Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29343791
PubMed Central
PMC5772564
DOI
10.1038/s41598-018-19402-1
PII: 10.1038/s41598-018-19402-1
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- CRISPR-Cas Systems MeSH
- Gene Editing methods MeSH
- Fermentation MeSH
- Genetic Engineering methods MeSH
- Genome, Bacterial * MeSH
- Immunoglobulin G genetics metabolism MeSH
- Cloning, Molecular MeSH
- Lactococcus lactis genetics metabolism MeSH
- Humans MeSH
- Methyltransferases genetics metabolism MeSH
- Nisin pharmacology MeSH
- Plasmids chemistry metabolism MeSH
- Promoter Regions, Genetic drug effects MeSH
- Heat-Shock Proteins genetics metabolism MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Transgenes * MeSH
- RNA, Guide, CRISPR-Cas Systems genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- DARPin E2 79 MeSH Browser
- Immunoglobulin G MeSH
- Methyltransferases MeSH
- Nisin MeSH
- Heat-Shock Proteins MeSH
- Recombinant Fusion Proteins MeSH
- RNA, Guide, CRISPR-Cas Systems MeSH
Lactococcus lactis is a food-grade lactic acid bacterium that is used in the dairy industry as a cell factory and as a host for recombinant protein expression. The nisin-controlled inducible expression (NICE) system is frequently applied in L. lactis; however new tools for its genetic modification are highly desirable. In this work NICE was adapted for dual protein expression. Plasmid pNZDual, that contains two nisin promoters and multiple cloning sites (MCSs), and pNZPolycist, that contains a single nisin promoter and two MCSs separated by the ribosome binding site, were constructed. Genes for the infrared fluorescent protein and for the human IgG-binding DARPin were cloned in all possible combinations to assess the protein yield. The dual promoter plasmid pNZDual enabled balanced expression of the two model proteins. It was exploited for the development of a single-plasmid inducible CRISPR-Cas9 system (pNZCRISPR) by using a nisin promoter, first to drive Cas9 expression and, secondly, to drive single guide RNA transcription. sgRNAs against htrA and ermR directed Cas9 against genomic or plasmid DNA and caused changes in bacterial growth and survival. Replacing Cas9 by dCas9 enabled CRISPR interference-mediated silencing of the upp gene. The present study introduces a new series of plasmids for advanced genetic modification of lactic acid bacterium L. lactis.
Department of Biotechnology Jožef Stefan Institute Jamova 39 SI 1000 Ljubljana Slovenia
Faculty of Pharmacy Charles University Prague 500 05 Hradec Králové Czech Republic
Faculty of Pharmacy University of Ljubljana Aškerčeva 7 SI 1000 Ljubljana Slovenia
See more in PubMed
Laroute, V. et al. From genome to phenotype: An integrative approach to evaluate the biodiversity of Lactococcus lactis. Microorganisms5, doi:10.3390/microorganisms5020027 (2017). PubMed PMC
Song AA, In LL, Lim SH, Rahim RA. A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 2017;16:55. doi: 10.1186/s12934-017-0669-x. PubMed DOI PMC
Ballal SA, et al. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. P. Natl. Acad. Sci. USA. 2015;112:7803–7808. doi: 10.1073/pnas.1501897112. PubMed DOI PMC
Berlec A, Ravnikar M, Strukelj B. Lactic acid bacteria as oral delivery systems for biomolecules. Die Pharmazie. 2012;67:891–898. PubMed
de Ruyter PG, Kuipers OP, de Vos WM. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microb. 1996;62:3662–3667. PubMed PMC
Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotechnol. 1998;64:15–21. doi: 10.1016/S0168-1656(98)00100-X. DOI
Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 2005;68:705–717. doi: 10.1007/s00253-005-0107-6. PubMed DOI
Chen H, Huang R, Zhang YP. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3) Appl. Microbiol. Biotechnol. 2017;101:4481–4493. doi: 10.1007/s00253-017-8206-8. PubMed DOI
Kim KJ, et al. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Sci. 2004;13:1698–1703. doi: 10.1110/ps.04644504. PubMed DOI PMC
Tan S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expres. Purif. 2001;21:224–234. doi: 10.1006/prep.2000.1363. PubMed DOI
Tolia NH, Joshua-Tor L. Strategies for protein coexpression in Escherichia coli. Nat. Methods. 2006;3:55–64. doi: 10.1038/nmeth0106-55. PubMed DOI
Barrangou R, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. doi: 10.1126/science.1138140. PubMed DOI
Choi KR, Lee SY. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnol. Adv. 2016;34:1180–1209. doi: 10.1016/j.biotechadv.2016.08.002. PubMed DOI
Selle K, Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol. 2015;23:225–232. doi: 10.1016/j.tim.2015.01.008. PubMed DOI
Jakociunas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 2016;34:44–59. doi: 10.1016/j.ymben.2015.12.003. PubMed DOI
Luo ML, Leenay RT, Beisel CL. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol. Bioeng. 2016;113:930–943. doi: 10.1002/bit.25851. PubMed DOI PMC
Schwartz C, Frogue K, Ramesh A, Misa J, Wheeldon I. CRISPRi repression of nonhomologous end-joining for enhanced genome engineering via homologous recombination in Yarrowia lipolytica. Biotechnol. Bioeng. 2017;114:2896–2906. doi: 10.1002/bit.26404. PubMed DOI
Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 2015;4:723–728. doi: 10.1021/sb500351f. PubMed DOI PMC
Wu, M. Y., Sung, L. Y., Li, H., Huang, C. H. & Hu, Y. C. Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDOBiosynthesis. ACS Synth. Biol., doi:10.1021/acssynbio.7b00251 (2017). PubMed
Oh JH, van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131. doi: 10.1093/nar/gku623. PubMed DOI PMC
Lemay, M. L., Tremblay, D. M. & Moineau, S. Genome engineering of virulent lactococcal phages using CRISPR-Cas9. ACS Synth. Biol., doi:10.1021/acssynbio.6b00388 (2017). PubMed
Filonov GS, et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2011;29:757–761. doi: 10.1038/nbt.1918. PubMed DOI PMC
Steiner D, Forrer P, Pluckthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J. Mol. Biol. 2008;382:1211–1227. doi: 10.1016/j.jmb.2008.07.085. PubMed DOI
Zadravec P, Strukelj B, Berlec A. Improvement of LysM-mediated surface display of designed ankyrin repeat proteins (DARPins) in recombinant and nonrecombinant strains of Lactococcus lactis and Lactobacillus Species. Appl. Environ. Microbiol. 2015;81:2098–2106. doi: 10.1128/AEM.03694-14. PubMed DOI PMC
de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 1996;178:3434–3439. doi: 10.1128/jb.178.12.3434-3439.1996. PubMed DOI PMC
Perez-Arellano I, Zuniga M, Perez-Martinez G. Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid. 2001;46:106–116. doi: 10.1006/plas.2001.1531. PubMed DOI
Berlec A, Zavrsnik J, Butinar M, Turk B, Strukelj B. In vivo imaging of Lactococcus lactis, Lactobacillus plantarum and Escherichia coli expressing infrared fluorescent protein in mice. Microb. Cell Fact. 2015;14:181. doi: 10.1186/s12934-015-0376-4. PubMed DOI PMC
Dieye Y, Usai S, Clier F, Gruss A, Piard JC. Design of a protein-targeting system for lactic acid bacteria. J. Bacteriol. 2001;183:4157–4166. doi: 10.1128/JB.183.14.4157-4166.2001. PubMed DOI PMC
Steen A, et al. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 2003;278:23874–23881. doi: 10.1074/jbc.M211055200. PubMed DOI
Skrlec K, Strukelj B, Berlec A. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol. 2015;33:408–418. doi: 10.1016/j.tibtech.2015.03.012. PubMed DOI
Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Li B, Qiu Y, Shi H, Yin H. The importance of lag time extension in determining bacterial resistance to antibiotics. The Analyst. 2016;141:3059–3067. doi: 10.1039/C5AN02649K. PubMed DOI
Qi LS, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–1183. doi: 10.1016/j.cell.2013.02.022. PubMed DOI PMC
Martinussen J, Hammer K. Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology. 1995;141(Pt 8):1883–1890. doi: 10.1099/13500872-141-8-1883. PubMed DOI
Song L, et al. Construction of upp deletion mutant strains of Lactobacillus casei and Lactococcus lactis based on counterselective system using temperature-sensitive plasmid. J. Microbiol. Meth. 2014;102:37–44. doi: 10.1016/j.mimet.2014.04.011. PubMed DOI
Kimmel SA, Roberts RF. Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. Int. J. Food Microbiol. 1998;40:87–92. doi: 10.1016/S0168-1605(98)00023-3. PubMed DOI
Xu T, et al. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 2015;81:4423–4431. doi: 10.1128/AEM.00873-15. PubMed DOI PMC
Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994;23:277–294. doi: 10.1016/0168-1605(94)90157-0. PubMed DOI
Herigstad B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. J. Microbiol. Meth. 2001;44:121–129. doi: 10.1016/S0167-7012(00)00241-4. PubMed DOI
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. doi: 10.1186/gb-2007-8-2-r19. PubMed DOI PMC