Mitochondrial Glycolysis in a Major Lineage of Eukaryotes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
078566/A/05/Z
Wellcome Trust - United Kingdom
PubMed
30060189
PubMed Central
PMC6198282
DOI
10.1093/gbe/evy164
PII: 5061552
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- Blastocystis cytologie enzymologie genetika metabolismus MeSH
- energetický metabolismus MeSH
- genom mitochondriální MeSH
- glykolýza * MeSH
- mitochondrie genetika metabolismus MeSH
- rozsivky cytologie enzymologie genetika metabolismus MeSH
- symbióza MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
Biosciences University of Exeter United Kingdom
Département de Biochimie Université de Montréal C P 6128 Montréal Quebec Canada
Department of Biochemistry and Molecular Biology Dalhousie University Halifax Canada
Department of Chemistry and Physical Sciences Pace University
Fachbereich Biologie Universität Konstanz Germany
Institut für Genetik Technische Universität Braunschweig
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Institute of Parasitology University of Zürich Switzerland
Rangos Research Center University of Pittsburgh Children's Hospital Pittsburgh PA
School of Biological Sciences University of Bristol United Kingdom
Zobrazit více v PubMed
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS.. 2017. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol. 17(1):241.. PubMed PMC
Adl SM, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol. 59(5):429–493. PubMed PMC
Allen AE, et al. 2008. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci U S A. 105(30):10438–10443. PubMed PMC
Allison DS, Schatz G.. 1986. Artificial mitochondrial presequences. Proc Natl Acad Sci U S A. 83(23):9011–9015. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.. 1990. Basic local alignment search tool. J Mol Biol. 215(3):403–410. PubMed
Ast M, et al. 2009. Diatom plastids depend on nucleotide import from the cytosol. Proc Natl Acad Sci U S A. 106(9):3621–3626. PubMed PMC
Bailleul B, et al. 2015. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524(7565):366–369. PubMed
Baker A, Schatz G.. 1987. Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci U S A. 84(10):3117–3121. PubMed PMC
Baurain D, et al. 2010. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol. 27(7):1698–1709. PubMed
Bhattacharya D, Stickel SK, Sogin ML.. 1991. Molecular phylogenetic analysis of actin genic regions from Achlya bisexualis (Oomycota) and Costaria costata (Chromophyta). J Mol Evol. 33(6):525–536. PubMed
Bowler C, et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244. PubMed
Bradley PJ, Lahti CJ, Plümper E, Johnson PJ.. 1997. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 16(12):3484–3493. PubMed PMC
Burki F, Shalchian-Tabrizi K, Pawlowski J.. 2008. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett. 4(4):366–369. PubMed PMC
Chandra FA, Buzi G, Doyle JC.. 2011. Glycolytic oscillations and limits on robust efficiency. Science 333(6039):187–192. PubMed
Chu L, et al. 2017. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum. New Phytol. 213(1):193–205. PubMed
Claros MG, Vincens P.. 1996. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 241(3):779–786. PubMed
Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM.. 2008. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U S A. 105(51):20356–20361. PubMed PMC
Derelle R, López-García P, Timpano H, Moreira D.. 2016. A phylogenomic framework to study the diversity and evolution of stramenopiles (=heterokonts). Mol Biol Evol. 33(11):2890–2898. PubMed PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H.. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2(4):953–971. PubMed
Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG.. 2017. Archaea and the origin of eukaryotes. Nat Rev Microbiol. 15(12):711–723. PubMed
Esser C, et al. 2004. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol. 21(9):1643–1660. PubMed
Ewe D, et al. 2018. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Photosynth Res. 137:263–280. PubMed
Fabris M, et al. 2012. The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner–Doudoroff glycolytic pathway. Plant J. 70(6):1004–1014. PubMed
FAO. 2009. How to feed the world in 2050. In: Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
Freitag J, Ast J, Bolker M.. 2012. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485(7399):522–525. PubMed
Garg S, et al. 2015. Conservation of transit peptide-independent protein import into the mitochondrial and hydrogenosomal matrix. Genome Biol Evol. 7(9):2716–2726. PubMed PMC
Gentekaki E, et al. 2017. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol. 15(9):e2003769. PubMed PMC
Giege P, et al. 2003. Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15(9):2140–2151. PubMed PMC
Gruber A, Kroth PG.. 2014. Deducing intracellular distributions of metabolic pathways from genomic data. Methods Mol Biol. 1083:187–211. PubMed
Gruber A, Kroth PG.. 2017. Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philos Trans R Soc Lond B Biol Sci. 372(1728):20160402.. PubMed PMC
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T.. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81(3):519–528. PubMed PMC
Gruber A, et al. 2007. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol. 64(5):519–530. PubMed
Guindon S, Gascuel O.. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 52(5):696–704. PubMed
Gupta RS. 1995. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol. 15(1):1–11. PubMed
Herzig S, et al. 2012. Identification and functional expression of the mitochondrial pyruvate carrier. Science 337(6090):93–96. PubMed
Jiang RH, Tyler BM.. 2012. Mechanisms and evolution of virulence in oomycetes. Annu Rev Phytopathol. 50(1):295–318. PubMed
Keeling PJ, et al. 2010. The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism. Genome Biol Evol. 2:304–309. PubMed PMC
Kroth P. 2007. Genetic transformation - a tool to study protein targeting in diatoms. Methods Mol Biol. 390:257–268. PubMed
Kroth PG, et al. 2008. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3(1):e1426. PubMed PMC
Ku C, et al. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524(7566):427–432. PubMed
Kubo N, Harada K, Hirai A, Kadowaki K.. 1999. A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci U S A. 96(16):9207–9211. PubMed PMC
Lartillot N, Lepage T, Blanquart S.. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25(17):2286–2288. PubMed
Le SQ, Lartillot N, Gascuel O.. 2008. Phylogenetic mixture models for proteins. Philos Trans R Soc Lond B Biol Sci. 363(1512):3965–3976. PubMed PMC
Liaud MF, Brandt U, Scherzinger M, Cerff R.. 1997. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol. 44(S1):S28–S37. PubMed
Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R.. 2000. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol. 17(2):213–223. PubMed
Lill R, et al. 1999. The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol Chem. 380(10):1157–1166. PubMed
Long M, de Souza SJ, Rosenberg C, Gilbert W.. 1996. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc Natl Acad Sci U S A. 93(15):7727–7731. PubMed PMC
Lucattini R, Likic VA, Lithgow T.. 2004. Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol. 21(4):652–658. PubMed
Lunt SY, Vander Heiden MG.. 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27(1):441–464. PubMed
Maheswari U, et al. 2005. The Diatom EST Database. Nucleic Acids Res. 33(Database issue):D344–D347. PubMed PMC
Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG.. 2018. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557(7703):101–105. PubMed
Martin W, Brinkmann H, Savonna C, Cerff R.. 1993. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A. 90(18):8692–8696. PubMed PMC
Martin W, Herrmann RG.. 1998. Gene transfer from organelles to the nucleus: how much, what happens, and Why?. Plant Physiol. 118(1):9–17. PubMed PMC
Martin W, Müller M.. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392(6671):37–41. PubMed
Martin WF, Garg S, Zimorski V.. 2015. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci. 370(1678):20140330.. PubMed PMC
Martin WF, et al. 2017. Late mitochondrial origin is an artifact. Genome Biol Evol. 9(2):373–379. PubMed PMC
Mertens E. 1993. ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol Today 9(4):122–126. PubMed
Morales J, et al. 2016. Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc B Biol Sci. 283(1830):20160520. PubMed PMC
Müller M, et al. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 76(2):444–495. PubMed PMC
Nakayama T, Ishida K, Archibald JM.. 2012. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion?. PLoS One 7(12):e52340.. PubMed PMC
Neupert W, Herrmann JM.. 2007. Translocation of proteins into mitochondria. Annu Rev Biochem. 76:723–749. PubMed
Noel C, et al. 2005. Molecular phylogenies of Blastocystis isolates from different hosts: implications for genetic diversity, identification of species, and zoonosis. J Clin Microbiol. 43(1):348–355. PubMed PMC
Nowack ECM. 2014. Paulinella chromatophora - rethinking the transition from endosymbiont to organelle. Acta Societatis Botanicorum Poloniae 83(4):387–397.
O'Malley MA. 2010. The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci. 41(3):212–224. PubMed
Opperdoes FR, Borst P.. 1977. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 80(2):360–364. PubMed
Petersen J, et al. 2014. Chromera velia, endosymbioses and the rhodoplex hypothesis–plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genome Biol Evol 6(3):666–684. PubMed PMC
Philippe H. 1993. MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res. 21(22):5264–5272. PubMed PMC
Pittis AA, Gabaldon T.. 2016. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531(7592):101–104. PubMed PMC
Posada D, Buckley TR.. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol. 53(5):793–808. PubMed
Rivera MC, Jain R, Moore JE, Lake JA.. 1998. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A. 95(11):6239–6244. PubMed PMC
Roger AJ, Munoz-Gomez SA, Kamikawa R.. 2017. The origin and diversification of mitochondria. Curr Biol. 27(21):R1177–R1192. PubMed
Roise D, et al. 1988. Amphiphilicity is essential for mitochondrial presequence function. EMBO J. 7(3):649–653. PubMed PMC
Sambrook J, Fritsch E, Maniatis T.. 1989. Molecular cloning, a laboratory manual. New York, USA: Cold Spring Harbor Laboratory Press.
Schatz G, Dobberstein B.. 1996. Common principles of protein translocation across membranes. Science 271(5255):1519–1526. PubMed
Scheffler IE. 2008. Mitochondria. 2nd ed Hoboken, NJ: J; Wiley and Sons, Inc.
Smith DG, et al. 2007. Exploring the mitochondrial proteome of the ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass spectrometry. J Mol Biol. 374(3):837–863. PubMed
Stamatakis A, Hoover P, Rougemont J.. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57(5):758–771. PubMed
Stechmann A, et al. 2008. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol. 18(8):580–585. PubMed PMC
Stensvold CR, et al. 2007. Terminology for Blastocystis subtypes—a consensus. Trends Parasitol. 23(3):93–96. PubMed
Stensvold CR, van der Giezen M.. 2018. Associations between gut microbiota and common luminal intestinal parasites. Trends Parasitol. 34:369–377. PubMed
Stentiford GD, Feist SW, Stone DM, Peeler EJ, Bass D.. 2014. Policy, phylogeny, and the parasite. Trends Parasitol. 30(6):274–281. PubMed
Talavera G, Castresana J.. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56(4):564–577. PubMed
Timmis JN, Ayliffe MA, Huang CY, Martin W.. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 5(2):123–135. PubMed
Tripathy S, Pandey VN, Fang B, Salas F, Tyler BM.. 2006. VMD: a community annotation database for oomycetes and microbial genomes. Nucleic Acids Res. 34(90001):D379–D381. PubMed PMC
Tyler BM, et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791):1261–1266. PubMed
van der Giezen M. 2011. Mitochondria and the rise of eukaryotes. BioScience 61(8):594–601.
van der Giezen M, Kiel JAKW, Sjollema KA, Prins RA.. 1998. The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr Genet. 33(2):131–135. PubMed
van der Giezen M, Tovar J, Clark CG.. 2005. Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol. 244:175–225. PubMed
von Heijne G. 1986. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5(6):1335–1342. PubMed PMC
von Heijne G, Steppuhn J, Herrmann RG.. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 180(3):535–545. PubMed
Walker G, Dorrell RG, Schlacht A, Dacks JB.. 2011. Eukaryotic systematics: a user's guide for cell biologists and parasitologists. Parasitology 138(13):1638–1663. PubMed
Williams TA, Foster PG, Cox CJ, Embley TM.. 2013. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504(7479):231–236. PubMed
Wiredu Boakye D, et al. 2017. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environ Microbiol. 19(5):2077–2089. PubMed
Wischmann C, Schuster W.. 1995. Transfer of rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana: evidence for RNA-mediated transfer and exon shuffling at the integration site. FEBS Lett. 374(2):152–156. PubMed
Zaremba-Niedzwiedzka K, et al. 2017. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541(7637):353–358. PubMed
Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE.. 2000. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol. 36(2):379–386.
ASAFind 2.0: multi-class protein targeting prediction for diatoms and algae with complex plastids
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia
Nucleotide Transport and Metabolism in Diatoms