Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29534071
PubMed Central
PMC5849306
DOI
10.1371/journal.pone.0193116
PII: PONE-D-17-35847
Knihovny.cz E-resources
- MeSH
- Adsorption MeSH
- Anthracyclines chemistry MeSH
- Catalysis MeSH
- Mitoxantrone chemistry MeSH
- Nanoparticles chemistry MeSH
- Oxides chemistry MeSH
- Manganese Compounds chemistry MeSH
- Titanium chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anthracyclines MeSH
- manganese dioxide MeSH Browser
- Mitoxantrone MeSH
- Oxides MeSH
- Manganese Compounds MeSH
- Titanium MeSH
- titanium dioxide MeSH Browser
Nanostructured titanium(IV) oxide was used for the destructive adsorption and photocatalytic degradation of mitoxantrone (MTX), a cytostatic drug from the group of anthracycline antibiotics. During adsorption on a titania dioxide surface, four degradation products of MTX, mitoxantrone dicarboxylic acid, 1,4-dihydroxy-5-((2-((2-hydroxyethyl)amino)ethyl)amino)-8-((2-(methylamino)ethyl)amino)anthracene-9,10-dione, 1,4-dihydroxy-5,8-diiminoanthracene-9,10(5H,8H)-dione and 1,4-dihydroxy-5-imino-8-(methyleneamino)anthracene-9,10(5H,8H)-dione, were identified. In the case of photocatalytic degradation, only one degradation product after 15 min at m/z 472 was identified. This degradation product corresponded to mitoxantrone dicarboxylic acid, and complete mineralization was attained in one hour. Destructive adsorbent manganese(IV) oxide, MnO2, was used only for the destructive adsorption of MTX. Destructive adsorption occurred only for one degradation product, mitoxantrone dicarboxylic acid, against anatase TiO2.
Department of Material Chemistry Institute of Inorganic Chemistry ASCR Husinec Rez Czech Republic
Department of Oncology 1st Faculty of Medicine Charles University Prague Czech Republic
Faculty of Environment J E Purkyně University in Ústí nad Labem Czech Republic
See more in PubMed
Gomez-Canela C, Campos B, Barata C, Lacorte S. Degradation and toxicity of mitoxantrone and chlorambucil in water. International Journal of Environmental Science and Technology. 2015;12(2):633–40.
Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ. VX, GD, and HD reactions with nanosize CaO. Abstracts of Papers of the American Chemical Society. 2000;219:U549–U.
Wagner GW, Bartram PW, Koper O, Klabunde KJ. Reactions of VX, GD, and HD with nanosize MgO. Journal of Physical Chemistry B. 1999;103(16):3225–8.
Stengl V, Bakardjieva S, Marikova M, Subrt J, Oplustil F, Olsanska M. Aerogel nanoscale magnesium oxides as a destructive sorbent for toxic chemical agents. Central European Journal of Chemistry. 2004;2(1):16–33.
Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, et al. Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. Journal of the American Chemical Society. 2001;123(8):1636–44. PubMed
Stengl V, Marikova M, Bakardjieva S, Subrt J, Oplustil F, Olsanska M. Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. Journal of Chemical Technology and Biotechnology. 2005;80(7):754–8.
Stenglova Netikova IR, Slusna M, Tolasz J, St’astny M, Popelka S, Stengl V. A new possible way of anthracycline cytostatics decontamination. New Journal of Chemistry. 2017;41(10):3975–85.
Stengl V, Subrt J, Bezdicka P, Marikova M, Bakardjieva S. Homogeneous precipitation with urea—An easy process for making spherical hydrous metal oxides. In: Sajgalik P, Drabik M, Varga S, eds. Solid State Chemistry V 2003, p. 121–6.
Stengl V, Kralova D, Oplustil F, Nemec T. Mesoporous manganese oxide for warfare agents degradation. Microporous and Mesoporous Materials. 2012;156:224–32.
St’astny M, Stengl V, Henych J, Tolasz J, Vomacka P, Ederer J. Mesoporous manganese oxide for the degradation of organophosphates pesticides. Journal of Materials Science. 2016;51(5):2634–42.
Stengl V, Houskova V, Bakardjieva S, Murafa N, Havlin V. Optically Transparent Titanium Dioxide Particles Incorporated in Poly(hydroxyethyl methacrylate) Thin Layers. Journal of Physical Chemistry C. 2008;112(50):19979–85.
Stengl V, Bakardjieva S, Murafa N, Subrt J, Mest’ankova H, Jirkovsky J. Preparation, characterization and photocatalytic activity of optically transparent titanium dioxide particles. Materials Chemistry and Physics. 2007;105(1):38–46.
Stengl V, Houskova V, Bakardjieva S, Murafa N. Photocatalytic Activity of Boron-Modified Titania under UV and Visible-Light Illumination. Acs Applied Materials & Interfaces. 2010;2(2):575–80. PubMed
Stengl V, Matys Grygar T, Henych J, Kormunda M. Hydrogen peroxide route to Sn-doped titania photocatalysts. Chemistry Central Journal. 2012;6. PubMed PMC
Ehninger G, Schuler U, Proksch B, Zeller KP, Blanz J. PHARMACOKINETICS AND METABOLISM OF MITOXANTRONE—A REVIEW. Clinical Pharmacokinetics. 1990;18(5):365–80. PubMed
Bruck TB, Bruck DW. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase. Biochimie. 2011;93(2):217–26. doi: 10.1016/j.biochi.2010.09.015 PubMed DOI
P. Scherrer, Gottinger Nachrichte 2 (1918) 98.
De Leoz MLA, Chua MT, Endoma-Arias MAA, Concepcion GP, Cruz LJ. A Modified Procedure for the Preparation of Mitoxantrone. Philipp J Sci. 2006;135(2):83–92.
Henych J., Janoš P., Kormunda M., Tolasz J., Štengl V., Reactive adsorption of toxic organophosphates Parathion methyl and DMMP on nanostructured Ti/Ce oxides and their composites, Arab. J. Chem. (2016) 0–11. doi: 10.1016/j.arabjc.2016.06.002 DOI
Rentsch KM, Schwendener RA, Pestalozzi BC, Sauter C, Wunderli-Allenspach H, Hänseler E. Pharmacokinetic studies of mitoxantrone and one of its metabolites in serum and urine in patients with advanced breast cancer, Eur. J. Clin. Pharmacol. 54 (1998) 83–89 PubMed
Kosjek T, Heath E. Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. Trac-Trends in Analytical Chemistry. 2011;30(7):1065–87.
Gómez-Canela C., Campos B., Barata C., Lacorte S., Degradation and toxicity of mitoxantrone and chlorambucil in water, Int. J. Environ. Sci. Technol. 12 (2013) 633–640. doi: 10.1007/s13762-013-0454-2 DOI
Chatterjee D, Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C-Photochemistry Reviews. 2005;6(2–3):186–205.
Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations—A review. Applied Catalysis B-Environmental. 2004;49(1):1–14.
Stengl V, Henych J, Vomacka P, Slusna M. Doping of TiO2-GO and TiO2-rGO with Noble Metals: Synthesis, Characterization and Photocatalytic Performance for Azo Dye Discoloration. Photochemistry and Photobiology. 2013;89(5):1038–46. doi: 10.1111/php.12139 PubMed DOI
Stengl V, Matys Grygar T, Bludska J, Oplustil F, Nemec T. Mesoporous iron-manganese oxides for sulphur mustard and soman degradation. Materials Research Bulletin. 2012;47(12):4291–9.
Gauthier M. A., Stangel I., Ellis T. H., Zhu X. X., A new method for quantifying the intensity of the C = C band of dimethacrylate dental monomers in their FTIR and Raman spectra, Biomaterials, vol. 26, no. 33, pp. 6440–6448, 2005 PubMed
Finocchio E., Busca G., Lorenzelli V., Willey R. J., The activation of hydrocarbon C-H Bonds over transition metal oxide catalysts: A FTIR study of hydrocarbon catalytic combustion over MgCr2O4, J. Catal., vol. 151, no. 1, pp. 204–215, 1995
Anderle G., Mendelsohn R., Thermal denaturation of globular proteins. Fourier transform-infrared studies of the amide III spectral region, Biophys. J., vol. 52, no. 1, pp. 69–74, 1987 PubMed PMC
Foerstendorf H., Benda C., Gärtner W., Storf M., Scheer H., Siebert F., FTIR studies of phytochrome photoreactions reveal the C = O bands of the chromophore: Consequences for its protonation states, conformation, and protein interaction, Biochemistry, vol. 40, no. 49, pp. 14952–14959, 2001 PubMed
Gorce J.P., Spells S.J., Structural information from progression bands in the FTIR spectra of long-chain n-alkanes, Polymer (Guildf). 43 (2002) 4043–4046. doi: 10.1016/S0032-3861(02)00169-6 DOI