Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29614718
PubMed Central
PMC5923459
DOI
10.3390/v10040165
PII: v10040165
Knihovny.cz E-zdroje
- Klíčová slova
- capsid proteins, importin β1, mouse polyomavirus, nuclear localization signal, trafficking into the nucleus,
- MeSH
- biologický transport MeSH
- buněčné jádro MeSH
- buněčné linie MeSH
- DNA virů metabolismus MeSH
- fluorescenční protilátková technika MeSH
- jaderné lokalizační signály genetika MeSH
- karyoferiny metabolismus MeSH
- mutace MeSH
- myši MeSH
- polyomavirové infekce metabolismus virologie MeSH
- Polyomavirus fyziologie ultrastruktura MeSH
- sestavení viru MeSH
- substituce aminokyselin MeSH
- vazba proteinů MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA virů MeSH
- jaderné lokalizační signály MeSH
- karyoferiny MeSH
- virové plášťové proteiny MeSH
The mechanism used by mouse polyomavirus (MPyV) overcomes the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.
Zobrazit více v PubMed
Buck C.B., Van Doorslaer K., Peretti A., Geoghegan E.M., Tisza M.J., An P., Katz J.P., Pipas J.M., McBride A.A., Camus A.C., et al. The ancient evolutionary history of Polyomaviruses. PLoS Pathog. 2016;12:e1005574. doi: 10.1371/journal.ppat.1005574. PubMed DOI PMC
Klug A. Structure of viruses of the papilloma-polyoma type. II. Comments on other work. J. Mol. Biol. 1965;11:424–431. doi: 10.1016/S0022-2836(65)80067-5. PubMed DOI
Chen X.S., Stehle T., Harrison S.C. Interaction of Polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J. 1998;17:3233–3240. doi: 10.1093/emboj/17.12.3233. PubMed DOI PMC
Barouch D., Harrison S. Interactions among the major and minor coat proteins of polyomavirus. J. Virol. 1994;68:3982–3989. PubMed PMC
Lin W., Hata T., Kasamatsu H. Subcellular distribution of viral structural proteins during simian virus 40 infection. J. Virol. 1984;50:363–371. PubMed PMC
Forstova J., Krauzewicz N., Wallace S., Street A., Dilworth S., Beard S., Griffin B. Cooperation of structural proteins during late events in the life cycle of polyomavirus. J. Virol. 1993;67:1405–1413. PubMed PMC
Delos S., Montross L., Moreland R., Garcea R. Expression of the polyomavirus VP2 and VP3 proteins in insect cells: Coexpression with the major capsid protein VP1 alters VP2/VP3 subcellular localization. Virology. 1993;194:393–398. doi: 10.1006/viro.1993.1274. PubMed DOI
Varshavsky A.J., Bakayev V.V., Chumackov P.M., Georgiev G.P. Minichromosome of simian virus 40: Presence of histone HI. Nucleic Acids Res. 1976;3:2101–2113. doi: 10.1093/nar/3.8.2101. PubMed DOI PMC
You J., O’Hara S.D., Velupillai P., Castle S., Levery S., Garcea R.L., Benjamin T. Ganglioside and non-ganglioside mediated host responses to the mouse polyomavirus. PLoS Pathog. 2015;11:e1005175. doi: 10.1371/journal.ppat.1005175. PubMed DOI PMC
Richterová Z., Liebl D., Horák M., Palková Z., Stokrová J., Hozák P., Korb J., Forstová J. Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J. Virol. 2001;75:10880–10891. doi: 10.1128/JVI.75.22.10880-10891.2001. PubMed DOI PMC
Pelkmans L., Kartenbeck J., Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 2001;3:473–483. doi: 10.1038/35074539. PubMed DOI
Drachenberg C.B., Papadimitriou J.C., Wali R., Cubitt C.L., Ramos E. BK polyoma virus allograft nephropathy: Ultrastructural features from viral cell entry to lysis. Am. J. Transpl. 2003;3:1383–1392. doi: 10.1046/j.1600-6135.2003.00237.x. PubMed DOI
Liebl D., Difato F., Horníková L., Mannová P., Stokrová J., Forstová J. Mouse polyomavirus enters early endosomes, requires their acidic PH for productive infection, and meets transferrin cargo in rab11-positive endosomes. J. Virol. 2006;80:4610–4622. doi: 10.1128/JVI.80.9.4610-4622.2006. PubMed DOI PMC
Qian M., Cai D., Verhey K.J., Tsai B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 2009;5:e1000465. doi: 10.1371/journal.ppat.1000465. PubMed DOI PMC
Maul G.G., Rovera G., Vorbrodt A., Abramczuk J. Membrane fusion as a mechanism of simian virus 40 entry into different cellular compartments. J. Virol. 1978;28:936–944. PubMed PMC
Mackay R.L., Consigli R.A. Early events in polyoma virus infection: Attachment, penetration, and nuclear entry. J. Virol. 1976;19:620–636. PubMed PMC
Butin-Israeli V., Ben-nun-Shaul O., Kopatz I., Adam S.A., Shimi T., Goldman R.D., Oppenheim A. Simian virus 40 induces lamin a/c fluctuations and nuclear envelope deformation during cell entry. Nucleus. 2011;2:320–330. doi: 10.4161/nucl.2.4.16371. PubMed DOI PMC
Nakanishi A., Li P.P., Qu Q., Jafri Q.H., Kasamatsu H. Molecular dissection of nuclear entry-competent SV40 during infection. Virus Res. 2007;124:226–230. doi: 10.1016/j.virusres.2006.10.001. PubMed DOI PMC
Qu Q., Sawa H., Suzuki T., Semba S., Henmi C., Okada Y., Tsuda M., Tanaka S., Atwood W.J., Nagashima K. Nuclear entry mechanism of the human polyomavirus JC virus-like particle: Role of importins and the nuclear pore complex. J. Biol. Chem. 2004;279:27735–27742. doi: 10.1074/jbc.M310827200. PubMed DOI
Bennett S.M., Zhao L., Bosard C., Imperiale M.J. Role of a nuclear localization signal on the minor capsid proteins VP2 and VP3 in BKPyV nuclear entry. Virology. 2015;474:110–116. doi: 10.1016/j.virol.2014.10.013. PubMed DOI PMC
Magnuson B., Rainey E.K., Benjamin T., Baryshev M., Mkrtchian S., Tsai B. ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol. Cell. 2005;20:289–300. doi: 10.1016/j.molcel.2005.08.034. PubMed DOI
Rainey-Barger E.K., Magnuson B., Tsai B. A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J. Virol. 2007;81:12996–13004. doi: 10.1128/JVI.01037-07. PubMed DOI PMC
Geiger R., Andritschke D., Friebe S., Herzog F., Luisoni S., Heger T., Helenius A. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. 2011;13:1305–1314. doi: 10.1038/ncb2339. PubMed DOI
Kuksin D., Norkin L.C. Disassociation of the SV40 genome from capsid proteins prior to nuclear entry. Virol. J. 2012;9:158. doi: 10.1186/1743-422X-9-158. PubMed DOI PMC
Huérfano S., Ryabchenko B., Španielová H., Forstová J. Hydrophobic domains of mouse polyomavirus minor capsid proteins promote membrane association and virus exit from the ER. FEBS J. 2017;284:883–902. doi: 10.1111/febs.14033. PubMed DOI
Inoue T., Dosey A., Herbstman J.F., Ravindran M.S., Skiniotis G., Tsai B. Erdj5 reductase cooperates with protein disulfide isomerase to promote simian virus 40 endoplasmic reticulum membrane translocation. J. Virol. 2015;89:8897–8908. doi: 10.1128/JVI.00941-15. PubMed DOI PMC
Schelhaas M., Malmström J., Pelkmans L., Haugstetter J., Ellgaard L., Grünewald K., Helenius A. Simian virus 40 depends on ERprotein folding and quality control factors for entry into host cells. Cell. 2007;131:516–529. doi: 10.1016/j.cell.2007.09.038. PubMed DOI
Inoue T., Tsai B. A large and intact viral particle penetrates the endoplasmic reticulum membrane to reach the cytosol. PLoS Pathog. 2011;7:e1002037. doi: 10.1371/journal.ppat.1002037. PubMed DOI PMC
Chook Y.M., Blobel G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 2001;11:703–715. doi: 10.1016/S0959-440X(01)00264-0. PubMed DOI
Ishii N., Nakanishi A., Yamada M., Macalalad M.H., Kasamatsu H. Functional complementation of nuclear targeting-defective mutants of simian virus 40 structural proteins. J. Virol. 1994;68:8209–8216. PubMed PMC
Chang D., Haynes J.I., Brady J.N., Consigli R.A. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2. Virology. 1992;191:978–983. doi: 10.1016/0042-6822(92)90276-U. PubMed DOI
Chang D., Haynes J.I., Brady J.N., Consigli R.A. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals. Trans. Kans. Acad. Sci. 1993;96:35–39. doi: 10.2307/3628312. PubMed DOI
Nakanishi A., Shum D., Morioka H., Otsuka E., Kasamatsu H. Interaction of the VP3 nuclear localization signal with the importin α 2/β heterodimer directs nuclear entry of infecting simian virus 40. J. Virol. 2002;76:9368–9377. doi: 10.1128/JVI.76.18.9368-9377.2002. PubMed DOI PMC
Horníková L., Žíla V., Španielová H., Forstová J. Mouse polyomavirus: Propagation, purification, quantification, and storage. Curr. Protoc. Microbiol. 2015;38:14F.1.1–14F.1.26. doi: 10.1002/9780471729259.mc14f01s38. PubMed DOI
Brameier M., Krings A., MacCallum R.M. Nucpred-predicting nuclear localization of proteins. Bioinformatics. 2007;23:1159–1160. doi: 10.1093/bioinformatics/btm066. PubMed DOI
Orlando S.J., Nabavi M., Gharakhanian E. Rapid small-scale isolation of SV40 virions and SV40 DNA. J. Virol. Methods. 2000;90:109–114. doi: 10.1016/S0166-0934(00)00176-2. PubMed DOI
Horníková L., Man P., Forstová J. Blue native protein electrophoresis for studies of mouse polyomavirus morphogenesis and interactions between the major capsid protein VP1 and cellular proteins. J. Virol. Methods. 2011;178:1–2. doi: 10.1016/j.jviromet.2011.08.019. PubMed DOI
Huerfano S., Ryabchenko B., Forstová J. Nucleofection of expression vectors induces a robust interferon response and inhibition of cell proliferation. DNA Cell Biol. 2013;32:467–479. doi: 10.1089/dna.2012.1950. PubMed DOI PMC
Koos B., Andersson L., Clausson C.M., Grannas K., Klaesson A., Cane G., Söderberg O. Analysis of protein interactions in situ by proximity ligation assays. Curr. Top. Microbiol. Immunol. 2014;377:111–126. doi: 10.1007/82_2013_334. PubMed DOI
Chen T.C., Huang C.Y. Use of in situ proximity ligation assays for systems analysis of signaling pathways. Curr. Protoc. Cell Biol. 2016;71 doi: 10.1002/cpcb.1. PubMed DOI
Chang D., Haynes J.I., Brady J.N., Consigli R.A. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1. Virology. 1992;189:821–827. doi: 10.1016/0042-6822(92)90615-V. PubMed DOI
Soeda E., Arrand J.R., Griffin B.E. Polyoma virus DNA: Complete nucleotide sequence of the gene which codes for polyoma virus capsid protein VP1 and overlaps the VP2/VP3 genes. J. Virol. 1980;33:619–630. PubMed PMC
Huerfano S., Zíla V., Boura E., Spanielová H., Stokrová J., Forstová J. Minor capsid proteins of mouse polyomavirus are inducers of apoptosis when produced individually but are only moderate contributors to cell death during the late phase of viral infection. FEBS J. 2010;277:1270–1283. doi: 10.1111/j.1742-4658.2010.07558.x. PubMed DOI
Mannová P., Forstová J. Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J. Virol. 2003;77:1672–1681. doi: 10.1128/JVI.77.3.1672-1681.2003. PubMed DOI PMC
Chen L., Fluck M. Kinetic analysis of the steps of the polyomavirus lytic cycle. J. Virol. 2001;75:8368–8379. doi: 10.1128/JVI.75.18.8368-8379.2001. PubMed DOI PMC
Zila V., Difato F., Klimova L., Huerfano S., Forstova J. Involvement of microtubular network and its motors in productive endocytic trafficking of mouse polyomavirus. PLoS ONE. 2014;9:e96922. doi: 10.1371/journal.pone.0096922. PubMed DOI PMC
Wang I.H., Suomalainen M., Andriasyan V., Kilcher S., Mercer J., Neef A., Luedtke N.W., Greber U.F. Tracking viral genomes in host cells at single-molecule resolution. Cell Host Microbe. 2013;14:468–480. doi: 10.1016/j.chom.2013.09.004. PubMed DOI
Flatt J.W., Greber U.F. Misdelivery at the Nuclear Pore Complex-Stopping a Virus Dead in Its Tracks. Cells. 2015;28:277–296. doi: 10.3390/cells4030277. PubMed DOI PMC
Hornikova L. (Charles University, Prague, Czech Republic). The data when we analyzed by confocal microscopy the subcellular localization of the BK minor proteins. 2017.
Schowalter R.M., Buck C.B. The merkel cell polyomavirus minor capsid protein. PLoS Pathog. 2013;9:e1003558. doi: 10.1371/journal.ppat.1003558. PubMed DOI PMC
Mason D.A., Stage D.E., Goldfarb D.S. Evolution of the metazoan-specific importin α gene family. J. Mol. Evol. 2009;68:351–365. doi: 10.1007/s00239-009-9215-8. PubMed DOI
Pumroy R.A., Cingolani G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 2015;466:13–28. doi: 10.1042/BJ20141186. PubMed DOI PMC
Köhler M., Speck C., Christiansen M., Bischoff F.R., Prehn S., Haller H., Görlich D., Hartmann E. Evidence for distinct substrate specificities of importin α family members in nuclear protein import. Mol. Cell Biol. 1999;19:7782–7791. doi: 10.1128/MCB.19.11.7782. PubMed DOI PMC
Sankhala R.S., Lokareddy R.K., Begum S., Pumroy R.A., Gillilan R.E., Cingolani G. Three-dimensional context rather than NLS amino acid sequence determines importin α subtype specificity for RCC1. Nat. Commun. 2017;8:979. doi: 10.1038/s41467-017-01057-7. PubMed DOI PMC
Mouse polyomavirus infection induces lamin reorganisation
The Interplay between Viruses and Host DNA Sensors
Nuclear Cytoskeleton in Virus Infection
Immune sensing of mouse polyomavirus DNA by p204 and cGAS DNA sensors