Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration

. 2018 Sep 20 ; 23 (10) : . [epub] 20180920

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30241366

Scaffolds can be considered as one of the most promising treatments for bone tissue regeneration. Herein, blends of chitosan, poly(vinyl alcohol), and hydroxyapatite in different ratios were used to synthesize scaffolds via freeze-drying. Mechanical tests, FTIR, swelling and solubility degree, DSC, morphology, and cell viability were used as characterization techniques. Statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. Crosslinked and plasticized scaffolds absorbed five times more water than non-crosslinked and plasticized ones, which is an indicator of better hydrophilic features, as well as adequate resistance to water without detriment of the swelling potential. Indeed, the tested mechanical properties were notably higher for samples which were undergone to crosslinking and plasticized process. The presence of chitosan is determinant in pore formation and distribution which is an imperative for cell communication. Uniform pore size with diameters ranging from 142 to 519 µm were obtained, a range that has been described as optimal for bone tissue regeneration. Moreover, cytotoxicity was considered as negligible in the tested conditions, and viability indicates that the material might have potential as a bone regeneration system.

Zobrazit více v PubMed

Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol. 2006;17:395–418. doi: 10.1002/pat.729. DOI

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.

Yang S., Leong K.-F., Du Z., Chua C.-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI

Sabir M.I., Xu X., Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009;44:5713–5724. doi: 10.1007/s10853-009-3770-7. DOI

Buckwalter J.A., Glimcher M.J., Cooper R.R., Recker R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instruct. Course Lect. 1996;45:371–386. PubMed

Dimitriou R., Jones E., McGonagle D., Giannoudis P. V Bone regeneration: Current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66. PubMed DOI PMC

Henkel J., Woodruff M.A., Epari D.R., Steck R., Glatt V., Dickinson I.C., Choong P.F.M., Schuetz M.A., Hutmacher D.W. Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 2013;1:216–248. doi: 10.4248/BR201303002. PubMed DOI PMC

[(accessed on 27 June 2018)]; Available online: http://www.redalyc.org/articulo.oa?id=179214945008.

Liu X., Ma P.X. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 2004;32:477–486. doi: 10.1023/B:ABME.0000017544.36001.8e. PubMed DOI

Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014;14:15–56. doi: 10.1166/jnn.2014.9127. PubMed DOI PMC

Yi H., Rehman F.U., Zhao C., Liu B., He N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050. doi: 10.1038/boneres.2016.50. PubMed DOI PMC

Motamedian S.R., Hosseinpour S., Ahsaie M.G., Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J. Stem Cells. 2015;7:657. doi: 10.4252/wjsc.v7.i3.657. PubMed DOI PMC

Hutmacher D.W., Woodfield T.B.F., Dalton P.D. Tissue Engineering. 2nd ed. Elsevier; London, UK: 2015. Scaffold design and fabrication; pp. 311–346.

Sears N.A., Seshadri D.R., Dhavalikar P.S., Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 2016;22:298–310. doi: 10.1089/ten.teb.2015.0464. PubMed DOI

Nishio Y., Suzuki H., Sato K. Molecular orientation and optical anisotropy induced by the stretching of poly(vinyl alcohol) poly(N-vinyl pyrrolidone) blends. Polymer. 1994;35:1452–1461. doi: 10.1016/0032-3861(94)90345-X. DOI

Sachlos E., Czernuszka J.T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003;5:39–40. doi: 10.22203/eCM.v005a03. PubMed DOI

Subia B., Kundu J., Kundu S.C. Tissue Engineering. InTech; Rijeka, Croatia: 2010. Biomaterial scaffold fabrication techniques for potential tissue engineering applications.

Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012;30:321–328. doi: 10.1016/j.biotechadv.2011.06.019. PubMed DOI

Shum A.W.T., Mak A.F.T. Morphological and biomechanical characterization of poly(glycolic acid) scaffolds after in vitro degradation. Polym. Degrad. Stab. 2003;81:141–149. doi: 10.1016/S0141-3910(03)00083-1. DOI

Lam C.X.F., Hutmacher D.W., Schantz J.-T., Woodruff M.A., Teoh S.H. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J. Biomed. Mater. Res. Part A. 2009;90:906–919. doi: 10.1002/jbm.a.32052. PubMed DOI

Zhang W., Yang Y., Zhang K., Luo T., Tang L., Li Y. Silk-Poly(lactic-co-glycolic acid) Scaffold/Mesenchymal Stem Cell Composites for Anterior Cruciate Ligament Reconstruction in Rabbits. J. Biomater. Tissue Eng. 2017;7:571–581. doi: 10.1166/jbt.2017.1604. DOI

Stratton S., Shelke N.B., Hoshino K., Rudraiah S., Kumbar S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016;1:93–108. doi: 10.1016/j.bioactmat.2016.11.001. PubMed DOI PMC

Ramalingam M., Tiwari A., Ramakrishna S., Kobayashi H. Integrated Biomaterials for Biomedical Technology. John Wiley & Sons; New York, NY, USA: 2012.

Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. PubMed DOI

Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI

Sultana N., Mokhtar M., Hassan M.I., Jin R.M., Roozbahani F., Khan T.H. Chitosan-based nanocomposite scaffolds for tissue engineering applications. Mater. Manuf. Process. 2015;30:273–278. doi: 10.1080/10426914.2014.892610. DOI

Wang F., Wang M., She Z., Fan K., Xu C., Chu B., Chen C., Shi S., Tan R. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration. Mater. Sci. Eng. C. 2015;52:155–162. doi: 10.1016/j.msec.2015.03.013. PubMed DOI

Madihally S.V., Matthew H.W.T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. doi: 10.1016/S0142-9612(99)00011-3. PubMed DOI

Suh J.-K.F., Matthew H.W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials. 2000;21:2589–2598. PubMed

Kim I.-Y., Seo S.-J., Moon H.-S., Yoo M.-K., Park I.-Y., Kim B.-C., Cho C.-S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008;26:1–21. doi: 10.1016/j.biotechadv.2007.07.009. PubMed DOI

Nettles D.L., Elder S.H., Gilbert J.A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002;8:1009–1016. doi: 10.1089/107632702320934100. PubMed DOI

Jafari M., Paknejad Z., Rad M.R., Motamedian S.R., Eghbal M.J., Nadjmi N., Khojasteh A. Polymeric scaffolds in tissue engineering: A literature review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;105:431–459. doi: 10.1002/jbm.b.33547. PubMed DOI

Bedian L., Villalba-Rodriguez A.M., Hernández-Vargas G., Parra-Saldivar R., Iqbal H.M.N. Bio-based materials with novel characteristics for tissue engineering applications—A review. Int. J. Biol. Macromol. 2017;98:837–846. doi: 10.1016/j.ijbiomac.2017.02.048. PubMed DOI

Arce Guerrero S., Valencia Llano C., Garzón-Alvarado D.A. Obtención de un biocompuesto constituido por fosfato tricálcico y quitosana para ser usado como sustituto óseo en un modelo animal. Rev. Cuba. Investig. Biomédicas. 2012;31:268–277.

Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2013;70:431–453. doi: 10.1007/s00289-012-0802-2. DOI

Georgieva N., Bryaskova R., Tzoneva R. New Polyvinyl alcohol-based hybrid materials for biomedical application. Mater. Lett. 2012;88:19–22. doi: 10.1016/j.matlet.2012.07.111. DOI

Pangon A., Saesoo S., Saengkrit N., Ruktanonchai U., Intasanta V. Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydr. Polym. 2016;138:156–165. doi: 10.1016/j.carbpol.2015.11.039. PubMed DOI

Chahal S., Hussain F.S.J., Kumar A., Rasad M.S.B.A., Yusoff M.M. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly(vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem. Eng. Sci. 2016;144:17–29. doi: 10.1016/j.ces.2015.12.030. DOI

Kheradmandi M., Vasheghani-Farahani E., Ghiaseddin A., Ganji F. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J. Biomed. Mater. Res. Part A. 2016;104:1720–1727. doi: 10.1002/jbm.a.35702. PubMed DOI

Kanimozhi K., Basha S.K., Kumari V.S. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 2016;61:484–491. doi: 10.1016/j.msec.2015.12.084. PubMed DOI

Echeverri C.E., Vallejo C., Londoño M.E. Síntesis y caracterización de hidrogeles de alcohol polivinílico por la técnica de congelamiento/descongelamiento para aplicaciones médicas. Rev. EIA. 2009;12:59–66.

Kumar H.M.P.N., Prabhakar M.N., Prasad C.V., Rao K.M., Reddy T.V.A.K., Rao K.C., Subha M.C.S. Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30 C. Carbohydr. Polym. 2010;82:251–255. doi: 10.1016/j.carbpol.2010.04.021. DOI

Rao S.H., Harini B., Shadamarshan R.P.K., Balagangadharan K., Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signaling in bone tissue engineering. Int. J. Biol. Macromol. 2017;110:88–96. doi: 10.1016/j.ijbiomac.2017.09.029. PubMed DOI

Thien D.V.H., Hsiao S.W., Ho M.H., Li C.H., Shih J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013;48:1640–1645. doi: 10.1007/s10853-012-6921-1. DOI

Mi Zo S., Singh D., Kumar A., Cho Y.W., Oh T.H., Han S.S. Chitosan-hydroxyapatite macroporous matrix for bone tissue engineering. Curr. Sci. 2012;102:1438–1446.

Brun V., Guillaume C., Mechiche Alami S., Josse J., Jing J., Draux F., Bouthors S., Laurent-Maquin D., Gangloff S.C., Kerdjoudj H., et al. Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering. Biomed. Mater. Eng. 2014;24:63–73. PubMed

Chen Y., Yu J., Ke Q., Gao Y., Zhang C., Guo Y. Bioinspired fabrication of carbonated hydroxyapatite/chitosan nanohybrid scaffolds loaded with TWS119 for bone regeneration. Chem. Eng. J. 2018;341:112–125. doi: 10.1016/j.cej.2018.02.010. DOI

Tsiourvas D., Sapalidis A., Papadopoulos T. Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater. Today Commun. 2016;7:59–66. doi: 10.1016/j.mtcomm.2016.03.006. DOI

Li Y., Liu T., Zheng J., Xu X. Glutaraldehyde-crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin. J. Appl. Polym. Sci. 2013;130:1539–1547. doi: 10.1002/app.39339. DOI

Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841. doi: 10.1016/S0142-9612(03)00374-0. PubMed DOI

Bernal A., Kuritka I., Saha P. Preparation and characterization of poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend: A biomaterial with latent medical applications. J. Appl. Polym. Sci. 2013;127:3560–3568. doi: 10.1002/app.37723. DOI

Elt O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. PubMed

Alhosseini S.N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., Kargozar S., Jalali N. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 2012;7:25. doi: 10.2147/IJN.S25376. PubMed DOI PMC

Mansur H.S., de Costa E.S., Mansur A.A.P., Barbosa-Stancioli E.F. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater. Sci. Eng. C. 2009;29:1574–1583. doi: 10.1016/j.msec.2008.12.012. DOI

Ramay H.R., Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials. 2003;24:3293–3302. doi: 10.1016/S0142-9612(03)00171-6. PubMed DOI

Berzina-Cimdina L., Borodajenko N. Infrared Spectroscopy-Materials Science, Engineering and Technology. InTech; Rijeka, Croatia: 2012. Research of calcium phosphates using Fourier transform infrared spectroscopy.

Fathi M.H., Hanifi A., Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 2008;202:536–542. doi: 10.1016/j.jmatprotec.2007.10.004. DOI

Kumar G.N.H., Rao J.L., Gopal N.O., Narasimhulu K.V., Chakradhar R.P.S., Rajulu A.V. Spectroscopic investigations of Mn2+ ions doped polyvinylalcohol films. Polymer. 2004;45:5407–5415. doi: 10.1016/j.polymer.2004.05.068. DOI

Holland B.J., Hay J.N. The thermal degradation of poly(vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI

Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. DOI

Bernal A., Kuritka I., Kasparkova V., Saha P. The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. J. Appl. Polym. Sci. 2013;128:175–180. doi: 10.1002/app.38133. DOI

Bernal-Ballén A., Kuritka I., Saha P. Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate-PVA. Int. J. Polym. Sci. 2016;2016:3172545. doi: 10.1155/2016/3172545. DOI

Pawlak A., Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta. 2003;396:153–166. doi: 10.1016/S0040-6031(02)00523-3. DOI

Marsano E., Vicini S., Skopińska J., Wisniewski M., Sionkowska A. Chitosan and poly(vinyl pyrrolidone): Compatibility and miscibility of blends. Macromol. Symp. 2004;218:251–260. doi: 10.1002/masy.200451426. DOI

Oliveira J.M., Rodrigues M.T., Silva S.S., Malafaya P.B., Gomes M.E., Viegas C.A., Dias I.R., Azevedo J.T., Mano J.F., Reis R.L. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–6137. doi: 10.1016/j.biomaterials.2006.07.034. PubMed DOI

Li M., Cheng S., Yan H. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chem. 2007;9:894. doi: 10.1039/b618045k. DOI

Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2000;12:10815–10837.

De Souza Costa-Júnior E., Pereira M.M., Mansur H.S. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J. Mater. Sci. Mater. Med. 2009;20:553–561. doi: 10.1007/s10856-008-3627-7. PubMed DOI

Figueiredo K.C.S., Alves T.L.M., Borges C.P. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J. Appl. Polym. Sci. 2009;111:3074–3080. doi: 10.1002/app.29263. DOI

Zheng H., Du Y., Yu J., Huang R., Zhang L. Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J. Appl. Polym. Sci. 2001;80:2558–2565. doi: 10.1002/app.1365. DOI

Koosha M., Mirzadeh H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. Part A. 2015;103:3081–3093. doi: 10.1002/jbm.a.35443. PubMed DOI

Miya M., Iwamoto R., Mima S. FT-IR study of intermolecular interactions in polymer blends. J. Polym. Sci. Part B Polym. Phys. 1984;22:1149–1151. doi: 10.1002/pol.1984.180220615. DOI

Zhou Y.S., Yang D.Z., Nie J. Effect of PVA content on morphology, swelling and mechanical property of crosslinked chitosan/PVA nanofibre. Plast. Rubber Compos. 2007;36:254–258. doi: 10.1179/174328907X191440. DOI

Yu Z., Li B., Chu J., Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr. Polym. 2018;184:214–220. doi: 10.1016/j.carbpol.2017.12.043. PubMed DOI

Bhajantri R.F., Ravindrachary V., Harisha A., Crasta V., Nayak S.P., Poojary B. Microstructural studies on BaCl2 doped poly(vinyl alcohol) Polymer. 2006;47:3591–3598. doi: 10.1016/j.polymer.2006.03.054. DOI

Liang S., Yang J., Zhang X., Bai Y. The thermal-electrical properties of polyvinyl alcohol/AgNO3 films. J. Appl. Polym. Sci. 2011;122:813–818. doi: 10.1002/app.34060. DOI

Chuang W.-Y., Young T.-H., Yao C.-H., Chiu W.-Y. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials. 1999;20:1479–1487. doi: 10.1016/S0142-9612(99)00054-X. PubMed DOI

Milosavljević N.B., Kljajević L.M., Popović I.G., Filipović J.M., Kalagasidis Krušić M.T. Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polym. Int. 2010;59:686–694.

Gonzalez-Campos J.B., Prokhorov E., Luna-Barcenas G., Fonseca-Garcia A., Sanchez I.C. Dielectric relaxations of chitosan: The effect of water on the α-relaxation and the glass transition temperature. J. Polym. Sci. Part B Polym. Phys. 2009;47:2259–2271. doi: 10.1002/polb.21823. DOI

Hu H., Xin J.H., Hu H., Chan A., He L. Glutaraldehyde–chitosan and poly(vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr. Polym. 2013;91:305–313. doi: 10.1016/j.carbpol.2012.08.038. PubMed DOI

Cascone M.G., Barbani N.P., Giusti C.C., Ciardelli G., Lazzeri L. Bioartificial polymeric materials based on polysaccharides. J. Biomater. Sci. Polym. Ed. 2001;12:267–281. doi: 10.1163/156856201750180807. PubMed DOI

Bonilla J., Fortunati E., Atarés L., Chiralt A., Kenny J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol—Chitosan biodegradable films. Food Hydrocoll. 2014;35:463–470. doi: 10.1016/j.foodhyd.2013.07.002. DOI

Lewandowska K. Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim. Acta. 2009;493:42–48. doi: 10.1016/j.tca.2009.04.003. DOI

Dehnad D., Mirzaei H., Emam-Djomeh Z., Jafari S.-M., Dadashi S. Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym. 2014;109:148–154. doi: 10.1016/j.carbpol.2014.03.063. PubMed DOI

Ahmad A.L., Yusuf N.M., Ooi B.S. Preparation and modification of poly(vinyl) alcohol membrane: Effect of crosslinking time towards its morphology. Desalination. 2012;287:35–40. doi: 10.1016/j.desal.2011.12.003. DOI

Hsieh W.-C., Chang C.-P., Lin S.-M. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf. B Biointerfaces. 2007;57:250–255. doi: 10.1016/j.colsurfb.2007.02.004. PubMed DOI

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Mansur H.S., Costa H.S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J. 2008;137:72–83. doi: 10.1016/j.cej.2007.09.036. DOI

Sasaki M., Hongo H., Hasegawa T., Suzuki R., Zhusheng L., de Freitas P.H.L., Yamada T., Oda K., Yamamoto T., Li M., et al. Morphological aspects of the biological function of the osteocytic lacunar canalicular system and of osteocyte-derived factors. Oral Sci. Int. 2012;9:1–8. doi: 10.1016/S1348-8643(12)00009-2. DOI

Bonewald L.F. The amazing osteocyte. J. Bone Miner. Res. 2011;26:229–238. doi: 10.1002/jbmr.320. PubMed DOI PMC

Bloch S.L., Kristensen S.L., Sørensen M.S. The viability of perilabyrinthine osteocytes: A quantitative study using bulk-stained undecalcified human temporal bones. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012;295:1101–1108. doi: 10.1002/ar.22492. PubMed DOI

Asran A.S., Henning S., Michler G.H. Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer. 2010;51:868–876. doi: 10.1016/j.polymer.2009.12.046. DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...