Changes in the activity of some metabolic enzymes in the heart of SHR rat incurred by transgenic expression of CD36
Language English Country Spain Media print-electronic
Document type Journal Article
Grant support
1016214
Grantová Agentura, Univerzita Karlova
14-36804
Grantová Agentura České Republiky
SVV-260434/2018
Univerzita Karlova v Praze
PubMed
29916179
DOI
10.1007/s13105-018-0641-1
PII: 10.1007/s13105-018-0641-1
Knihovny.cz E-resources
- Keywords
- CD36, Heart, Left and right ventricles, Mitochondria, OXPHOS, SHR,
- MeSH
- ATP-Binding Cassette Transporters genetics metabolism MeSH
- CD36 Antigens genetics metabolism MeSH
- Gene Expression MeSH
- Hexokinase genetics metabolism MeSH
- Hypertension enzymology genetics physiopathology MeSH
- Insulin Resistance MeSH
- Myocytes, Cardiac enzymology pathology MeSH
- Rats MeSH
- Malate Dehydrogenase genetics metabolism MeSH
- Mitochondria enzymology pathology MeSH
- Oxidative Phosphorylation MeSH
- Rats, Inbred SHR MeSH
- Rats, Transgenic MeSH
- Primary Cell Culture MeSH
- Gene Expression Regulation MeSH
- Oxygen Consumption genetics MeSH
- Heart Ventricles enzymology pathology MeSH
- Succinate Dehydrogenase genetics metabolism MeSH
- Transgenes * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ATP-Binding Cassette Transporters MeSH
- Abcd3 protein, rat MeSH Browser
- CD36 Antigens MeSH
- Hexokinase MeSH
- Malate Dehydrogenase MeSH
- Succinate Dehydrogenase MeSH
Hypertension, dyslipidemia, and insulin resistance in the spontaneously hypertensive rat (SHR) can be alleviated by rescuing CD36 fatty acid translocase. The present study investigated whether transgenic rescue of CD36 in SHR could affect mitochondrial function and activity of selected metabolic enzymes in the heart. These analyses were conducted on ventricular preparations derived from SHR and from transgenic strain SHR-Cd36 that expresses a functional wild-type CD36. Our respirometric measurements revealed that mitochondria isolated from the left ventricles exhibited two times higher respiratory activity than those isolated from the right ventricles. Whereas, we did not observe any significant changes in functioning of the mitochondrial respiratory system between both rat strains, enzyme activities of total hexokinase, and both mitochondrial and total malate dehydrogenase were markedly decreased in the left ventricles of transgenic rats, compared to SHR. We also detected downregulated expression of the succinate dehydrogenase subunit SdhB (complex II) and 70 kDa peroxisomal membrane protein in the left ventricles of SHR-Cd36. These data indicate that CD36 may affect in a unique fashion metabolic substrate flexibility of the left and right ventricles.
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Pflugers Arch. 2013 Oct;465(10):1477-86 PubMed
Cardiology. 2015;130(4):211-20 PubMed
Mol Cell Biol. 2008 Jan;28(2):718-31 PubMed
J Proteomics. 2016 Aug 11;145:177-86 PubMed
J Biol Chem. 1999 Apr 23;274(17):11968-76 PubMed
Cardiovasc Pathol. 2014 Mar-Apr;23(2):101-6 PubMed
Jpn Circ J. 1963 Mar;27:282-93 PubMed
Lancet. 2001 Mar 3;357(9257):686-7 PubMed
Cell Physiol Biochem. 2014;33(2):310-20 PubMed
Arch Cardiovasc Dis. 2017 Oct;110(10):562-571 PubMed
Arch Biochem Biophys. 2007 Nov 15;467(2):234-8 PubMed
PPAR Res. 2015;2015:271983 PubMed
Biochim Biophys Acta. 2016 Oct;1861(10):1442-9 PubMed
Cardiovasc Res. 1995 Aug;30(2):205-11 PubMed
Am J Hypertens. 2000 Oct;13(10):1074-81 PubMed
Physiol Res. 2003;52(6):681-8 PubMed
J Card Fail. 2017 Mar;23(3):240-251 PubMed
Int J Mol Med. 1998 Apr;1(4):709-16 PubMed
Circulation. 2016 Aug 9;134(6):441-50 PubMed
Microvasc Res. 2014 Sep;95:131-42 PubMed
J Am Coll Cardiol. 1992 Jun;19(7):1550-8 PubMed
Nat Genet. 2001 Feb;27(2):156-8 PubMed
Nat Genet. 1999 Jan;21(1):76-83 PubMed
Clin Exp Pharmacol Physiol. 2002 Apr;29(4):339-45 PubMed
Biochimie. 2017 May;136:21-26 PubMed
Int J Mol Med. 2006 Jul;18(1):177-86 PubMed
Physiol Res. 2016 Dec 22;65(Supplementum 5):S601-S609 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
Cardiology. 1993;83(3):160-4 PubMed
Mol Cell Biochem. 2003 Jan;242(1-2):89-99 PubMed
Cardiovasc Res. 2007 Sep 1;75(4):770-81 PubMed
Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1425-36 PubMed
J Clin Invest. 2002 May;109(10):1381-9 PubMed
Biochem Soc Trans. 2005 Feb;33(Pt 1):311-5 PubMed
J Biol Chem. 2004 Aug 27;279(35):36235-41 PubMed
Proteomics. 2006 Mar;6(6):1948-56 PubMed
Biochim Biophys Acta. 2011 Jul;1813(7):1360-72 PubMed
Nat Rev Cardiol. 2017 Apr;14(4):238-250 PubMed
J Cardiovasc Pharmacol. 2010 Aug;56(2):130-40 PubMed
J Proteome Res. 2009 May;8(5):2463-75 PubMed
Nat Genet. 2008 Aug;40(8):952-4 PubMed
Oncogene. 2017 Jul 6;36(27):3915-3924 PubMed
Thromb Haemost. 2015 Mar;113(3):452-63 PubMed
J Hypertens. 2002 Feb;20(2):323-31 PubMed
Physiol Genomics. 2012 Feb 1;44(2):173-82 PubMed
PLoS One. 2012;7(10):e47167 PubMed
Proteomics. 2008 Jun;8(12):2556-72 PubMed
Trends Cardiovasc Med. 2003 May;13(4):136-41 PubMed
J Immunol. 2014 Mar 1;192(5):1997-2006 PubMed
Am J Physiol Heart Circ Physiol. 2001 Oct;281(4):H1561-7 PubMed
Cardiovasc Res. 2011 Aug 1;91(3):382-91 PubMed
Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein