Molecular characterization of serogroup 19 Streptococcus pneumoniae in the Czech Republic in the post-vaccine era
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
29856703
PubMed Central
PMC6152367
DOI
10.1099/jmm.0.000765
Knihovny.cz E-zdroje
- Klíčová slova
- MLST, Streptoccoccus pneumoniae, WGS,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- bakteriální léková rezistence MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- genotyp MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- molekulární typizace * MeSH
- pneumokokové infekce epidemiologie mikrobiologie prevence a kontrola MeSH
- pneumokokové vakcíny aplikace a dávkování imunologie MeSH
- předškolní dítě MeSH
- sekvenování celého genomu MeSH
- senioři MeSH
- séroskupina * MeSH
- Streptococcus pneumoniae klasifikace účinky léků genetika izolace a purifikace MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antibakteriální látky MeSH
- pneumokokové vakcíny MeSH
Purpose. The aim of this study was to characterize serogroup 19 isolates resistant to macrolides and/or penicillin found among pneumococci recovered from cases of invasive and respiratory tract disease in the Czech Republic in 2014.Methods. Pneumococcal isolates of serotypes 19A (n=26) and 19F (n=10) that were non-susceptible to penicillin and/or macrolides and had been collected in 2014 were analysed using multi-locus sequence typing (MLST). Four isolates representing the major clones were subjected to whole-genome sequencing (WGS).Results. The penicillin-susceptible macrolide-resistant isolates of serotype 19A were mainly associated with sequence type (ST) 416 belonging to clonal complex (CC) 199, and the penicillin-resistant isolates were of serotype 19F belonging to ST1464 (CC 320). WGS revealed the presence of pilus 1, in association with pilus 2, in serotype19F isolates belonging to CC 320. Another adhesin, pneumococcal serine-rich protein (PsrP), was only present in serotype 19A isolates of ST416. Analysis of the penicillin-binding proteins (PBPs) of serotype 19F penicillin-resistant isolates (ST1464 and ST271) performed on PBP1a, 2b and 2x identified a large number of mutations in comparison to the reference strain, R6. Both isolates contained a unique PBP profile; however, they were highly similar to PBP sequences of the Taiwan19F-14 reference strain. The Pbp2b sequences of both 19F isolates showed the lowest similarity to those of the Taiwan19F-14 strain (91 % similarity), while they were also found to be distantly related to each other (94 % similarity).Conclusions. WGS revealed specific virulence factors in antibiotic-resistant pneumococcal clones that spread rapidly in the post-vaccine era in the Czech Republic.
Zobrazit více v PubMed
Obaro S, Adegbola R. The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol. 2002;51:98–104. doi: 10.1099/0022-1317-51-2-98. PubMed DOI
Whitney CG, Farley MM, Hadler J, Harrison LH, Lexau C, et al. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med. 2000;343:1917–1924. doi: 10.1056/NEJM200012283432603. PubMed DOI
Poehling KA, Talbot TR, Griffin MR, Craig AS, Whitney CG, et al. Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA. 2006;295:1668–1674. doi: 10.1001/jama.295.14.1668. PubMed DOI
Lexau CA, Lynfield R, Danila R, Pilishvili T, Facklam R, et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005;294:2043–2051. doi: 10.1001/jama.294.16.2043. PubMed DOI
Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354:1455–1463. doi: 10.1056/NEJMoa051642. PubMed DOI
Huang SS, Hinrichsen VL, Stevenson AE, Rifas-Shiman SL, Kleinman K, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics. 2009;124:e1-11. doi: 10.1542/peds.2008-3099. PubMed DOI PMC
Dagan R. Impact of pneumococcal conjugate vaccine on infections caused by antibiotic-resistant Streptococcus pneumoniae. Clin Microbiol Infect. 2009;15:16–20. doi: 10.1111/j.1469-0691.2009.02726.x. PubMed DOI
Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 2007;3:e168. doi: 10.1371/journal.ppat.0030168. PubMed DOI PMC
Moore MR, Gertz RE, Woodbury RL, Barkocy-Gallagher GA, Schaffner W, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197:1016–1027. doi: 10.1086/528996. PubMed DOI
Pillai DR, Shahinas D, Buzina A, Pollock RA, Lau R, et al. Genome-wide dissection of globally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. BMC Genomics. 2009;10:642. doi: 10.1186/1471-2164-10-642. PubMed DOI PMC
Shi ZY, Enright MC, Wilkinson P, Griffiths D, Spratt BG. Identification of three major clones of multiply antibiotic-resistant Streptococcus pneumoniae in Taiwanese hospitals by multilocus sequence typing. J Clin Microbiol. 1998;36:3514–3519. PubMed PMC
Song JH, Dagan R, Klugman KP, Fritzell B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine. 2012;30:2728–2737. doi: 10.1016/j.vaccine.2012.01.091. PubMed DOI
Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L, et al. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol Evol. 2014;6:1589–1602. doi: 10.1093/gbe/evu120. PubMed DOI PMC
Beall BW, Gertz RE, Hulkower RL, Whitney CG, Moore MR, et al. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:1360–1368. doi: 10.1093/infdis/jir052. PubMed DOI PMC
Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, et al. Variable recombination dynamics during the emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12:49. doi: 10.1186/1741-7007-12-49. PubMed DOI PMC
Hulten KG, Kaplan SL, Lamberth LB, Barson WJ, Romero JR, et al. Changes in Streptococcus pneumoniae serotype 19A invasive infections in children from 1993 to 2011. J Clin Microbiol. 2013;51:1294–1297. doi: 10.1128/JCM.00058-13. PubMed DOI PMC
Fenoll A, Granizo JJ, Giménez MJ, Yuste J, Aguilar L. Secular trends (1990–2013) in serotypes and associated non-susceptibility of S. pneumoniae isolates causing invasive disease in the pre-/post-era of pneumococcal conjugate vaccines in Spanish regions without universal paediatric pneumococcal vaccination. Vaccine. 2015;33:5691–5699. doi: 10.1016/j.vaccine.2015.08.009. PubMed DOI
Figueiredo AM, Austrian R, Urbaskova P, Teixeira LA, Tomasz A. Novel penicillin-resistant clones of Streptococcus pneumoniae in the Czech Republic and in Slovakia. Microb Drug Resist. 1995;1:71–78. doi: 10.1089/mdr.1995.1.71. PubMed DOI
Zemlickova H, Urbaskova P, Jakubu V, Motlova J, Musilek M, et al. Clonal distribution of invasive pneumococci, Czech Republic, 1996-2003. Emerg Infect Dis. 2010;16:287–289. doi: 10.3201/eid1602.080535. PubMed DOI PMC
Zemlicková H, Melter O, Urbásková P. Epidemiological relationships among penicillin non-susceptible Streptococcus pneumoniae strains recovered in the Czech Republic. J Med Microbiol. 2006;55:437–442. doi: 10.1099/jmm.0.46270-0. PubMed DOI
Vančíková Z, Trojánek M, Zemličková H, Blechová Z, Motlová J, et al. Pneumococcal urinary antigen positivity in healthy colonized children: is it age dependent? Wien Klin Wochenschr. 2013;125:495–500. doi: 10.1007/s00508-013-0405-4. PubMed DOI
Sørensen UB. Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol. 1993;31:2097–2100. PubMed PMC
European Committee on Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:1–7. PubMed
Farrell DJ, Morrissey I, Bakker S, Felmingham D. Detection of macrolide resistance mechanisms in Streptococcus pneumoniae and Streptococcus pyogenes using a multiplex rapid cycle PCR with microwell-format probe hybridization. J Antimicrob Chemother. 2001;48:541–544. doi: 10.1093/jac/48.4.541. PubMed DOI
Lina G, Quaglia A, Reverdy ME, Leclercq R, Vandenesch F, et al. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob Agents Chemother. 1999;43:1062–1066. PubMed PMC
Doherty N, Trzcinski K, Pickerill P, Zawadzki P, Dowson CG. Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:2979–2984. doi: 10.1128/AAC.44.11.2979-2984.2000. PubMed DOI PMC
Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998;144:3049–3060. doi: 10.1099/00221287-144-11-3049. PubMed DOI
Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ, et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 2014;6:90. doi: 10.1186/s13073-014-0090-6. PubMed DOI PMC
Kapatai G, Sheppard CL, Al-Shahib A, Litt DJ, Underwood AP, et al. Whole genome sequencing of Streptococcus pneumoniae: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ. 2016;4:e2477. doi: 10.7717/peerj.2477. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Sui Z, Zhou W, Yao K, Liu L, Zhang G, et al. Complete genome sequence of Streptococcus pneumoniae strain A026, a clinical multidrug-resistant isolate carrying Tn2010. Genome Announc. 2013;1:e01034-13. doi: 10.1128/genomeA.01034-13. PubMed DOI PMC
Contreras-Martel C, Dahout-Gonzalez C, Martins AS, Kotnik M, Dessen A. PBP active site flexibility as the key mechanism for β-lactam resistance in pneumococci. J Mol Biol. 2009;387:899–909. doi: 10.1016/j.jmb.2009.02.024. PubMed DOI
Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Mol Oral Microbiol. 2012;27:221–245. doi: 10.1111/j.2041-1014.2012.00655.x. PubMed DOI
Frolet C, Beniazza M, Roux L, Gallet B, Noirclerc-Savoye M, et al. New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol. 2010;10:190. doi: 10.1186/1471-2180-10-190. PubMed DOI PMC
Selva L, Ciruela P, Blanchette K, del Amo E, Pallares R, et al. Prevalence and clonal distribution of pcpA, psrP and Pilus-1 among pediatric isolates of Streptococcus pneumoniae. PLoS One. 2012;7:e41587. doi: 10.1371/journal.pone.0041587. PubMed DOI PMC
Ip M, Ang I, Liyanapathirana V, Ma H, Lai R. Genetic analyses of penicillin binding protein determinants in multidrug-resistant Streptococcus pneumoniae serogroup 19 CC320/271 clone with high-level resistance to third-generation cephalosporins. Antimicrob Agents Chemother. 2015;59:4040–4045. doi: 10.1128/AAC.00094-15. PubMed DOI PMC
Carapito R, Chesnel L, Vernet T, Zapun A. Pneumococcal β-lactam resistance due to a conformational change in penicillin-binding protein 2x. J Biol Chem. 2006;281:1771–1777. doi: 10.1074/jbc.M511506200. PubMed DOI
Izdebski R, Rutschmann J, Fiett J, Sadowy E, Gniadkowski M, et al. Highly variable penicillin resistance determinants PBP 2x, PBP 2b, and PBP 1a in isolates of two Streptococcus pneumoniae clonal groups, Poland 23F-16 and Poland 6B-20. Antimicrob Agents Chemother. 2008;52:1021–1027. doi: 10.1128/AAC.01082-07. PubMed DOI PMC
Pai R, Moore MR, Pilishvili T, Gertz RE, Whitney CG, et al. Postvaccine genetic structure of Streptococcus pneumoniae serotype 19A from children in the United States. J Infect Dis. 2005;192:1988–1995. doi: 10.1086/498043. PubMed DOI
Del Grosso M, Camilli R, D'Ambrosio F, Petrucci G, Melchiorre S, et al. Increase of pneumococcal serotype 19A in Italy is due to expansion of the piliated clone ST416/CC199. J Med Microbiol. 2013;62:1220–1225. doi: 10.1099/jmm.0.061242-0. PubMed DOI
van der Linden M, Reinert RR, Kern WV, Imöhl M. Epidemiology of serotype 19A isolates from invasive pneumococcal disease in German children. BMC Infect Dis. 2013;13:70. doi: 10.1186/1471-2334-13-70. PubMed DOI PMC
Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev. 2001;65:187–207. doi: 10.1128/MMBR.65.2.187-207.2001. PubMed DOI PMC
Briles DE, Hollingshead S, Brooks-Walter A, Nabors GS, Ferguson L, et al. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine. 2000;18:1707–1711. doi: 10.1016/S0264-410X(99)00511-3. PubMed DOI
Ahmed MS, Derbyshire S, Flanagan B, Loh C, Mccormick M, et al. Immune responses to pneumococcal pilus RrgA and RrgB antigens and their relationship with pneumococcal carriage in humans. J Infect. 2014;68:562–571. doi: 10.1016/j.jinf.2014.01.013. PubMed DOI
Argondizzo APC, Rocha-de-Souza CM, De Almeida Santiago M, Galler R, Reis JN, et al. Pneumococcal predictive proteins selected by microbial genomic approach are serotype cross-reactive and bind to host extracellular matrix proteins. Appl Biochem Biotechnol. 2017;182:1518–1539. doi: 10.1007/s12010-017-2415-6. PubMed DOI
Overweg K, Pericone CD, Verhoef GG, Weiser JN, Meiring HD, et al. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect Immun. 2000;68:4604–4610. doi: 10.1128/IAI.68.8.4604-4610.2000. PubMed DOI PMC
Sjöström K, Blomberg C, Fernebro J, Dagerhamn J, Morfeldt E, et al. Clonal success of piliated penicillin nonsusceptible pneumococci. Proc Natl Acad Sci USA. 2007;104:12907–12912. doi: 10.1073/pnas.0705589104. PubMed DOI PMC
Moschioni M, de Angelis G, Melchiorre S, Masignani V, Leibovitz E, et al. Prevalence of pilus-encoding islets among acute otitis media Streptococcus pneumoniae isolates from Israel. Clin Microbiol Infect. 2010;16:1501–1504. doi: 10.1111/j.1469-0691.2010.03105.x. PubMed DOI
Sadowy E, Kuch A, Gniadkowski M, Hryniewicz W. Expansion and evolution of the Streptococcus pneumoniae Spain9V-ST156 clonal complex in Poland. Antimicrob Agents Chemother. 2010;54:1720–1727. doi: 10.1128/AAC.01340-09. PubMed DOI PMC
Aguiar SI, Serrano I, Pinto FR, Melo-Cristino J, Ramirez M. The presence of the pilus locus is a clonal property among pneumococcal invasive isolates. BMC Microbiol. 2008;8:41. doi: 10.1186/1471-2180-8-41. PubMed DOI PMC
Shivshankar P, Sanchez C, Rose LF, Orihuela CJ. The Streptococcus pneumoniae adhesin PsrP binds to Keratin 10 on lung cells. Mol Microbiol. 2009;73:663–679. doi: 10.1111/j.1365-2958.2009.06796.x. PubMed DOI PMC
Muñoz-Almagro C, Selva L, Sanchez CJ, Esteva C, de Sevilla MF, et al. PsrP, a protective pneumococcal antigen, is highly prevalent in children with pneumonia and is strongly associated with clonal type. Clin Vaccine Immunol. 2010;17:1672–1678. doi: 10.1128/CVI.00271-10. PubMed DOI PMC
Kozakova J, Sebestova H, Krizova P. Invasive pneumococcal disease in the Czech Republic in 2015. Bull Centre Epid Microbiol. 2016;25:100–107.
Enright MC, Spratt BG. Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol. 1999;16:1687–1695. doi: 10.1093/oxfordjournals.molbev.a026082. PubMed DOI
Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother. 1996;40:829–834. PubMed PMC
Reichmann P, König A, Marton A, Hakenbeck R. Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. Microb Drug Resist. 1996;2:177–181. doi: 10.1089/mdr.1996.2.177. PubMed DOI
Hakenbeck R, König A, Kern I, van der Linden M, Keck W, et al. Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol. 1998;180:1831–1840. PubMed PMC
Dowson CG, Coffey TJ, Kell C, Whiley RA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol Microbiol. 1993;9:635–643. doi: 10.1111/j.1365-2958.1993.tb01723.x. PubMed DOI
Sauerbier J, Maurer P, Rieger M, Hakenbeck R. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol. 2012;86:692–706. doi: 10.1111/mmi.12009. PubMed DOI
Ramalingam J, Vennila J, Subbiah P. Computational studies on the resistance of penicillin-binding protein 2B (PBP2B) of wild-type and mutant strains of Streptococcus pneumoniae against β-lactam antibiotics. Chem Biol Drug Des. 2013;82:275–289. doi: 10.1111/j.1747-0285.2012.01387.x. PubMed DOI
Smith AM, Klugman KP. Amino acid mutations essential to production of an altered PBP 2X conferring high-level β-lactam resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2005;49:4622–4627. doi: 10.1128/AAC.49.11.4622-4627.2005. PubMed DOI PMC