5:351–358. PubMed PMC

Tran P., Webster T.J. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int. J. Nanomed. 2008;3:391–396. PubMed PMC

Vekariya K.K., Kaur J., Tikoo K. ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomedicine. 2012;8:1125–1132. doi: 10.1016/j.nano.2011.12.003. PubMed DOI

Yang F., Tang Q., Zhong X., Bai Y., Chen T., Zhang Y., Li Y., Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int. J. Nanomed. 2012;7:835–844. doi: 10.2147/IJN.S28278. PubMed DOI PMC

Zheng J.S., Zheng S.Y., Zhang Y.B., Yu B., Zheng W., Yang F., Chen T. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Colloids Surf. B Biointerfaces. 2011;83:183–187. doi: 10.1016/j.colsurfb.2010.11.023. PubMed DOI

Combs G.F.J., Gray W.P. Chemopreventive agents: Selenium. Pharmacol. Ther. 1998;79:179–192. doi: 10.1016/S0163-7258(98)00014-X. PubMed DOI

Lü J., Jiang C. Selenium and cancer chemoprevention: Hypotheses integrating the actions of selenoproteins and selenium metabolites in epithelial and non-epithelial target cells. Antioxid. Redox Signal. 2005;7:1715–1727. doi: 10.1089/ars.2005.7.1715. PubMed DOI

Maiyo F., Singh M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine (Lond.) 2017;12:1075–1089. doi: 10.2217/nnm-2017-0024. PubMed DOI

Rao L., Puschner B., Prolla T.A. Gene expression profiling of low selenium status in the mouse intestine: Transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress. J. Nutr. 2001;131:3175–3181. PubMed

Sinha R., El-Bayoumy K. Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr. Cancer Drug Targets. 2004;4:13–28. doi: 10.2174/1568009043481614. PubMed DOI

Wang D., Taylor E.W., Wang Y., Wan X., Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int. J. Nanomed. 2012;7:1711–1721. doi: 10.2147/IJN.S29341. PubMed DOI PMC

Zheng S., Li X., Zhang Y., Xie Q., Wong Y.S., Zheng W., Chen T. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction. Int. J. Nanomed. 2012;7:3939–3949. doi: 10.2147/IJN.S30940. PubMed DOI PMC

Cihalova K., Chudobova D., Michalek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC

Guisbiers G., Wang Q., Khachatryan E., Mimun L.C., Mendoza-Cruz R., Larese-Casanova P., Webster T.J., Nash K.L. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water. Int. J. Nanomed. 2016;11:3731–3736. doi: 10.2147/IJN.S106289. PubMed DOI PMC

Chudobova D., Cihalova K., Dostalova S., Ruttkay-Nedecky B., Rodrigo M.A., Tmejova K., Kopel P., Nejdl L., Kudr J., Gumulec J., et al. Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol. Lett. 2014;351:195–201. doi: 10.1111/1574-6968.12353. PubMed DOI

Wang Q., Larese-Casanova P., Webster T.J. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. Int. J. Nanomed. 2015;10:2885–2894. doi: 10.2147/IJN.S78466. PubMed DOI PMC

Guisbiers G., Lara H.H., Mendoza-Cruz R., Naranjo G., Vincent B.A., Peralta X.G., Nash K.L. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine. 2017;13:1095–1103. doi: 10.1016/j.nano.2016.10.011. PubMed DOI PMC

Shakibaie M., Salari Mohazab N., Ayatollahi Mousavi S.A. Antifungal Activity of Selenium Nanoparticles Synthesized by Bacillus species Msh-1 Against Aspergillus fumigatus and Candida albicans. Jundishapur J. Microbiol. 2015;8:e26381. doi: 10.5812/jjm.26381. PubMed DOI PMC

Beheshti N., Soflaei S., Shakibaie M., Yazdi M.H., Ghaffarifar F., Dalimi A., Shahverdi A.R. Efficacy of biogenic selenium nanoparticles against Leishmania major: In vitro and in vivo studies. J. Trace Elem. Med. Biol. 2013;27:203–207. doi: 10.1016/j.jtemb.2012.11.002. PubMed DOI

Dkhil M.A., Bauomy A.A., Diab M.S.M., Al-Quraishy S. Protective role of selenium nanoparticles against Schistosoma mansoni induced hepatic injury in mice. Biomed. Res. 2016;27:214–219.

Mahmoudvand H., Harandi M.F., Shakibaie M., Aflatoonian M.R., ZiaAli N., Sadat Makki M.S., Jahanbakhsh S. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int. J. Surg. 2014;12:399–403. doi: 10.1016/j.ijsu.2014.03.017. PubMed DOI

Pascual A., Aranda A. Thyroid hormone receptors, cell growth and differentiation. Biochim. Biophys. Acta. 2013;1830:3908–3916. doi: 10.1016/j.bbagen.2012.03.012. PubMed DOI

Hefnawy A.E.G., Tórtora-Pérez J.L. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 2010;89:185–192. doi: 10.1016/j.smallrumres.2009.12.042. DOI

Arthur J.R. The glutathione peroxidases. Cell Mol. Life Sci. 2000;57:1825–1835. doi: 10.1007/PL00000664. PubMed DOI PMC

Hatfield D.L., Tsuji P.A., Carlson B.A., Gladyshev V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci. 2014;39:112–120. doi: 10.1016/j.tibs.2013.12.007. PubMed DOI PMC

Labunskyy V.M., Hatfield D.L., Gladyshev V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014;94:739–777. doi: 10.1152/physrev.00039.2013. PubMed DOI PMC

Mangiapane E., Pessione A., Pessione E. Selenium and selenoproteins: An overview on different biological systems. Curr. Protein. Pept. Sci. 2014;15:598–607. doi: 10.2174/1389203715666140608151134. PubMed DOI

Surai P.F. Selenium in Nutrition and Health. Nottingham University Press; Nottingham, UK: 2006. pp. 487–587.

Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013;18:3292–3311. doi: 10.3390/molecules18033292. PubMed DOI PMC

Shetty S.P., Shah R., Copeland P.R. Regulation of selenocysteine incorporationinto the selenium transport protein, selenoprotein P. J. Biol. Chem. 2014;289:25317–25326. doi: 10.1074/jbc.M114.590430. PubMed DOI PMC

Papp L.V., Lu J., Holmgren A., Khanna K.K. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid. Redox Signal. 2007;9:775–806. doi: 10.1089/ars.2007.1528. PubMed DOI

Allmang C., Krol A. Selenoprotein synthesis: UGA Does not end the story. Biochimie. 2006;88:1561–1571. doi: 10.1016/j.biochi.2006.04.015. PubMed DOI

Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigó R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–1443. doi: 10.1126/science.1083516. PubMed DOI

Squires J.E., Berry M.J. Eukaryotic selenoprotein synthesis: Mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life. 2008;60:232–235. doi: 10.1002/iub.38. PubMed DOI

Berry M.J., Banu L., Chen Y.Y., Mandel S.J., Kieffer J.D., Harney J.W., Larsen P.R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature. 1991;353:273–276. doi: 10.1038/353273a0. PubMed DOI

Bubenik J.L., Miniard A.C., Driscoll D.M. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2. RNA Biol. 2014;11:1402–1413. doi: 10.1080/15476286.2014.996472. PubMed DOI PMC

Nourbakhsh M., Ahmadpour F., Chahardoli B., Malekpour-Dehkordi Z., Nourbakhsh M., Hosseini-Fard S.R., Doustimotlagh A., Golestani A., Razzaghy-Azar M. Selenium and its relationship with selenoprotein P and glutathioneperoxidase in children and adolescents with Hashimoto’s thyroiditisand hypothyroidism. J. Trace Elem. Med. Biol. 2016;34:10–14. doi: 10.1016/j.jtemb.2015.10.003. PubMed DOI

Duntas L.H., Benvenga S. Selenium an element for life. Endocrine. 2015;48:756–775. doi: 10.1007/s12020-014-0477-6. PubMed DOI

Lin S.L., Wang C.W., Tan S.R., Liang Y., Yao H.D., Zhang Z.W., Xu S.W. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol. Trace Elem. Res. 2014;161:263–271. doi: 10.1007/s12011-014-0083-8. PubMed DOI

Rowntree J.E., Hill G.M., Hawkins D.R., Link J.E., Rincker M.J., Bednar G.W., Kreft R.A., Jr. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. J. Anim. Sci. 2004;82:2995–3005. doi: 10.2527/2004.82102995x. PubMed DOI

Guyot H., Rollin F. The diagnosis of selenium and iodine deficiencies in cattle. Ann. Med. Vet. 2007;151:166–191.

Bianco A.C., Salvatore D., Gereben B., Berry M.J., Larsen P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 2002;23:38–89. doi: 10.1210/edrv.23.1.0455. PubMed DOI

Larsen P.R., Zavacki A.M. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur. Thyroid J. 2012;1:232–242. doi: 10.1159/000343922. PubMed DOI PMC

Dentice M., Marsili A., Zavacki A., Larsen P.R., Salvatore D. The deiodinases and the control of intracellular thyroid hormone signaling during cellular differentiation. Biochim. Biophys. Acta. 2013;1830:3937–3945. doi: 10.1016/j.bbagen.2012.05.007. PubMed DOI PMC

Burmeister L.A., Pachucki J., St Germain D.L. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre- and posttranslational mechanisms. Endocrinology. 1997;138:5231–5237. doi: 10.1210/endo.138.12.5602. PubMed DOI

Bianco A.C., Kim B.W. Deiodinases: Implications of the local control of thyroid hormone action. J. Clin. Investig. 2006;116:2571–2579. doi: 10.1172/JCI29812. PubMed DOI PMC

Shinde P.L., Dass R.S., Garg A.K. Effect of vitamin E and selenium supplementation on haematology, blood chemistry and thyroid hormones in male buffalo (Bubalus bubalis) calves. J. Anim. Feed Sci. 2009;18:241–256. doi: 10.22358/jafs/66388/2009. DOI

Sethy K., Dass R.S., Garg A.K., Sahu S., Gogoi S. Effect of different selenium sources (Selenium yeast and Sodium selenite) on haematology, blood chemistry and thyroid hormones in male goats (Capra hircus) Indian J. Anim. Res. 2015;49:788–792. doi: 10.18805/ijar.7040. DOI

Mittag J., Behrends T., Hoefig C.S., Vennström B., Schomburg L. Thyroid hormones regulate selenoprotein expression and selenium status in mice. PLoS ONE. 2010;5:e12931. doi: 10.1371/journal.pone.0012931. PubMed DOI PMC

Köhrle J., Gärtner R. Selenium and thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 2009;23:815–827. doi: 10.1016/j.beem.2009.08.002. PubMed DOI

Dercksen D.P., Counotte G.H., Hazebroek M.K., Arts W., van Rijn T. Selenium requirements of dairy goats [Article in Dutch] Tijdschr Diergeneeskd. 2007;132:468–471. PubMed

Effraimidis G., Wiersinga W.M. Mechanisms in endocrinology: Autoimmunethyroid disease: Old and new players. Eur. J. Endocrinol. 2014;170:R241–R252. doi: 10.1530/EJE-14-0047. PubMed DOI

Schomburg L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat. Rev. Endocrinol. 2012;8:160–171. doi: 10.1038/nrendo.2011.174. PubMed DOI

Radostits O.M., Gay C.C., Hinchcliff K.W., Constable P.D. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th ed. Saunders; Madrid, Spain: 2007. pp. 552–557.

Wang C., Liu Q., Yang W.Z., Dong Q., Yang X.M., He D.C., Zhang P., Dong K.H., Huang Y.X. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest. Sci. 2009;126:239–244. doi: 10.1016/j.livsci.2009.07.005. DOI

Aghwan Z.A., Sazili A.Q., Kadhim K.K., Alimon A.R., Goh Y.M., Adeyemi K.D. Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats. Anim. Sci. J. 2016;87:690–696. doi: 10.1111/asj.12484. PubMed DOI

Alhidary I.A., Shini S., Al Jassim R.A., Abudabos A.M., Gaughan J.B. Effects of selenium and vitamin E on performance, physiological response, and selenium balance in heat-stressed sheep. J. Anim. Sci. 2015;93:576–588. doi: 10.2527/jas.2014-8419. PubMed DOI

Alimohamady R., Aliarabi H., Bahari A., Dezfoulian A.H. Influence of different amounts and sources of selenium supplementation on performance, some blood parameters, and nutrient digestibility in lambs. Biol. Trace Elem. Res. 2013;154:45–54. doi: 10.1007/s12011-013-9698-4. PubMed DOI

Calvo L., Toldrá F., Rodríguez A.I., López-Bote C., Rey A.I. Effect of dietary selenium source (organic vs. mineral) and muscle pH on meat quality characteristics of pigs. Food Sci. Nutr. 2016;5:94–102. doi: 10.1002/fsn3.368. PubMed DOI PMC

Downs K.M., Hess J.B., Bilgili S.F. Selenium source effect on broiler carcass characteristics, meat quality and drip loss. J. Appl. Anim. Res. 2000;18:61–72. doi: 10.1080/09712119.2000.9706324. DOI

Habibian M., Sadeghi G., Ghazi S., Moeini M.M. Selenium as a feed supplement for heat-stressed poultry: A review. Biol. Trace Elem. Res. 2015;165:183–193. doi: 10.1007/s12011-015-0275-x. PubMed DOI

Hu H., Wang M., Zhan X., Li X., Zhao R. Effect of different selenium sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. Biol. Trace Elem. Res. 2011;142:471–480. doi: 10.1007/s12011-010-8803-1. PubMed DOI

James B.W., Goodband R.D., Unruh J.A., Tokach M.D., Nelssen J.L., Dritz S.S., O’Quinn P.R., Andrews B.S. Effects of creatine monohydrate on finishing pig growth performance, carcass characteristics and meat quality. Anim. Feed Sci. Technol. 2002;96:135–145. doi: 10.1016/S0377-8401(01)00346-7. DOI

Lv C.H., Wang T., Regmi N., Chen X., Huang K., Liao S.F. Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature. J. Anim. Physiol. Anim. Nutr. (Berl.) 2015;99:1161–1171. doi: 10.1111/jpn.12326. PubMed DOI

Mateo R.D., Spallholz J.E., Elder R., Yoon I., Kim S.W. Efficacy of dietary selenium sources on growth and carcass characteristics of growing-finishing pigs fed diets containing high endogenous selenium. J. Anim. Sci. 2007;85:1177–1183. doi: 10.2527/jas.2006-067. PubMed DOI

Revilla-Vázquez A., Ramírez-Bribiesca E., López-Arellano R., Hernández-Calva L.M., Tórtora-Pérez J., García-García E., Cruz M.R.G. Supplement of selenium with intraruminal bolus of sodium selenite in sheep. Agrociencia. 2008;42:629–635.

Song Y.X., Hou J.X., Zhang L., Wang J.G., Liu X.R., Zhou Z.Q., Cao B.Y. Effect of dietary selenomethionine supplementation on growth performance, tissue Se concentration, and blood glutathione peroxidase activity in kid boer goats. Biol. Trace Elem. Res. 2015;167:242–250. doi: 10.1007/s12011-015-0316-5. PubMed DOI

Suchý P., Straková E., Herzig I. Selenium in poultry nutrition: A review. Czech J. Anim. Sci. 2014;59:495–503.

Tufarelli V., Laudadio V. Dietary supplementation with selenium and vitamin E improves milk yield, composition and rheological properties of dairy Jonica goats. J. Dairy Res. 2011;78:144–148. doi: 10.1017/S0022029910000907. PubMed DOI

Wu X., Yao J., Yang Z., Yue W., Ren Y., Zhang C., Liu X., Wang H., Zhao X., Yuan S., et al. Improved fetal hair follicle development by maternal supplement of selenium at nano size (Nano-Se) Livest. Sci. 2011;142:270–275. doi: 10.1016/j.livsci.2011.08.005. DOI

Zhan X.A., Wang M., Zhao R.Q., Li W.F., Xu Z.R. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim. Feed Sci. Technol. 2007;132:202–211. doi: 10.1016/j.anifeedsci.2006.03.020. DOI

Kommisrud E., Osterås O., Vatn T. Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet. Scand. 2005;46:229–240. doi: 10.1186/1751-0147-46-229. PubMed DOI PMC

Ahsan U., Kamran Z., Raza I., Ahmad S., Babar W., Riaz M.H., Iqbal Z. Role of selenium in male reproduction—A review. Anim. Reprod. Sci. 2014;146:55–62. doi: 10.1016/j.anireprosci.2014.01.009. PubMed DOI

Bourne N., Wathes D.C., Lawrence K.E., McGowan M., Laven R.A. The effect of parenteral supplementation of vitamin E with selenium on the health and productivity of dairy cattle in the UK. Vet. J. 2008;177:381–387. doi: 10.1016/j.tvjl.2007.06.006. PubMed DOI

Cerny K.L., Anderson L., Burris W.R., Rhoads M., Matthews J.C., Bridges P.J. Form of supplemental selenium fed to cycling cows affects systemic concentrations of progesterone but not those of estradiol. Theriogenology. 2016;85:800–806. doi: 10.1016/j.theriogenology.2015.10.022. PubMed DOI

Chandra G., Aggarwal A., Singh A., Singh A.K., Kumar M., Kushwaha R., Singh Y.K. Oxidative stress in sperm biology—A review. Agric. Rev. 2012;33:54–61.

El-Sharawy M., Eid E., Darwish S., Abdel-Razek I., Islam M.R., Kubota K., Yamauchi N., El-Shamaa I. Effect of organic and inorganic selenium supplementation on semen quality and blood enzymes in buffalo bulls. Anim. Sci. J. 2016;21 doi: 10.1111/asj.12736. PubMed DOI

Foresta C., Flohé L., Garolla A., Roveri A., Ursini F., Maiorino M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod. 2002;67:967–971. doi: 10.1095/biolreprod.102.003822. PubMed DOI

Giadinis N.D., Loukopoulos P., Petridou E.J., Panousis N., Konstantoudaki K., Filioussis G., Tsousis G., Brozos C., Koutsoumpas A.T., Chaintoutis S.C., et al. Abortions in three beef cattle herds attributed to selenium deficiency. Pak. Vet. J. 2016;36:145–148.

Grazul-Bilska A.T., Neville T.L., Borowczyk E., Sharma A., Reynolds L.P., Caton J.S., Redmer D.A., Vonnahme K.A. Ovarian and uterine characteristics and onset of puberty in adolescent offspring: Effects of maternal diet and selenium supplementation in sheep. Theriogenology. 2014;81:887–895. doi: 10.1016/j.theriogenology.2013.12.024. PubMed DOI

Hemingway R.G. The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep. Vet. Res. Commun. 2003;27:159–174. doi: 10.1023/A:1022871406335. PubMed DOI

Mahan D.C., Peters J.C. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. J. Anim. Sci. 2004;82:1343–1358. doi: 10.2527/2004.8251343x. PubMed DOI

Marin-Guzman J., Mahan D.C., Pate J.L. Effect of dietary selenium and vitamin E on spermatogenic development in boars. J. Anim. Sci. 2000;78:1537–1543. doi: 10.2527/2000.7861537x. PubMed DOI

Mehdi Y., Dufrasne I. Selenium in Cattle: A Review. Molecules. 2016;21:545. doi: 10.3390/molecules21040545. PubMed DOI PMC

Moeini M.M., Karami H., Mikaeili E. Effect of selenium and vitamin E supplementation during the late pregnancy on reproductive indices and milk production in heifers. Anim. Reprod. Sci. 2009;114:109–114. doi: 10.1016/j.anireprosci.2008.09.012. PubMed DOI

Patterson H.H., Adams D.C., Klopfenstein T.J., Clark R.T., Teichert B. Supplementation to meet metabolizable protein requirements of primiparous beef heifers: II. Pregnancy and economics. J. Anim. Sci. 2003;81:563–570. doi: 10.2527/2003.813563x. PubMed DOI

Shi L., Yue W., Zhang C., Ren Y., Zhu X., Wang Q., Shi L., Lei F. Effects of maternal and dietary selenium (Se-enriched yeast) on oxidative status in testis and apoptosis of germ cells during spermatogenesis of their offspring in goats. Anim. Reprod. Sci. 2010;119:212–218. doi: 10.1016/j.anireprosci.2010.02.012. PubMed DOI

Shi L., Song R., Yao X., Ren Y. Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology. 2017;93:24–32. doi: 10.1016/j.theriogenology.2017.01.022. PubMed DOI

Spears J.W., Weiss W.P. Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet. J. 2008;176:70–76. doi: 10.1016/j.tvjl.2007.12.015. PubMed DOI

Speight S.M., Estienne M.J., Harper A.F., Crawford R.J., Knight J.W., Whitaker B.D. Effects of dietary supplementation with an organic source of selenium on characteristics of semen quality and in vitro fertility in boars. J. Anim. Sci. 2012;90:761–770. doi: 10.2527/jas.2011-3874. PubMed DOI

Surai P.F., Fisinin V.I. Selenium in Pig Nutrition and reproduction: Boars and semen quality—A Review. Asian-Australas. J. Anim. Sci. 2015;28:730–746. doi: 10.5713/ajas.14.0593. PubMed DOI PMC

Talukdar D.J., Talukdar P., Ahmed K. Minerals and its impact on fertility of livestock: A review. Agric. Rev. 2016;37:333–337. doi: 10.18805/ag.v37i4.6464. DOI

Zubair M., Ali M., Ahmad M., Sajid S.M., Ahmad I., Gul S.T. Effect of Selenium and Vitamin E on cryopreservation of semen and reproductive performance of animals (a review) J. Entomol. Zool. Stud. 2015;3:82–86.

Bao R.K., Zheng S.F., Wang X.Y. Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ. Sci. Pollut. Res. Int. 2017;13 doi: 10.1007/s11356-017-9422-6. PubMed DOI

Bjørklund G., Aaseth J., Ajsuvakova O.P., Nikonorov A.A., Skalny A.V., Skalnaya M.G., Tinkov A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev. 2017;332:30–37. doi: 10.1016/j.ccr.2016.10.009. DOI

Dai X., Thongchot S., Dokduang H., Loilome W., Khuntikeo N., Titapun A., Ungarreevittaya P., Yongvanit P., Techasen A., Namwat N. Potential of selenium compounds as new anticancer agents for cholangiocarcinoma. Anticancer Res. 2016;36:5981–5988. doi: 10.21873/anticanres.11186. PubMed DOI

Galadari S., Rahman A., Pallichankandy S., Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017;104:144–164. doi: 10.1016/j.freeradbiomed.2017.01.004. PubMed DOI

Gao Z., Li J., Song X., Zhang J., Wang X., Jing H., Ren Z., Li S., Zhang C., Jia L. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int. J. Biol. Macromol. 2017;104:1158–1164. doi: 10.1016/j.ijbiomac.2017.07.029. PubMed DOI

Gu L.X., Wen Z.S., Xiang X.W., Ma L., Wang X.B., Ma J.Y., Qu Y.L. Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharides in intestinal epithelial cells. Int. J. Biol. Macromol. 2017;99:570–577. doi: 10.1016/j.ijbiomac.2017.03.008. PubMed DOI

Guastamacchia E., Giagulli V.A., Licchelli B., Triggiani V. Selenium and iodine in autoimmune thyroiditis. Endocr. Metab. Immune Disord. Drug Targets. 2015;15:288–292. doi: 10.2174/1871530315666150619094242. PubMed DOI

Hegedüs V., Prokisch J., Fébel H., Kleiner D., Ditrói K., Szijártó A., Blázovics A. Nanoselenium treatment in fatty liver. Z. Gastroenterol. 2012;50 doi: 10.1055/s-0032-1312383. DOI

Lee J.M., Chun H.J., Choi H.S., Kim E.S., Seo Y.S., Jeen Y.T., Lee H.S., Um S.H., Kim C.H., Sul D. Selenium administration attenuates 5-flurouracil-induced intestinal mucositis. Nutr. Cancer. 2017;69:616–622. doi: 10.1080/01635581.2017.1300289. PubMed DOI

Orct T., Lazarus M., Ljubojević M., Sekovanić A., Sabolić I., Blanuša M. Metallothionein, essential elements and lipid peroxidation in mercury-exposed suckling rats pretreated with selenium. Biometals. 2015;28:701–712. doi: 10.1007/s10534-015-9859-3. PubMed DOI

Tran A.P., Webster T. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC

Wu C., Xu Z., Huang K. Effects of Dietary Selenium on inflammation and hydrogen sulfide in the gastrointestinal tract in chickens. Biol. Trace Elem. Res. 2016;174:428–435. doi: 10.1007/s12011-016-0735-y. PubMed DOI

Zhu K., Jiang L., Chu Y., Zhang Y.S. Protective effect of selenium against cisplatin-induced nasopharyngeal cancer in male albino rats. Oncol. Lett. 2016;12:5068–5074. doi: 10.3892/ol.2016.5346. PubMed DOI PMC

Chan J.M., Darke A.K., Penney K.L., Tangen C.M., Goodman P.J., Lee G.S., Sun T., Peisch S., Tinianow A.M., Rae J.M., et al. Selenium- or vitamin E-related gene variants, interaction with supplementation, and risk of high-grade prostate cancer in SELECT. Cancer Epidemiol. Biomark. Prev. 2016;25:1050–1058. doi: 10.1158/1055-9965.EPI-16-0104. PubMed DOI PMC

Fernandes A.P., Wallenberg M., Gandin V., Misra S., Tisato F., Marzano C., Rigobello M.P., Kumar S., Björnstedt M. Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems. PLoS ONE. 2012;7:e50727. doi: 10.1371/journal.pone.0050727. PubMed DOI PMC

Weekley C.M., Jeong G., Tierney M.E., Hossain F., Maw A.M., Shanu A., Harris H.H., Witting P.K. Selenite-mediated production of superoxide radical anions in A549 cancer cells is accompanied by a selective increase in SOD1 concentration, enhanced apoptosis and Se-Cu bonding. J. Biol. Inorg. Chem. 2014;19:813–828. doi: 10.1007/s00775-014-1113-x. PubMed DOI

Park S.H., Kim J.H., Chi G.Y., Kim G.Y., Chang Y.C., Moon S.K., Nam S.W., Kim W.J., Yoo Y.H., Choi Y.H. Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol. Lett. 2012;212:252–261. doi: 10.1016/j.toxlet.2012.06.007. PubMed DOI

Shen H.M., Yang C.F., Ding W.X., Liu J., Ong C.N. Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG(2) cells: Mitochondria serve as the main target. Free Radic. Biol. Med. 2001;30:9–21. doi: 10.1016/S0891-5849(00)00421-4. PubMed DOI

Wang H.T., Yang X.L., Zhang Z.H., Lu J.L., Xu H.B. Reactive oxygen species from mitochondria mediate SW480 cells apoptosis induced by Na2SeO3. Biol. Trace Elem. Res. 2002;85:241–254. doi: 10.1385/BTER:85:3:241. PubMed DOI

Zhong W., Oberley T.D. Redox-mediated effects of selenium on apoptosis and cell cycle in the LNCaP human prostate cancer cell line. Cancer Res. 2001;61:7071–7078. PubMed

Zhu Y., Xu H., Huang K. Mitochondrial permeability transition and cytochrome c release induced by selenite. J. Inorg. Biochem. 2002;90:43–50. doi: 10.1016/S0162-0134(02)00407-5. PubMed DOI

Husbeck B., Nonn L., Peehl D.M., Knox S.J. Tumor-selective killing by selenite in patient-matched pairs of normal and malignant prostate cells. Prostate. 2006;66:218–225. doi: 10.1002/pros.20337. PubMed DOI

Nilsonne G., Sun X., Nyström C., Rundlöf A.K., Potamitou Fernandes A., Björnstedt M., Dobra K. Selenite induces apoptosis in sarcomatoid malignant mesothelioma cells through oxidative stress. Free Radic. Biol. Med. 2006;41:874–885. doi: 10.1016/j.freeradbiomed.2006.04.031. PubMed DOI

Ip C., Ganther H.E. Activity of methylated forms of selenium in cancer prevention. Cancer Res. 1990;50:1206–1211. PubMed

Xiang N., Zhao R., Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother. Pharmacol. 2009;63:351–362. doi: 10.1007/s00280-008-0745-3. PubMed DOI PMC

Li J., Zuo L., Shen T., Xu C.M., Zhang Z.N. Induction of apoptosis by sodium selenite in human acute promyelocytic leukemia NB4 cells: Involvement of oxidative stress and mitochondria. J. Trace Elem. Med. Biol. 2003;17:19–26. doi: 10.1016/S0946-672X(03)80041-X. PubMed DOI

Kim E.H., Sohn S., Kwon H.J., Kim S.U., Kim M.J., Lee S.J., Choi K.S. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res. 2007;67:6314–6324. doi: 10.1158/0008-5472.CAN-06-4217. PubMed DOI

Björnstedt M., Kumar S., Holmgren A. Selenodiglutathione is a highly efficient oxidant of reduced thioredoxin and a substrate for mammalian thioredoxin reductase. J. Biol. Chem. 1992;267:8030–8034. PubMed

Ganther H.E. Reduction of the selenotrisulfide derivative of glutathione to a persulfide analog by glutathione reductase. Biochemistry. 1971;10:4089–4098. doi: 10.1021/bi00798a013. PubMed DOI

Horky P., Jancikova P., Sochor J., Hynek D., Chavis G.J., Ruttkay-Nedecky B., Cernei N., Zitka O., Zeman L., Adam V., et al. Effect of organic and inorganic form of selenium on antioxidant status of breeding boars ejaculate revealed by electrochemistry. Int. J. Electrochem. Sci. 2012;7:9643–9657.

Kim J.H., Wang S.Y., Kim I.C., Ki J.S., Raisuddin S., Lee J.S., Han K.N. Cloning of a river pufferfish (Takifugu obscurus) metallothionein cDNA and study of its induction profile in cadmium-exposed fish. Chemosphere. 2008;71:1251–1259. doi: 10.1016/j.chemosphere.2007.11.067. PubMed DOI

Agarwal R., Raisuddin S., Tewari S., Goel S.K., Raizada R.B., Behari J.R. Evaluation of comparative effect of pre- and posttreatment of selenium on mercury-induced oxidative stress, histological alterations, and metallothionein mRNA expression in rats. J. Biochem. Mol. Toxicol. 2010;24:123–135. doi: 10.1002/jbt.20320. PubMed DOI

Bjørklund G. Selenium as an antidote in the treatment of mercury intoxication. Biometals. 2015;28:605–614. doi: 10.1007/s10534-015-9857-5. PubMed DOI

Burk R.F., Hill K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta. 2009;1790:1441–1447. doi: 10.1016/j.bbagen.2009.03.026. PubMed DOI PMC

El-Ansary A., Bjørklund G., Tinkov A.A., Skalny A.V., Al Dera H. Relationship between selenium, lead, and mercury in red blood cells of Saudi autistic children. Metab. Brain Dis. 2017;32:1073–1080. doi: 10.1007/s11011-017-9996-1. PubMed DOI

Burk R.F., Hill K.E., Motley A.K., Winfrey V.P., Kurokawa S., Mitchell S.L., Zhang W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J. 2014;28:3579–3588. doi: 10.1096/fj.14-252874. PubMed DOI PMC

Hassanin K.M., Abd El-Kawi S.H., Hashem K.S. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int. J. Nanomed. 2013;8:1713–1720. PubMed PMC

Hao P., Zhu Y., Wang S., Wan H., Chen P., Wang Y., Cheng Z., Liu Y., Liu J. Selenium Administration Alleviates Toxicity of Chromium(VI) in the Chicken Brain. Biol. Trace Elem. Res. 2017;178:127–135. doi: 10.1007/s12011-016-0915-9. PubMed DOI

Wan H., Zhu Y., Chen P., Wang Y., Hao P., Cheng Z., Liu Y., Liu J. Effect of various selenium doses on chromium(IV)-induced nephrotoxicity in a male chicken model. Chemosphere. 2017;174:306–314. doi: 10.1016/j.chemosphere.2017.01.143. PubMed DOI

Lynch S.J., Horgan K.A., White B., Walls D. Selenium source impacts protection of porcine jejunal epithelial cells from cadmium-induced DNA damage, with maximum protection exhibited with yeast-derived selenium compounds. Biol. Trace Elem. Res. 2017;176:311–320. doi: 10.1007/s12011-016-0828-7. PubMed DOI

Wang X., Bao R., Fu J. The antagonistic effect of selenium on cadmium-induced damage and mRNA levels of selenoprotein genes and inflammatory factors in chicken kidney Tissue. Biol. Trace Elem. Res. 2017;16 doi: 10.1007/s12011-017-1041-z. PubMed DOI

Sadek K.M., Lebda M.A., Abouzed T.K., Nasr S.M., Shoukry M. Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab. Brain Dis. 2017;28 doi: 10.1007/s11011-017-0053-x. PubMed DOI

Özkan-Yilmaz F., Özlüer-Hunt A., Gündüz S.G., Berköz M., Yalin S. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio. Fish Physiol. Biochem. 2014;40:355–363. doi: 10.1007/s10695-013-9848-9. PubMed DOI

Danzeisen R., Achsel T., Bederke U., Cozzolino M., Crosio C., Ferri A., Frenzel M., Gralla E.B., Huber L., Ludolph A., et al. Superoxide dismutase 1 modulates expression of transferrin receptor. J. Biol. Inorg. Chem. 2006;11:489–498. doi: 10.1007/s00775-006-0099-4. PubMed DOI

Roy C.N., Enns C.A. Iron homeostasis: New tales from the crypt. Blood. 2000;96:4020–4027. PubMed

Bartfay W.J. Selenium status and the pathogenesis of iron-overload cardiomyopathies: Cause or Consequence. Queen’s Health Sci. J. 2003;6:40–46.

Bartfay W.J., Bartfay E. Decreasing effects of iron toxicosis on selenium and glutathione peroxidase activity. West. J. Nurs. Res. 2002;24:119–131. doi: 10.1177/01939450222045789. PubMed DOI

Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Speckmann B., Grune T. Epigenetic effects of selenium and their implications for health. Epigenetics. 2015;10:179–190. doi: 10.1080/15592294.2015.1013792. PubMed DOI PMC

Dozmorov M.G., Wren J.D., Alarcón-Riquelme M.E. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes. Epigenetics. 2014;9:276–285. doi: 10.4161/epi.27021. PubMed DOI PMC

Häsler R., Feng Z., Bäckdahl L., Spehlmann M.E., Franke A., Teschendorff A., Rakyan V.K., Down T.A., Wilson G.A., Feber A., et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22:2130–2137. doi: 10.1101/gr.138347.112. PubMed DOI PMC

Nilsson E., Jansson P.A., Perfilyev A., Volkov P., Pedersen M., Svensson M.K., Poulsen P., Ribel-Madsen R., Pedersen N.L., Almgren P., et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63:2962–2976. doi: 10.2337/db13-1459. PubMed DOI

Whayne T.F. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol. Biol. Rep. 2015;42:765–776. doi: 10.1007/s11033-014-3727-z. PubMed DOI

Arai E., Kanai Y. DNA methylation profiles in precancerous tissue and cancers: Carcinogenetic risk estimation and prognostication based on DNA methylation status. Epigenomics. 2010;2:467–481. doi: 10.2217/epi.10.16. PubMed DOI

Timp W., Feinberg A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer. 2013;13:497–510. doi: 10.1038/nrc3486. PubMed DOI PMC

Conrad M., Jakupoglu C., Moreno S.G., Lippl S., Banjac A., Schneider M., Beck H., Hatzopoulos A.K., Just U., Sinowatz F., et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 2004;24:9414–9423. doi: 10.1128/MCB.24.21.9414-9423.2004. PubMed DOI PMC

Bösl M.R., Takaku K., Oshima M., Nishimura S., Taketo M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp) Proc. Natl. Acad. Sci. USA. 1997;94:5531–5534. doi: 10.1073/pnas.94.11.5531. PubMed DOI PMC

Davis C.D., Uthus E.O., Finley J.W. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J. Nutr. 2000;130:2903–2909. PubMed

Uthus E.O., Ross S.A., Davis C.D. Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats. Biol. Trace Elem. Res. 2006;109:201–214. doi: 10.1385/BTER:109:3:201. PubMed DOI

Armstrong K.M., Bermingham E.N., Bassett S.A., Treloar B.P., Roy N.C., Barnett M.P. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol. J. 2011;6:113–117. doi: 10.1002/biot.201000267. PubMed DOI

Xiang N., Zhao R., Song G., Zhong W. Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis. 2008;29:2175–2181. doi: 10.1093/carcin/bgn179. PubMed DOI PMC

Arai Y., Ohgane J., Yagi S., Ito R., Iwasaki Y., Saito K., Akutsu K., Takatori S., Ishii R., Hayashi R., et al. Epigenetic assessment of environmental chemicals detected in maternal peripheral and cord blood samples. J. Rep. Dev. 2011;57:507–517. doi: 10.1262/jrd.11-034A. PubMed DOI

Zeng H., Yan L., Cheng W.H., Uthus E.O. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa. J. Nutr. 2011;141:1464–1468. doi: 10.3945/jn.111.140715. PubMed DOI

Du J., Patel D.J. Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. Biochim. Biophys. Acta. 2014;1839:719–727. doi: 10.1016/j.bbagrm.2014.04.011. PubMed DOI PMC

Falkenberg K.J., Johnstone R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014;13:673–691. doi: 10.1038/nrd4360. PubMed DOI

Gowda R., Madhunapantula S.V., Desai D., Amin S., Robertson G.P. Selenium-containing histone deacetylase inhibitors for melanoma management. Cancer Biol. Ther. 2012;13:756–765. doi: 10.4161/cbt.20558. PubMed DOI PMC

Kassam S., Goenaga-Infante H., Maharaj L., Hiley C.T., Juliger S., Joel S.P. Methylseleninic acid inhibits HDAC activity in diffuse large B-cell lymphoma cell lines. Cancer Chemother. Pharmacol. 2011;68:815–821. doi: 10.1007/s00280-011-1649-1. PubMed DOI

Desai D., Salli U., Vrana K.E., Amin S. SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett. 2010;20:2044–2047. doi: 10.1016/j.bmcl.2009.07.068. PubMed DOI PMC

Maciel-Dominguez A., Swan D., Ford D., Hesketh J. Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol. Nutr. Food Res. 2013;57:2195–2205. doi: 10.1002/mnfr.201300168. PubMed DOI

Li Q., Wang J.X., He Y.Q., Feng C., Zhang X.J., Sheng J.Q., Li P.F. MicroRNA-185 regulates chemotherapeutic sensitivity in gastric cancer by targeting apoptosis repressor with caspase recruitment domain. Cell Death Dis. 2014;5:e1197. doi: 10.1038/cddis.2014.148. PubMed DOI PMC

Qu F., Cui X., Hong Y., Wang J., Li Y., Chen L., Liu Y., Gao Y., Xu D., Wang Q. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol. Cell Biochem. 2013;377:121–130. doi: 10.1007/s11010-013-1576-z. PubMed DOI

Combs G.F., Jr. The Vitamins: Fundamental Aspects in Nutrition and Health. 3rd ed. Elsevier Academic Press; Cambridge, MA, USA: 2008. p. 583.

Au Yeung K.J., Smith A., Zhao A., Madden K.B., Elfrey J., Sullivan C., Levander O., Urban J.F., Shea-Donohue T. Impact of vitamin E or selenium deficiency on nematode-induced alterations in murine intestinal function. Exp. Parasitol. 2005;109:201–208. doi: 10.1016/j.exppara.2004.12.015. PubMed DOI

Smith A., Madden K.B., Yeung K.J., Zhao A., Elfrey J., Finkelman F., Levander O., Shea-Donohue T., Urban J.F., Jr. Deficiencies in selenium and/or vitamin E lower the resistance of mice to Heligmosomoides polygyrus infections. J. Nutr. 2005;135:830–836. PubMed

Abutarbush S.M., Radostits O.M. Congenital nutritional muscular dystrophy in a beef calf. Can. Vet. J. 2003;44:738–739. PubMed PMC

Radostits O.M., Gay C.C., Blood D.C., Hinchcliff K.W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. 9th ed. WB Saunders; London, UK: 2000.

Streeter R.M., Divers T.J., Mittel L., Korn A.E., Wakshlag J.J. Selenium deficiency associations with gender, breed, serum vitamin E and creatine kinase, clinical signs and diagnoses in horses of different age groups: A retrospective examination 1996–2011. Equine Vet. J. Suppl. 2012;44:31–35. doi: 10.1111/j.2042-3306.2012.00643.x. PubMed DOI

Cardona Á.J., Reza G.L. Esteatosis en un burro (Equus asinus). Primer reporte en Colombia (Steatosis in donkey (Equus asinus). First report in Colombia) Rev. MVZ Cordoba. 2011;16:2793–2798. doi: 10.21897/rmvz.280. DOI

Sobiech P., Kuleta Z. Levels of selected biochemical indicators of serum and blood during subclinical form of nutritional muscular dystrophy in lambs. Pol. J. Vet. Sci. 1999;2:37–41.

Żarczyńska K., Sobiech P., Radwińska J., Rękawek W. Effects of selenium on animal health. J. Elementol. 2013;18:329–340. doi: 10.5601/jelem.2013.18.2.12. DOI

Kojouri G.A., Rezakhani A., Ahmadi H. Arrhythmias in advance stiff lamb disease. Small Rumin. Res. 2009;84:65–69. doi: 10.1016/j.smallrumres.2009.06.005. DOI

Van Loon G., Lefère L., Bauwens C., Kleyn K., Broux B., De Clercq D., Deprez P. Yellow fat disease (steatitis): Description of 20 cases with emphasis on typical ultrasonographic findings. Equine Vet. J. 2015;47 doi: 10.1111/evj.12486_43. PubMed DOI

Bruijn C., Veldhuis E., Sloet M. Yellow fat disease in equides. Equine Vet. Educ. 2006;18:38–44. doi: 10.1111/j.2042-3292.2006.tb00413.x. DOI

Fajt Z., Svoboda M., Drábek J., Dubanský V. Selen a jeho význam pro zdravotní stav prasat—Review. Veterinarstvi. 2009;59:221–224.

Kamada H., Nonaka I., Takenouchi N., Amari M. Effects of selenium supplementation on plasma progesterone concentrations in pregnant heifers. Anim. Sci. J. 2014;85:241–246. doi: 10.1111/asj.12139. PubMed DOI

Uematsu M., Kitahara G., Sameshima H., Osawa T. Serum selenium and liposoluble vitamins in Japanese Black cows that had stillborn calves. J. Vet. Med. Sci. 2016;78:1501–1504. doi: 10.1292/jvms.15-0268. PubMed DOI PMC

Underwood E.J., Suttle N.F. The Mineral Nutrition of Livestock. 3rd ed. CABI Publishing; Wallingford, UK: 2004. Selenium; pp. 421–475.

Kamada H. Effects of selenium-rich yeast supplementation on the plasma progesterone levels of postpartum dairy cows. Asian-Australas. J. Anim. Sci. 2017;30:347–354. doi: 10.5713/ajas.16.0372. PubMed DOI PMC

Wilde D. Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim. Reprod. Sci. 2006;96:240–249. doi: 10.1016/j.anireprosci.2006.08.004. PubMed DOI

Ceko M.J., Hummitzsch K., Hatzirodos N., Bonner W.M., Aitken J.B., Russell D.L., Lane M., Rodgers R.J., Harris H.H. X-ray fluorescence imaging and other analyses identify selenium and GPX1 as important in female reproductive function. Metallomics. 2015;7:66–77. PubMed

Davis C.D., Tsuji P.A., Milner J.A. Selenoproteins and cancer prevention. Annu. Rev. Nutr. 2012;32:73–95. doi: 10.1146/annurev-nutr-071811-150740. PubMed DOI

Fairweather-Tait S.J., Collings R., Hurst R. Selenium bioavailability: Current knowledge and future research requirements. Am. J. Clin. Nutr. 2010;91:1484S–1491S. doi: 10.3945/ajcn.2010.28674J. PubMed DOI

Badade Z.G., More K., Narshetty J. Oxidative stress adversely affects spermatogenesis in male infertility. Biomed. Res. 2011;22:323–328.

Brouwers J.F., Gadella B.M. In situ detection and localization of lipid peroxidation in individual bovine sperm cells. Free Radic. Biol. Med. 2003;35:1382–1391. doi: 10.1016/j.freeradbiomed.2003.08.010. PubMed DOI

Cerolini S., Maldjian A., Surai P., Noble R. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 2000;58:99–111. doi: 10.1016/S0378-4320(99)00035-4. PubMed DOI

Kemal Duru N., Morshedi M., Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 2000;74:1200–1207. doi: 10.1016/S0015-0282(00)01591-0. PubMed DOI

Kefer J.C., Agarwal A., Sabanegh E. Role of antioxidants in the treatment of male infertility. Int. J. Urol. 2009;16:449–457. doi: 10.1111/j.1442-2042.2009.02280.x. PubMed DOI

Agarwal A., Nallella K.P., Allamaneni S.S., Said T.M. Role of antioxidants in treatment of male infertility: An overview of the literature. Reprod. Biomed. Online. 2004;8:616–627. doi: 10.1016/S1472-6483(10)61641-0. PubMed DOI

Koracevic D., Koracevic G., Djordjevic V., Andrejevic S., Cosic V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001;54:356–361. doi: 10.1136/jcp.54.5.356. PubMed DOI PMC

Youssef H.A.A., Elshazly M.I., Rashed L.A., Sabry I.M., Ibrahim E.K. Thiobarbituric acid reactive substance (TBARS) a marker of oxidative stress in obstructive sleep apnea. Egypt. J. Chest Dis. Tuberc. 2014;63:119–124. doi: 10.1016/j.ejcdt.2013.10.012. DOI

Bhutia R.D., Upadhyay B., Maneesh M. Association of plasma level of thiobarbituric acid reactive substances with extent of hepatocellular injury in preterm infants with cholestatic jaundice. Indian J. Clin. Biochem. 2006;21:39–41. doi: 10.1007/BF02912909. PubMed DOI PMC

Shang X.J., Li K., Ye Z.Q., Chen Y.G., Yu X., Huang Y.F. Analysis of lipid peroxidative levels in seminal plasma of infertile men by high-performance liquid chromatography. Arch. Androl. 2004;50:411–416. doi: 10.1080/01485010490484138. PubMed DOI

Tavilani H., Goodarzi M.T., Vaisi-Raygani A., Salimi S., Hassanzadeh T. Activity of antioxidant enzymes in seminal plasma and their relationship with lipid peroxidation of spermatozoa. Int. Braz. J. Urol. 2008;34:485–491. doi: 10.1590/S1677-55382008000400011. PubMed DOI

Breininger E., Beorlegui N.B., O’Flaherty C.M., Beconi M.T. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. Theriogenology. 2005;63:2126–2135. doi: 10.1016/j.theriogenology.2004.08.016. PubMed DOI

Kumaresan A., Kadirvel G., Bujarbaruah K.M., Bardoloi R.K., Das A., Kumar S., Naskar S. Preservation of boar semen at 18 degrees C induces lipid peroxidation and apoptosis like changes in spermatozoa. Anim. Reprod. Sci. 2009;110:162–171. doi: 10.1016/j.anireprosci.2008.01.006. PubMed DOI

Gómez-Fernández J., Gómez-Izquierdo E., Tomás C., Mocé E., de Mercado E. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars? Reprod. Domest. Anim. 2013;48:177–182. doi: 10.1111/j.1439-0531.2012.02126.x. PubMed DOI

Giadinis N.D., Panousis N., Petridou E.J., Siarkou V.I., Lafi S.Q., Pourliotis K., Hatzopoulou E., Fthenakis G.C. Selenium, vitamin E and vitamin A blood concentrations in dairy sheep flocks with increased or low clinical mastitis incidence. Small Rumin. Res. 2011;95:193–196. doi: 10.1016/j.smallrumres.2010.08.010. DOI

Meschy F. Nutrition Minérale des Ruminants. Editions Quae; Versaille, France: 2010. p. 208.

Sordillo L.M. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet. Med. Int. 2013;2013:154045. doi: 10.1155/2013/154045. PubMed DOI PMC

Salman S., Khol-Parisini A., Schafft H., Lahrssen-Wiederholt M., Hulan H.W., Dinse D., Zentek J. The role of dietary selenium in bovine mammary gland health and immune function. Anim. Health Res. Rev. 2009;10:21–34. doi: 10.1017/S1466252308001588. PubMed DOI

Passchyn P., Piepers S., De Vliegher S. Pathogen group-specific risk factors for intramammary infection in treated and untreated dairy heifers participating in a prepartum antimicrobial treatment trial. J. Dairy Sci. 2014;97:6260–6270. doi: 10.3168/jds.2014-8119. PubMed DOI

Ceballos-Márquez A., Barkema H.W., Stryhn H., Dohoo I.R., Keefe G.P., Wichtel J.J. Bulk tank milk selenium and its association with milk production parameters in Canadian dairy herds. Can. Vet. J. 2012;53:51–56. PubMed PMC

Erskine R.J., Eberhart R.J., Grasso P.J., Scholz R.W. Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets. Am. J. Vet. Res. 1989;50:2093–2100. PubMed

Erskine R.J., Eberhart R.J., Scholz R.W. Experimentally induced Staphylococcus aureus mastitis in selenium-deficient and selenium-supplemented dairy cows. Am. J. Vet. Res. 1990;51:1107–1111. PubMed

Ali-Vehmas T., Vikerpuur M., Fang W., Sandholm M. Giving selenium supplements to dairy cows strengthens the inflammatory response to intramammary infection and induces a growth-suppressing effect on mastitis pathogens in whey. Zentralbl. Veterinarmed. A. 1997;44:559–571. doi: 10.1111/j.1439-0442.1997.tb01142.x. PubMed DOI

Sordillo L.M., O’Boyle N., Gandy J.C., Corl C.M., Hamilton E. Shifts in thioredoxin reductase activity and oxidant status in mononuclear cells obtained from transition dairy cattle. J. Dairy Sci. 2007;90:1186–1192. doi: 10.3168/jds.S0022-0302(07)71605-3. PubMed DOI

Ceballos A., Kruze J., Barkema H.W., Dohoo I.R., Sanchez J., Uribe D., Wichtel J.J., Wittwer F. Barium selenate supplementation and its effect on intramammary infection in pasture-based dairy cows. J. Dairy Sci. 2010;93:1468–1477. doi: 10.3168/jds.2009-2410. PubMed DOI

Ceballos-Marquez A., Barkema H.W., Stryhn H., Wichtel J.J., Neumann J., Mella A., Kruze J., Espindola M.S., Wittwer F. The effect of selenium supplementation before calving on early-lactation udder health in pastured dairy heifers. J. Dairy Sci. 2010;93:4602–4612. doi: 10.3168/jds.2010-3086. PubMed DOI

Machado V.S., Bicalho M.L., Pereira R.V., Caixeta L.S., Knauer W.A., Oikonomou G., Gilbert R.O., Bicalho R.C. Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet. J. 2013;197:451–456. doi: 10.1016/j.tvjl.2013.02.022. PubMed DOI

Ran L., Wu X., Shen X., Zhang K., Ren F., Huang K. Effects of selenium form on blood and milk selenium concentrations, milk component and milk fatty acid composition in dairy cows. J. Sci. Food Agric. 2010;90:2214–2219. doi: 10.1002/jsfa.4073. PubMed DOI

Muñiz-Naveiro O., Domínguez-González R., Bermejo-Barrera A., Cocho J.A., Fraga J.M., Bermejo-Barrera P. Determination of total selenium and selenium distribution in the milk phases in commercial cow’s milk by HG-AAS. Anal. Bioanal. Chem. 2005;381:1145–1151. doi: 10.1007/s00216-004-3010-6. PubMed DOI

Eulogio G.L.J., Hugo C.V., Antonio C.N., Alejandro C.-I., Juan M.Q. Effects of the selenium and vitamin E in the production, physicochemical composition and somatic cell count in milk of Ayrshire cows. J. Anim. Vet. Adv. 2012;11:687–691.

Kim J., Van Soest P.J., Combs G.F., Jr. Studies on the effects of selenium on rumen microbial fermentation in vitro. Biol. Trace Elem. Res. 1997;56:203–213. doi: 10.1007/BF02785393. PubMed DOI

Van Soest P.J. Nutritional Ecology of the Ruminant. 2nd ed. Cornell University Press; Ithaca, NY, USA: 1994. p. 476.

Macfarlane G.T., Gibson G.R., Beatty E., Cummings J.H. Estimation of shortchain fatty production from protein by human intestinal bacteria on branched-chain fatty acid measurements. FEMS Microbiol. Ecol. 1992;101:81–88.

Galbraith M.L., Vorachek W.R., Estill C.T., Whanger P.D., Bobe G., Davis T.Z., Hall J.A. Rumen microorganisms decrease bioavailability of inorganic selenium supplements. Biol. Trace Elem. Res. 2016;171:338–343. doi: 10.1007/s12011-015-0560-8. PubMed DOI

Hall J.A., Van Saun R.J., Bobe G., Stewart W.C., Vorachek W.R., Mosher W.D., Nichols T., Forsberg N.E., Pirelli G.J. Organic and inorganic selenium: I. Oral bioavailability in ewes. J. Anim. Sci. 2012;90:568–576. doi: 10.2527/jas.2011-4075. PubMed DOI

Hidiroglou M., Jenkins K.J. Fate of Se-75-selenomethionine in gastrointestinal-tract of sheep. Can. J. Anim. Sci. 1973;53:527–536. doi: 10.4141/cjas73-080. DOI

Turner R.J., Weiner J.H., Taylor D.E. Selenium metabolism in Escherichia coli. Biometals. 1998;11:223–227. doi: 10.1023/A:1009290213301. PubMed DOI

Eun J.S., Davis T.Z., Vera J.M., Miller D.N., Panter K.E., ZoBell D.R. Addition of high concentration of inorganic selenium in orchardgrass (Dactylis glomerata L.) hay diet does not interfere with microbial fermentation in mixed ruminal microorganisms in continuous cultures. Prof. Anim. Sci. 2013;29:39–45. doi: 10.15232/S1080-7446(15)30193-5. DOI

Mihaliková K., Grešáková Ľ., Boldižárová K., Faix Š., Leng Ľ., Kišidayová S. The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiol. 2005;50:353–356. doi: 10.1007/BF02931418. PubMed DOI

Faixová Z., Piešová E., Maková Z., Čobanová K., Faix Š. Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on ruminal enzyme activities and blood chemistry in sheep. Acta Vet. Brno. 2016;85:185–194. doi: 10.2754/avb201685020185. DOI

Karl J.P., Alemany J.A., Koenig C., Kraemer W.J., Frystyk J., Flyvbjerg A., Young A.J., Nindl B.C. Diet, body composition, and physical fitness influences on IGF-I bioactivity in women. Growth Horm. IGF Res. 2009;19:491–496. doi: 10.1016/j.ghir.2009.04.001. PubMed DOI

McElwee K., Hoffmann R. Growth factors in early hair follicle morphogenesis. Eur. J. Dermatol. 2000;10:341–350. PubMed

Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010. PubMed DOI

Lindner G., Botchkarev V.A., Botchkareva N.V., Ling G., van der Veen C., Paus R. Analysis of apoptosis during hair follicle regression (catagen) Am. J. Pathol. 1997;151:1601–1617. PubMed PMC

Ahn S.Y., Pi L.Q., Hwang S.T., Lee W.S. Effect of IGF-I on hair growth is related to the anti-apoptotic Effect of IGF-I and up-regulation of PDGF-A and PDGF-B. Ann. Dermatol. 2012;24:26–31. doi: 10.5021/ad.2012.24.1.26. PubMed DOI PMC

Kamp H., Geilen C.C., Sommer C., Blume-Peytavi U. Regulation of PDGF and PDGF receptor in cultured dermal papilla cells and follicular keratinocytes of the human hair follicle. Exp. Dermatol. 2003;12:662–672. doi: 10.1034/j.1600-0625.2003.00089.x. PubMed DOI

Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–212. doi: 10.1016/0092-8674(90)90801-K. PubMed DOI

Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 1995;16:3–34. doi: 10.1210/edrv-16-1-3. PubMed DOI

Ludvíková E., Pavlata L., Vyskočil M., Jahn P. Selenium status of horses in the Czech Republic. Acta Vet. Brno. 2005;74:369–375. doi: 10.2754/avb200574030369. DOI

Pavlata L., Pechová A., Illek J. Direct and indirect assessment of selenium status in cattle—A comparison. Acta Vet. Brno. 2000;69:281–287. doi: 10.2754/avb200069040281. DOI

Slavík P., Illek J., Rajmon R., Zelený T., Jílek F. Selenium dynamics in the blood of beef cows and calves fed diets supplemented with organic and inorganic selenium sources and the effect on reproduction. Acta Vet. Brno. 2008;77:11–15. doi: 10.2754/avb200877010011. DOI

Harapin I., Bauer M., Bedrica L., Potočnjak D. Correlation between glutathione peroxidase activity and the quantity of selenium in the whole blood of beef calves. Acta Vet. Brno. 2000;69:87–92. doi: 10.2754/avb200069020087. DOI

Jovanović B.I.V.M., Veličković M., Milanović S., Valčić O., Gvozdić D., Vranješ-Đurić S. Supplemental selenium reduces the levels of biomarkers of oxidative and general stress in peripartum dairy cows. Acta Vet. Beograd. 2015;65:191–201.

Pavlata L., Misurova L., Pechova A., Husakova T., Dvorak R. Direct and indirect assessment of selenium status in sheep—A comparison. Vet. Med. 2012;57:219–223.

Pechova A., Pavlata L., Illek J. Blood and tissue selenium determination by hydride generation atomic absorption spectrophotometry. Acta Vet. Brno. 2005;74:483–490. doi: 10.2754/avb200574040483. DOI

Slavík P., Illek J., Zelený T. Selenium status in heifers, late pregnancy cows and their calves in the Šumava Region, Czech Republic. Acta Vet. Brno. 2007;76:519–524. doi: 10.2754/avb200776040519. DOI

Chung J.Y., Kim J.H., Ko Y.H., Jang I.S. Effects of dietary supplemented inorganic and organic selenium on antioxidant defense systems in the intestine, serum, liver and muscle of Korean native goats. Asian Australas. J. Anim. 2007;20:52–59. doi: 10.5713/ajas.2007.52. DOI

Stockdale C.R., Gill H.S. Effect of duration and level of supplementation of diets of lactating dairy cows with selenized yeast on selenium concentrations in milk and blood after the withdrawal of supplementation. J. Dairy Sci. 2011;94:2351–2359. doi: 10.3168/jds.2010-3781. PubMed DOI

Balán J., Vosmanská M., Száková J., Mestek O. Speciační analýza selenu v odtučněném řepkovém šrotu. Chem. Listy. 2014;108:256–263.

Juniper D.T., Phipps R.H., Jones A.K., Bertin G. Selenium supplementation of lactating dairy cows: Effect on selenium concentration in blood, milk, urine, and feces. J. Dairy Sci. 2006;89:3544–3551. doi: 10.3168/jds.S0022-0302(06)72394-3. PubMed DOI

Konvičná J., Vargová M., Paulíková I., Kováč G., Kostecká Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno. 2015;84:133–140. doi: 10.2754/avb201584020133. DOI

Kralik Z., Kralik G., Biazik E., Straková E., Suchý P. Effects of organic selenium in broiler feed on the content of selenium and fatty acid profile in lipids of thigh muscle tissue. Acta Vet. Brno. 2013;82:277–282. doi: 10.2754/avb201382030277. DOI

Faixová Z., Faix Š., Bořutová R., Leng Ľ. Efficacy of dietary selenium to counteract toxicity of deoxynivalenol in growing broiler chickens. Acta Vet. Brno. 2007;76:349–356. doi: 10.2754/avb200776030349. DOI

Kuricová S., Boldižárová K., Grešáková Ľ., Levkut M., Leng Ľ. Chicken selenium satus when fed a diet supplemented with Se-yeast. Acta Vet. Brno. 2003;72:339–346. doi: 10.2754/avb200372030339. DOI

Liesegang A., Staub T., Wichert B., Wanner M., Kreuzer M. Effect of vitamin E supplementation of sheep and goats fed diets supplemented with polyunsaturated fatty acids and low in Se. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008;92:292–302. doi: 10.1111/j.1439-0396.2007.00770.x. PubMed DOI

Feldmann J., Salaün P., Lombi E. Critical review perspective: Elemental speciation analysis methods in environmental chemistry—Moving towards methodological integration. Environ. Chem. 2009;6:275–289. doi: 10.1071/EN09018. DOI

Sanz-Medel A. Trace element analytical speciation in biological systems: Importance, challenges and trends. Spectrochim. Acta Part B Atomic Spectrosc. 1998;53:197–211. doi: 10.1016/S0584-8547(97)00135-3. DOI

Szpunar J., McSheehy S., Połeć K., Vacchina V., Mounicou S., Rodriguez I., Łobiński R. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis—Advances and limitations. Spectrochim. Acta Part B Atomic Spectrosc. 2000;55:779–793. doi: 10.1016/S0584-8547(00)00210-X. DOI

Michalke B. The coupling of LC to ICP-MS in element speciation—Part II: Recent trends in application. Trends Anal. Chem. 2002;21:154–165. doi: 10.1016/S0165-9936(02)00303-5. DOI

Takahashi K., Suzuki N., Ogra Y. Bioavailability Comparison of Nine Bioselenocompounds In Vitro and In Vivo. Int. J. Mol. Sci. 2017;18:506. doi: 10.3390/ijms18030506. PubMed DOI PMC

Kahakachchi C., Boakye H.T., Uden P.C., Tyson J.F. Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast. J. Chromatogr. A. 2004;1054:303–312. doi: 10.1016/S0021-9673(04)01287-7. PubMed DOI

Kotrebai M., Birringer M., Tyson J.F., Block E., Uden P.C. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125:71–78. doi: 10.1039/a906320j. PubMed DOI

Li H.F., Lombi E., Stroud J.L., McGrath S.P., Zhao F.J. Selenium speciation in soil and rice: Influence of water management and Se fertilization. J. Agric. Food Chem. 2010;58:11837–11843. doi: 10.1021/jf1026185. PubMed DOI

McSheehy S., Kelly J., Tessier L., Mester Z. Identification of selenomethionine in selenized yeast using two-dimensional liquid chromatography-mass spectrometry based proteomic analysis. Analyst. 2005;130:35–37. doi: 10.1039/b414246b. PubMed DOI

Montes-Bayón M., Molet M.J., González E.B., Sanz-Medel A. Evaluation of different sample extraction strategies for selenium determination in selenium-enriched plants (Alliumsativum and Brassicajuncea) and Se speciation by HPLC-ICP-MS. Talanta. 2006;68:1287–1293. doi: 10.1016/j.talanta.2005.07.040. PubMed DOI

Slekovec M., Goessler W. Accumulation of selenium in natural plants and selenium supplemented vegetable and selenium speciation by HPLC-ICPMS. Chem. Speciat. Bioavailab. 2005;17:63–73. doi: 10.3184/095422905782774919. DOI

Cuderman P., Kreft I., Germ M., Kovacevic M., Stibilj V. Selenium species in selenium-enriched and drought-exposed potatoes. J. Agric. Food Chem. 2008;56:9114–9120. doi: 10.1021/jf8014969. PubMed DOI

Cuderman P., Ožbolt L., Kreft I., Stibilj V. Extraction of Se species in buckwheat sprouts grown from seeds soaked in various Se solutions. Food Chem. 2010;123:941–948. doi: 10.1016/j.foodchem.2010.04.063. DOI

Pedrero Z., Encinar J.R., Madrid Y., Cámara C. Identification of selenium species in selenium-enriched Lens esculenta plants by using two-dimensional liquid chromatography-inductively coupled plasma mass spectrometry and [77Se]selenomethionine selenium oxide spikes. J. Chromatogr. A. 2007;1139:247–253. doi: 10.1016/j.chroma.2006.11.031. PubMed DOI

Smrkolj P., Stibilj V., Kreft I., Germ M. Selenium species in buckwheat cultivated with foliar addition of Se(VI) and various levels of UV-B radiation. Food Chem. 2006;96:675–681. doi: 10.1016/j.foodchem.2005.05.002. DOI

Montes-Bayón M., LeDuc D.L., Terry N., Caruso J.A. Selenium speciation in wild-type and genetically modified Se accumulating plants with HPLC separation and ICP-MS/ES-MS detection. J. Anal. Atomic Spectrom. 2002;17:872–879. doi: 10.1039/B202608M. DOI

Van Saun R.J. Rational approach to selenium supplementation essential. Feedstuffs. 1990;15:15–17.

National Research Council (NRC) Selenium in Nutrition. Revised ed. National Academy Press; Washington, DC, USA: 1983. pp. 107–113.

Tracy M.L., Möller G. Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part 1: Selenium. J. Assoc. Off. Anal. Chem. 1990;73:404–410. PubMed

Koh T.S. Interlaboratory study of blood selenium determinations. J. Assoc. Off. Anal. Chem. 1987;70:664–667. PubMed

Calamari L., Ferrari A., Bertin G. Effect of selenium source and dose on selenium status of mature horses. J. Anim. Sci. 2009;87:167–178. doi: 10.2527/jas.2007-0746. PubMed DOI

Constable P.D., Hinchcliff K.W., Done S.H., Grünberg W. Veterinary Medicine: A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs, and Goats. 11th ed. Elsevier Ltd.; Amsterdam, The Netherlands: 2017. p. 2356.

Kojouri G.A., Sharifi S. Preventing effects of nano-selenium particles on serum concentration of blood urea nitrogen, creatinine, and total protein during intense exercise in donkey. J. Equine Vet. Sci. 2013;33:597–600. doi: 10.1016/j.jevs.2012.09.008. DOI

Montgomery J.B., Wichtel J.J., Wichtel M.G., McNiven M.A., McClure J.T., Markham F., Horohov D.W. Effects of selenium source on measures of selenium status and immune function in horses. Can. J. Vet. Res. 2012;76:281–291. PubMed PMC

Maas J., Galey F.D., Peauroi J.R., Case J.T., Littlefield E.S., Gay C.C., Koller L.D., Crisman R.O., Weber D.W., Warner D.W., et al. The correlation between serum selenium and blood selenium in cattle. J. Vet. Diagn. Investig. 1992;4:48–52. doi: 10.1177/104063879200400111. PubMed DOI

Chadio S.E., Kotsampasi B.M., Menegatos J.G., Zervas G.P., Kalogiannis D.G. Effect of selenium supplementation on thyroid hormone levels and selenoenzyme activities in growing lambs. Biol. Trace Elem. Res. 2006;109:145–154. doi: 10.1385/BTER:109:2:145. PubMed DOI

Fortier M.E., Audet I., Giguère A., Laforest J.P., Bilodeau J.F., Quesnel H., Matte J.J. Effect of dietary organic and inorganic selenium on antioxidant status, embryo development, and reproductive performance in hyperovulatory first-parity gilts. J. Anim. Sci. 2012;90:231–240. doi: 10.2527/jas.2010-3340. PubMed DOI

Kim Y.Y., Mahan D.C. Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J. Anim. Sci. 2001;79:942–948. doi: 10.2527/2001.794942x. PubMed DOI

Yin S.A., Sato I., Yamagushi K. Comparison of selenium level and glutathione peroxidase activity in tissues of vitamin B6 deficient rats fed sodium selenite or dl selenomethionine. J. Nutr. Biochem. 1992;3:633–639. doi: 10.1016/0955-2863(92)90082-T. DOI

Kim Y.Y., Mahan D.C. Prolonged feeding of high dietary levels of organic and inorganic selenium to gilts from 25 kg body weight through one parity. J. Anim. Sci. 2001;79:956–966. doi: 10.2527/2001.794956x. PubMed DOI

Pavlata L., Pechová A., Bečvář O., Illek J. Selenium status in cattle at slaughter: Analyses of blood, skeletal muscle, and liver. Acta Vet. Brno. 2001;70:277–284. doi: 10.2754/avb200170030277. DOI

Stowe H.D., Herdt T.H. Clinical assessment of selenium status of livestock. J. Anim. Sci. 1992;70:3928–3933. doi: 10.2527/1992.70123928x. PubMed DOI

Campbell J.R., Jim G.K., Booker C.W., Guichon P.T. A survey of the selenium status of beef cows in Alberta. Can. Vet. J. 1995;36:698–702. PubMed PMC

Gunter S.A., Beck P.A., Phillips J.K. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J. Anim. Sci. 2003;81:856–864. doi: 10.2527/2003.814856x. PubMed DOI

Premarathna H.L., McLaughlin M.J., Kirby J.K., Hettiarachchi G.M., Beak D., Stacey S., Chittleborough D.J. Potential availability of fertilizer selenium in field capacity and submerged soils. Soil. Sci. Soc. Am. J. 2010;74:1589–1596. doi: 10.2136/sssaj2009.0416. DOI

Roca-Perez L., Gil C., Cervera M.L., Gonzálvez A., Ramos-Miras J., Pons V., Bech J., Boluda R. Selenium and heavy metals content in some Mediterranean soils. J. Geochem. Explor. 2010;107:110–116. doi: 10.1016/j.gexplo.2010.08.004. DOI

Zachara B.A., Pawluk H., Bloch-Boguslawska E., Sliwka K.M., Korenkiewicz J., Skok Z., Ryć K. Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch. Environ. Health. 2001;56:461–466. doi: 10.1080/00039890109604483. PubMed DOI

Gupta U.C., Gupta S.C. Selenium in soils and crops, its deficiencies in livestock and humans: Implications for management. Commun. Soil Sci. Plant Anal. 2000;31:1791–1807. doi: 10.1080/00103620009370538. DOI

Delesalle C., de Bruijn M., Wilmink S., Vandendriessche H., Mol G., Boshuizen B., Plancke L., Grinwis G. White muscle disease in foals: Focus on selenium soil content. A case series. BMC Vet. Res. 2017;13 doi: 10.1186/s12917-017-1040-5. PubMed DOI PMC

Jones G.D., Droz B., Greve P., Gottschalk P., Poffet D., McGrath S.P., Seneviratne S.I., Smith P., Winkel L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA. 2017;114:2848–2853. doi: 10.1073/pnas.1611576114. PubMed DOI PMC

Supriatin S., Weng L., Comans R.N. Selenium speciation and extractability in Dutch agricultural soils. Sci. Total Environ. 2015;532:368–382. doi: 10.1016/j.scitotenv.2015.06.005. PubMed DOI

Dinh Q.T., Li Z., Tran T.A.T., Wang D., Liang D. Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere. 2017;184:618–635. doi: 10.1016/j.chemosphere.2017.06.034. PubMed DOI

Awadeh F.T., Kincaid R.L., Johnson K.A. Effect of level and source of dietary selenium on concentrations of thyroid hormones and immunoglobulins in beef cows and calves. J. Anim. Sci. 1998;76:1204–1215. doi: 10.2527/1998.7641204x. PubMed DOI

Ursini F., Maiorino M., Roveri A. Phospholipid hydroperoxide glutathione peroxidase (PHGPx): More than an antioxidant enzyme? Biomed. Environ. Sci. 1997;10:327–332. PubMed

Maas J., Peauroi J.R., Tonjes T., Karlonas J., Galey F.D., Han B. Intramuscular selenium administration in selenium-deficient cattle. J. Vet. Int. Med. 1993;7:342–348. doi: 10.1111/j.1939-1676.1993.tb01029.x. PubMed DOI

Hogan J.S., Smith K.L., Weiss W.P., Todhunter D.A., Schockey W.L. Relationships among vitamin E, selenium, and bovine blood neutrophils. J. Dairy Sci. 1990;73:2372–2378. doi: 10.3168/jds.S0022-0302(90)78920-5. PubMed DOI

Ellison R.S. A review of copper and selenium reference ranges in cattle and sheep. Vet. Contin. Educ. Massey Univ. 1992;145:3–27.

Juniper D.T., Phipps R.H., Givens D.I., Jones A.K., Green C., Bertin G. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. J. Anim. Sci. 2008;86:197–204. doi: 10.2527/jas.2006-773. PubMed DOI

Brigelius-Flohé R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI

Bermingham E.N., Hesketh J.E., Sinclair B.R., Koolaard J.P., Roy N.C. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: A meta-analysis. Nutrients. 2014;6:4002–4031. doi: 10.3390/nu6104002. PubMed DOI PMC

Han D., Xie S., Liu M., Xiao X., Liu H., Zhu X., Yang Y. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio) Aquac. Nutr. 2011;17:e741–e749. doi: 10.1111/j.1365-2095.2010.00841.x. DOI

Dalto B.D., Tsoi S., Audet I., Dyck M.K., Foxcroft G.R., Matte J.J. Gene expression of porcine blastocysts from gilts fed organic or inorganic selenium and pyridoxine. Reproduction. 2015;149:31–42. doi: 10.1530/REP-14-0408. PubMed DOI

Ibrahim M., Muhammad N., Naeem M., Deobald A.M., Kamdem J.P., Rocha J.B. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol. In Vitro. 2015;29:947–952. doi: 10.1016/j.tiv.2015.03.017. PubMed DOI

Méplan C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients. 2015;7:3621–3651. doi: 10.3390/nu7053621. PubMed DOI PMC

Acda S.P., Chae B.J. A review on the applications of organic trace minerals in pig nutrition. Pak. J. Nutr. 2002;1:25–30.

Schoonheere N., Dotreppe O., Pincemail J., Istasse L., Hornick J.L. Dietary incorporation of feedstuffs naturally high in organic selenium for racing pigeons (Columba livia): Effects on plasma antioxidant markers after a standardised simulation of a flying effort. J. Anim. Physiol. Anim. Nutr. (Berl.) 2009;93:325–330. doi: 10.1111/j.1439-0396.2008.00879.x. PubMed DOI

Svoboda M., Ficek R., Drabek J. Efficacy of selenium from Se-enriched yeast on selenium transfer from sows to piglets. Acta Vet. Brno. 2008;77:515–521. doi: 10.2754/avb200877040515. DOI

Todd S.E., Thomas D.G., Hendriks W.H. Selenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound selenium. J. Anim. Physiol. Anim. Nutr. (Berl.) 2012;96:148–158. doi: 10.1111/j.1439-0396.2011.01132.x. PubMed DOI

Ashton K., Hooper L., Harvey L.J., Hurst R., Casgrain A., Fairweather-Tait S.J. Methods of assessment of selenium status in humans: A systematic review. Am. J. Clin. Nutr. 2009;89:2025S–2039S. doi: 10.3945/ajcn.2009.27230F. PubMed DOI

Lee D.N., Hung Y.S., Yang T.S., Lin J.H., Weng C.F. Aspergillus awamori-fermented mung bean seed coats enhance the antioxidant and immune responses of weaned pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 2017;7 doi: 10.1111/jpn.12611. PubMed DOI

Wang L., Xu X., Su G., Shi B., Shan A. High concentration of vitamin E supplementation in sow diet during the last week of gestation and lactation affects the immunological variables and antioxidative parameters in piglets. J. Dairy Res. 2017;84:8–13. doi: 10.1017/S0022029916000650. PubMed DOI

Ocheja O.B., Ayo J.O., Aluwong T., Minka N.S. Effects of L-glutamine on rectal temperature and some markers of oxidative stress in Red Sokoto goats during the hot-dry season. Trop. Anim. Health Prod. 2017;12 doi: 10.1007/s11250-017-1325-5. PubMed DOI

Dalto D.B., Lapointe J., Matte J.J. Assessment of antioxidative and selenium status by seleno-dependent glutathione peroxidase activity in different blood fractions using a pig model: Issues for clinical nutrition and research. J. Anim. Physiol. Anim. Nutr. (Berl.) 2017;17 doi: 10.1111/jpn.12677. PubMed DOI

Nazifi S., Ghafari N., Farshneshani F., Rahsepar M., Razavi S.M. Reference values of oxidative stress parameters in adult Iranian fat-tailed sheep. Pak. Vet. J. 2010;30:13–16.

Esworthy R.S., Chu F.-F., Doroshow J.H. Analysis of glutathione-related enzymes. In: Costa E., Hodgson E., Lawrence D.A., Reed D.J., GreenLee W.F., editors. Current Protocols in Toxicology. John Wiley & Sons; Hoboken, NJ, USA: 1999. Item 7.1.17. PubMed

King J.C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 2000;71:1218S–1225S. PubMed

Gerloff B.J. Effect of selenium supplementation on dairy cattle. J. Anim. Sci. 1992;70:3934–3940. doi: 10.2527/1992.70123934x. PubMed DOI

Scholz R.W., Hutchinson L.J. Distribution of glutathione peroxidase activity and selenium in the blood of dairy cows. Am. J. Vet. Res. 1979;40:245–249. PubMed

Cowell R.L. Veterinary Clinical Pathology Secrets. Elsevier, Inc.; Amsterdam, The Netherlands: 2004. p. 408. Questions and Answers Reveal the Secrets of Veterinary Clinical Pathology.

Scholz R.W., Cook L.S., Todhunter D.A. Distribution of selenium-dependent and nonselenium-dependent glutathione peroxidase activity in tissues of young cattle. Am. J. Vet. Res. 1981;42:1724–1729. PubMed

Dalto D.B., Audet I., Lapointe J., Matte J.J. The importance of pyridoxine for the impact of the dietary selenium sources on redox balance, embryo development, and reproductive performance in gilts. J. Trace Elem. Med. Biol. 2016;34:79–89. doi: 10.1016/j.jtemb.2016.01.001. PubMed DOI

Dalto D.B., Roy M., Audet I., Palin M.F., Guay F., Lapointe J., Matte J.J. Interaction between vitamin B6 and source of selenium on the response of the selenium-dependent glutathione peroxidase system to oxidative stress induced by oestrus in pubertal pig. J. Trace Elem. Med. Biol. 2015;32:21–29. doi: 10.1016/j.jtemb.2015.05.002. PubMed DOI

Dalto D.B., Matte J.J. Pyridoxine (vitamin B6) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients. 2017;9:189. doi: 10.3390/nu9030189. PubMed DOI PMC

Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. PubMed

Abd Ellah M.R., Niishimori K., Goryo M., Okada K., Yasuda J. Glutathion peroxidase and glucose-6-phosphate dehydrogenase activities in bovine blood and liver. J. Vet. Med. Sci. 2004;66:1219–1221. doi: 10.1292/jvms.66.1219. PubMed DOI

Nemec Svete A., Čebulj-Kadunc N., Frangež R., Kruljc P. Serum cortisol and haematological, biochemical and antioxidant enzyme variables in horse blood sampled in a slaughterhouse lairage, immediately before stunning and during exsanguination. Animal. 2012;6:1300–1306. doi: 10.1017/S1751731112000079. PubMed DOI

Niedźwiedź A., Nicpoń J., Zawadzki M., Służewska-Niedźwiedź M., Januszewska L. The influence of road transport on the activities of glutathione reductase, glutathione peroxidase, and glutathione-S-transferase in equine erythrocytes. Vet. Clin. Pathol. 2012;41:123–126. doi: 10.1111/j.1939-165X.2011.00396.x. PubMed DOI

Richardson S.M., Siciliano P.D., Engle T.E., Larson C.K., Ward T.L. Effect of selenium supplementation and source on the selenium status of horses. J. Anim. Sci. 2006;84:1742–1748. doi: 10.2527/jas.2005-413. PubMed DOI

Luo Z., Zhu W., Guo Q., Luo W., Zhang J., Xu W., Xu J. Weaning induced hepatic oxidative stress, apoptosis, and aminotransferases through MAPK signaling pathways in piglets. Oxid. Med. Cell. Longev. 2016;2016:4768541. doi: 10.1155/2016/4768541. PubMed DOI PMC

Shi L.G., Yang R.J., Yue W.B., Xun W.J., Zhang C.X., Ren Y.S., Shi L., Lei F.L. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim. Reprod. Sci. 2010;118:248–254. doi: 10.1016/j.anireprosci.2009.10.003. PubMed DOI

Zhao J., Jin Y., Du M., Liu W., Ren Y., Zhang C., Zhang J. The effect of dietary grape pomace supplementation on epididymal sperm quality and testicular antioxidant ability in ram lambs. Theriogenology. 2017;97:50–56. doi: 10.1016/j.theriogenology.2017.04.010. PubMed DOI

Hough C.D., Cho K.R., Zonderman A.B., Schwartz D.R., Morin P.J. Coordinately up-regulated genes in ovarian cancer. Cancer Res. 2001;61:3869–3876. PubMed

Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 1999;27:951–965. doi: 10.1016/S0891-5849(99)00173-2. PubMed DOI

Humann-Ziehank E., Renko K., Mueller A.S., Roehrig P., Wolfsen J., Ganter M. Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep. J. Trace Elem. Med. Biol. 2013;27:380–390. doi: 10.1016/j.jtemb.2013.03.003. PubMed DOI

Chu F.F., Esworthy R.S., Doroshow J.H., Doan K., Liu X.F. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood. 1992;79:3233–3238. PubMed

Miranda S.G., Wang Y.J., Purdie N.G., Osborne V.R., Coomber B.L., Cant J.P. Selenomethionine stimulates expression of glutathione peroxidase 1 and 3 and growth of bovine mammary epithelial cells in primary culture. J. Dairy Sci. 2009;92:2670–2683. doi: 10.3168/jds.2008-1901. PubMed DOI

Bruzelius K., Hoac T., Sundler R., Onning G., Akesson B. Occurrence of selenoprotein enzyme activities and mRNA in bovine mammary tissue. J. Dairy Sci. 2007;90:918–927. doi: 10.3168/jds.S0022-0302(07)71575-8. PubMed DOI

Naiki-Ito A., Asamoto M., Hokaiwado N., Takahashi S., Yamashita H., Tsuda H., Ogawa K., Shirai T. Gpx2 is an overexpressed gene in rat breast cancers induced by three different chemical carcinogens. Cancer Res. 2007;67:11353–11358. doi: 10.1158/0008-5472.CAN-07-2226. PubMed DOI

Bickhardt K., Ganterm M., Sallmann P. Investigation of the manifestation of vitamin E and selenium deficiency in sheep and goats. Dtsch.-Tierarztliche-Wochenschr. 1999;106:242–247. PubMed

Fraga C.G., Ariass R.F., Llesuy S.F. Effect of vitamin E and Se deficiency on rat liver chemiluminescence. Biochem. G. 1987;242:383–392. doi: 10.1042/bj2420383. PubMed DOI PMC

Hodgson J.C., Watkins C.A., Bayne C.W. Contribution of respiratory burst activity to innate immune function and the effects of disease status and agent on chemiluminescence responses by ruminant phagocytes in vitro. Vet. Immunol. Immunopathol. 2006;112:12–23. doi: 10.1016/j.vetimm.2006.03.008. PubMed DOI

Ivancic J.J., Weiss W.P. Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. J. Dairy Sci. 2001;84:225–232. doi: 10.3168/jds.S0022-0302(01)74472-4. PubMed DOI

Schrauzer G.N. Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit. Rev. Biotechnol. 2009;29:10–17. doi: 10.1080/07388550802658048. PubMed DOI

National Research Council (NRC) Nutrient Requirements of Dairy Cattle. 7th Revised ed. National Academy Press; Washington, DC, USA: 2001.

Suttle N.F. Mineral Nutrition of Livestock. 4th ed. British Library; London, UK: 2010.

National Research Council (NRC) Nutrient Requirements of Sheep. 6th ed. National Academy Press; Washington, DC, USA: 1985.

Papazafeiriou A.Z., Lakis C., Stefanou S., Yiakoulaki M., Mpokos P., Papanikolaou K. Trace elements content of plant material growing on alkaline organix soils and its suitabilty for small ruminant extensive farming. Bulg. J. Agric. Sci. 2016;22:733–739.

National Research Council (NRC) Minerals. In: National Research Council, editor. Nutrient Requirements of Horses. 6th ed. National Academies Press; Washington, DC, USA: 2007. pp. 94–97.

Pagan J.D., Karnezos P., Kennedy M.A.P., Currier T., Hoekstra K.E. Effect of selenium source on selenium digestibility and retention in exercised Thoroughbreds; Proceedings of the Equine Nutrition and Physiology Society; Raleigh, NC, USA. 2–5 June 1999; pp. 135–140.

Geor R.J., Coenen M., Harris P. Equine Applied and Clinical Nutrition E-Book: Health, Welfare and Performance. Elsevier Ltd.; Amsterdam, The Netherlands: 2013. p. 592.

Guyot H., Spring P., Andrieu S., Rollin F. Comparative responses to sodium selenite and organic selenium supplements in Belgium Blue cows and calves. Livest. Sci. 2007;111:259–263.

National Research Council (NRC) Mineral Tolerances of Animals. 2nd Revised ed. National Academy Press; Washington, DC, USA: 2005.

Hill G.M., Link J.E., Meyer L., Fritsche K.L. Effect of vitamin E and selenium on iron utilization in neonatal pigs. J. Anim. Sci. 1999;77:1762–1768. doi: 10.2527/1999.7771762x. PubMed DOI

Mahan D.C. Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J. Anim. Sci. 2000;78:100–105. doi: 10.2527/2000.781100x. PubMed DOI

Tinggi U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008;13:102–108. doi: 10.1007/s12199-007-0019-4. PubMed DOI PMC

Yoon I., McMillan E. Comparative effects of organic and inorganic selenium on selenium transfer from sows to nursing pigs. J. Anim. Sci. 2006;84:1729–1733. doi: 10.2527/jas.2005-311. PubMed DOI

Schrauzer G.N. Selenomethionine: A review of its nutritional significance, metabolism and toxicity. J. Nutr. 2000;130:1653–1656. PubMed

Knowles S.O., Grace N.D., Wurms K., Lee J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J. Dairy Sci. 1999;82:429–437. doi: 10.3168/jds.S0022-0302(99)75249-5. PubMed DOI

Svoboda M., Kotrbáček V., Ficek R., Drábek J. Effect of Organic Selenium from Se-enriched Alga (Chlorella spp.) on Selenium Transfer from Sows to Their Progeny. Acta Vet. Brno. 2009;78:373–377. doi: 10.2754/avb200978030373. DOI

Trávníček J., Racek J., Trefil L., Rodinová H., Kroupová V., Illek J., Doucha J., Písek L. Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Czech J. Anim. Sci. 2008;53:292–298.

Valčić O., Jovanović I., Milanović S., Gvozdić D. Selenium status of feedstuffs and grazing ewes in Serbia. Acta Vet. Beaograd. 2013;63:665–675.

Değer Y., Ertekin A., Değer S., Mert H. Lipid peroxidation and antioxidant potential of sheep liver infected naturally with distomatosis. Turk. Parazitol. Derg. 2008;32:23–26. PubMed

Yaralioglu-Gurgoze S., Cetin H., Cen O., Yilmaz S., Atli M.O. Changes in malondialdehyde concentrations and glutathione peroxidase activity in purebred Arabian mares with endometritis. Vet. J. 2005;170:135–137. doi: 10.1016/j.tvjl.2004.04.002. PubMed DOI

Mélo S.K., Diniz A.I., de Lira V.L., de Oliveira Muniz S.K., da Silva G.R., Manso H.E., Manso Filho H.C. Antioxidant and haematological biomarkers in different groups of horses supplemented with polyunsaturated oil and vitamin E. J. Anim. Physiol. Anim. Nutr. (Berl.) 2016;100:852–859. doi: 10.1111/jpn.12456. PubMed DOI

El-Bahr S.M., El-Deeb W.M. Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra. Theriogenology. 2016;86:1132–1136. doi: 10.1016/j.theriogenology.2016.04.002. PubMed DOI

El-Deeb W.M., El-Bahr S.M. Investigation of selected biochemical indicators of Equine Rhabdomyolysis in Arabian horses: Pro-inflammatory cytokines and oxidative stress markers. Vet. Res. Commun. 2010;34:677–689. doi: 10.1007/s11259-010-9439-5. PubMed DOI

Janiak M., Suska M., Dudzińska W., Skotnicka E. Blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training. J. Anim. Physiol. Anim. Nutr. (Berl.) 2010;94:137–145. doi: 10.1111/j.1439-0396.2008.00889.x. PubMed DOI

Kojouri G.A., Faramarzi P., Ahadi A.M., Parchami A. Effect of selenium nanoparticles on expression of HSP90 gene in myocytes after an intense exercise. J. Equine Vet. Sci. 2013;33:1054–1056. doi: 10.1016/j.jevs.2013.04.001. DOI

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. PubMed

Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 1998;108:101–106. doi: 10.1385/0-89603-472-0:101. PubMed DOI

Augustin K., Blank R., Boesch-Saadatmandi C., Frank J., Wolffram S., Rimbach G. Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 2008;92:705–711. doi: 10.1111/j.1439-0396.2007.00768.x. PubMed DOI

Beers R.F.J., Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195:133–140. PubMed

Placer Z.A., Cushman L.L., Johnson B.C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966;16:359–364. doi: 10.1016/0003-2697(66)90167-9. PubMed DOI

Günzler W.A., Kremers H., Flohé L. An improved coupled test procedure for glutathione peroxidase (EC 1-11-1-9-) in blood. Z. Klin. Chem. Klin. Biochem. 1974;12:444–448. PubMed

Sankari S., Atroshi F. Effect of dietary selenium on erythrocyte glutathione peroxidase and blood selenium in two types of Finnisheep genetically selected for high and low glutathione peroxidase activity. Zbl. Vet. Med. A. 1983;30:452. doi: 10.1111/j.1439-0442.1983.tb01005.x. PubMed DOI

Jain S.K., McVie R., Duett J., Herbst J.J. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes. 1989;38:1539–1543. doi: 10.2337/diab.38.12.1539. PubMed DOI

Martin J.P.J., Dailey M., Sugarman E. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 1987;255:329–336. doi: 10.1016/0003-9861(87)90400-0. PubMed DOI

Janero D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990;9:515–540. doi: 10.1016/0891-5849(90)90131-2. PubMed DOI

Tietze F. Enzymatic method for the quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969;27:502–522. doi: 10.1016/0003-2697(69)90064-5. PubMed DOI

Botsoglou N.A. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. J. Agric. Food Chem. 1994;42:1931–1937. doi: 10.1021/jf00045a019. DOI

Jentzsch A.M., Bachmann H., Fürst P., Biesalski H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996;20:251–256. doi: 10.1016/0891-5849(95)02043-8. PubMed DOI

Gérard-Monnier D., Erdelmeier I., Régnard K., Moze-Henry N., Yadan J.C., Chaudière J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998;11:1176–1183. doi: 10.1021/tx9701790. PubMed DOI

Reaner D.C., Veillon C. Elimination of perchloric acid in digestion of biological fluids for fluorometric determination of selenium. Anal. Chem. 1983;55:1605–1606. doi: 10.1021/ac00260a037. PubMed DOI

Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333. PubMed

Sun Y., Oberley L.W., Li Y. A simple method for clinical assay of superoxide dismutase. Clin. Chem. 1988;34:497–500. PubMed

Wills E.D. Mechanisms of lipid peroxide formation in animal tissues. Biochem. J. 1966;99:667–676. doi: 10.1042/bj0990667. PubMed DOI PMC

Beutler E. A Manual of Biochemical Methods. Grunef Strottan; New York, NY, USA: 1975. Glutathione in Red Blood Cell Metabolism; pp. 112–114.

Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta. 1978;90:37–43. PubMed

Yagi K. Assay for blood plasma or serum. Methods Enzymol. 1984;105:328–331. PubMed

McCord J.M., Fridovich I. The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem. 1969;244:6056–6063. PubMed

Nishikimi M., Appaji N., Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972;46:849–854. doi: 10.1016/S0006-291X(72)80218-3. PubMed DOI

Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI

Brown M.W., Watkinson J.H. Automated fluorometric method for determination of nanogram quantities of Se. Anal. Chim. Acta. 1977;89:29–35. doi: 10.1016/S0003-2670(01)83067-1. DOI

Beilstein M.A., Whanger P.D. Deposition of dietary organic and inorganic selenium in rat erythrocyte proteins. J. Nutr. 1986;116:1701–1710. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...