• This record comes from PubMed

Modern and traditional approaches combined into an effective gray-box mathematical model of full-blood acid-base

. 2018 Sep 10 ; 15 (1) : 14. [epub] 20180910

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
FV20628 Ministerstvo Průmyslu a Obchodu - International

Links

PubMed 30196793
PubMed Central PMC6130067
DOI 10.1186/s12976-018-0086-9
PII: 10.1186/s12976-018-0086-9
Knihovny.cz E-resources

BACKGROUND: The acidity of human body fluids, expressed by the pH, is physiologically regulated in a narrow range, which is required for the proper function of cellular metabolism. Acid-base disorders are common especially in intensive care, and the acid-base status is one of the vital clinical signs for the patient management. Because acid-base balance is connected to many bodily processes and regulations, complex mathematical models are needed to get insight into the mixed disorders and to act accordingly. The goal of this study is to develop a full-blood acid-base model, designed to be further integrated into more complex human physiology models. RESULTS: We have developed computationally simple and robust full-blood model, yet thorough enough to cover most of the common pathologies. Thanks to its simplicity and usage of Modelica language, it is suitable to be embedded within more elaborate systems. We achieved the simplification by a combination of behavioral Siggaard-Andersen's traditional approach for erythrocyte modeling and the mechanistic Stewart's physicochemical approach for plasma modeling. The resulting model is capable of providing variations in arterial pCO2, base excess, strong ion difference, hematocrit, plasma protein, phosphates and hemodilution/hemoconcentration, but insensitive to DPG and CO concentrations. CONCLUSIONS: This study presents a straightforward unification of Siggaard-Andersen's and Stewart's acid-base models. The resulting full-blood acid-base model is designed to be a core part of a complex dynamic whole-body acid-base and gas transfer model.

See more in PubMed

Siggaard-Andersen O, Others. The acid-base status of the blood. Munksgaard.; 1974.

Siggaard-Andersen O, Fogh-Andersen N. Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl. 1995;107:123–128. doi: 10.1111/j.1399-6576.1995.tb04346.x. PubMed DOI

Stewart PA. How to understand acid-base: A quantitative acid base primer for biology and medicine: Elsevier; 1981.

Andreassen S, Rees SE. Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng. 2005;33:265–298. doi: 10.1615/CritRevBiomedEng.v33.i3.20. PubMed DOI

Wooten EW. The standard strong ion difference, standard total titratable base, and their relationship to the Boston compensation rules and the Van Slyke equation for extracellular fluid. J Clin Monit Comput. 2010;24:177–188. doi: 10.1007/s10877-010-9231-7. PubMed DOI

Wolf MB. Whole body acid-base and fluid-electrolyte balance: a mathematical model. Am J Physiol Renal Physiol. 2013;305:F1118–F1131. doi: 10.1152/ajprenal.00195.2013. PubMed DOI

Kofranek J, Matousek S, Andrlik M. In: Proceedings of the 6th EUROSIM congress on modelling and simulation. Ljubljana: University of Ljubljana; 2007. Border flux balance approach towards modelling acid-base chemistry and blood gases transport; pp. 1–9.

Andersen OS. The pH-log pCO2 blood acid-base nomogram revised. Scand J Clin Lab Invest. 1962;14:598–604. doi: 10.1080/00365516209051290. PubMed DOI

Siggaard-Andersen O. The van Slyke equation. Scand J Clin Lab Invest Suppl. 1977;146:15–20. doi: 10.3109/00365517709098927. PubMed DOI

Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med. 1991;117:453–467. PubMed

Raftos JE, Bulliman BT, Kuchel PW. Evaluation of an electrochemical model of erythrocyte pH buffering using 31P nuclear magnetic resonance data. J Gen Physiol. 1990;95:1183–1204. doi: 10.1085/jgp.95.6.1183. PubMed DOI PMC

Rees SE, Klæstrup E, Handy J, Andreassen S, Kristensen SR. Mathematical modelling of the acid–base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. Eur J Appl Physiol. 2010;108:483–494. doi: 10.1007/s00421-009-1244-x. PubMed DOI

Wolf MB, Deland EC. A comprehensive, computer-model-based approach for diagnosis and treatment of complex acid-base disorders in critically-ill patients. J Clin Monit Comput. 2011;25:353–364. doi: 10.1007/s10877-011-9320-2. PubMed DOI

Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of Metabolic Acid–Base Disturbances in Critically Ill Patients. Am J Respir Crit Care Med. 2000;162:2246–2251. doi: 10.1164/ajrccm.162.6.9904099. PubMed DOI

Schlichtig R, et al. [Base Excess] vs [Strong ION Difference] In: Nemoto EM, JC LM, Cooper C, Delpy D, Groebe K, Hunt TK, et al., editors. Oxygen Transport to Tissue XVIII. US: Springer; 1997. pp. 91–95.

Wooten EW. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol. 2003;95:2333–2344. doi: 10.1152/japplphysiol.00560.2003. PubMed DOI

Singer RB, Hastings AB. An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine. 1948;27:223–242. doi: 10.1097/00005792-194805000-00003. PubMed DOI

Ježek F. full-blood-acidbase. Github. 10.5281/zenodo.1134853.

Siggaard-Andersen O. Textbook on the Acid-Base and Oxygen Status of the Blood. Acid-Base and Oxygen Status of the Blood. 2010; http://www.siggaard-andersen.dk/OsaTextbook.htm. Accessed 7 Jul 2016

Figge J. The Figge-Fencl Quantitative Physicochemical Model of Human Acid-Base Physiology (Version 3.0). Figge-Fencl.org - Figge-Fencl Quantitative Physicochemical Model of Human Acid-Base Physiology. 27 October, 2013. http://www.figge-fencl.org/model.html. Accessed 22 Jun 2016.

Morgan TJ. The Stewart approach--one clinician’s perspective. Clin Biochem Rev. 2009;30:41–54. PubMed PMC

Lang W, Zander R. Prediction of dilutional acidosis based on the revised classical dilution concept for bicarbonate. J Appl Physiol. 2005;98:62–71. doi: 10.1152/japplphysiol.00292.2004. PubMed DOI

Kurtz I, Kraut J, Ornekian V, Nguyen MK. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol. 2008;294:F1009–F1031. doi: 10.1152/ajprenal.00475.2007. PubMed DOI

Severinghaus JW. Siggaard-Andersen and the “Great Trans-Atlantic Acid-Base Debate.”. Scand J Clin Lab Invest. 1993;53:99–104. doi: 10.1080/00365519309090686. PubMed DOI

Berend K. Acid-base pathophysiology after 130 years: confusing, irrational and controversial. J Nephrol. 2013;26:254–265. doi: 10.5301/jn.5000191. PubMed DOI

Kellum JA. Clinical review: reunification of acid-base physiology. Crit Care. 2005;9:500–507. doi: 10.1186/cc3789. PubMed DOI PMC

Dubin A, Menises MM, Masevicius FD, Moseinco MC, Kutscherauer DO, Ventrice E, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders*. Crit Care Med. 2007;35:1264. doi: 10.1097/01.CCM.0000259536.11943.90. PubMed DOI

Kishen R, Honoré PM, Jacobs R, Joannes-Boyau O, De Waele E, De Regt J, et al. Facing acid-base disorders in the third millennium - the Stewart approach revisited. Int J Nephrol Renovasc Dis. 2014;7:209–217. PubMed PMC

Matousek S, Handy J, Rees SE. Acid-base chemistry of plasma: consolidation of the traditional and modern approaches from a mathematical and clinical perspective. J Clin Monit Comput. 2011;25:57–70. doi: 10.1007/s10877-010-9250-4. PubMed DOI

Masevicius FD, Dubin A. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients? Pediatr Crit Care Med. 2015;4:62–70. PubMed PMC

Rastegar A. Clinical utility of Stewart’s method in diagnosis and management of acid-base disorders. Clin J Am Soc Nephrol. 2009;4:1267–1274. doi: 10.2215/CJN.01820309. PubMed DOI

Matoušek S. Reunified description of acid-base physiology and chemistry of blood plasma: PhD. Charles University in Prague; 2013. https://is.cuni.cz/webapps/zzp/download/140030054/?lang=cs

Lutz J, Schulze HG, Michael UF. Calculation of O2 saturation and of the oxyhemoglobin dissociation curve for different species, using a new programmable pocket calculator. Pflugers Arch. 1975;359:285–295. doi: 10.1007/BF00581440. PubMed DOI

Fencl V, Jabor A, Kazda A, Figge J. Appendix of Diagnosis of Metabolic Acid–Base Disturbances in Critically Ill Patients. Am J Respir Crit Care Med. 2000;162:2246–2251. doi: 10.1164/ajrccm.162.6.9904099. PubMed DOI

Wolf MB. Comprehensive diagnosis of whole-body acid-base and fluid-electrolyte disorders using a mathematical model and whole-body base excess. J Clin Monit Comput. 2015;29:475–490. doi: 10.1007/s10877-014-9625-z. PubMed DOI

Zander R. Die korrekte Bestimmung des Base Excess (BE, mmol/l) im Blut. AINS - Anästhesiologie · Intensivmedizin · Notfallmedizin. Schmerztherapie. 1995;30(S 1):S36–S38. PubMed

Siggaard-Andersen M, Siggaard-Andersen O. Oxygen status algorithm, version 3, with some applications. Acta Anaesthesiol Scand Suppl. 1995;107:13–20. doi: 10.1111/j.1399-6576.1995.tb04324.x. PubMed DOI

McAuliffe JJ, Lind LJ, Leith DE, Fencl V. Hypoproteinemic alkalosis. Am J Med. 1986;81:86–90. doi: 10.1016/0002-9343(86)90187-7. PubMed DOI

Tuhay G, Pein MC, Masevicius FD, Kutscherauer DO, Dubin A. Severe hyperlactatemia with normal base excess: a quantitative analysis using conventional and Stewart approaches. Crit Care. 2008;12:R66. doi: 10.1186/cc6896. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...