Synthesis and Characterization of Poly(Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30241366
PubMed Central
PMC6222900
DOI
10.3390/molecules23102414
PII: molecules23102414
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, cell proliferation, chitosan, poly(vinyl alcohol), scaffolds,
- MeSH
- biokompatibilní materiály chemie terapeutické užití MeSH
- chitosan chemická syntéza chemie terapeutické užití MeSH
- hydroxyapatit chemická syntéza chemie terapeutické užití MeSH
- kosti a kostní tkáň chemie MeSH
- lidé MeSH
- osteoblasty účinky léků MeSH
- polyvinylalkohol chemická syntéza chemie terapeutické užití MeSH
- proliferace buněk účinky léků MeSH
- regenerace kostí účinky léků MeSH
- tkáňové inženýrství * MeSH
- tkáňové podpůrné struktury chemie MeSH
- vývoj kostí účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- chitosan MeSH
- hydroxyapatit MeSH
- polyvinylalkohol MeSH
Scaffolds can be considered as one of the most promising treatments for bone tissue regeneration. Herein, blends of chitosan, poly(vinyl alcohol), and hydroxyapatite in different ratios were used to synthesize scaffolds via freeze-drying. Mechanical tests, FTIR, swelling and solubility degree, DSC, morphology, and cell viability were used as characterization techniques. Statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. Crosslinked and plasticized scaffolds absorbed five times more water than non-crosslinked and plasticized ones, which is an indicator of better hydrophilic features, as well as adequate resistance to water without detriment of the swelling potential. Indeed, the tested mechanical properties were notably higher for samples which were undergone to crosslinking and plasticized process. The presence of chitosan is determinant in pore formation and distribution which is an imperative for cell communication. Uniform pore size with diameters ranging from 142 to 519 µm were obtained, a range that has been described as optimal for bone tissue regeneration. Moreover, cytotoxicity was considered as negligible in the tested conditions, and viability indicates that the material might have potential as a bone regeneration system.
Zobrazit více v PubMed
Jagur-Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol. 2006;17:395–418. doi: 10.1002/pat.729. DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Yang S., Leong K.-F., Du Z., Chua C.-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI
Sabir M.I., Xu X., Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009;44:5713–5724. doi: 10.1007/s10853-009-3770-7. DOI
Buckwalter J.A., Glimcher M.J., Cooper R.R., Recker R. Bone biology. I: Structure, blood supply, cells, matrix, and mineralization. Instruct. Course Lect. 1996;45:371–386. PubMed
Dimitriou R., Jones E., McGonagle D., Giannoudis P. V Bone regeneration: Current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66. PubMed DOI PMC
Henkel J., Woodruff M.A., Epari D.R., Steck R., Glatt V., Dickinson I.C., Choong P.F.M., Schuetz M.A., Hutmacher D.W. Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 2013;1:216–248. doi: 10.4248/BR201303002. PubMed DOI PMC
[(accessed on 27 June 2018)]; Available online: http://www.redalyc.org/articulo.oa?id=179214945008.
Liu X., Ma P.X. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 2004;32:477–486. doi: 10.1023/B:ABME.0000017544.36001.8e. PubMed DOI
Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014;14:15–56. doi: 10.1166/jnn.2014.9127. PubMed DOI PMC
Yi H., Rehman F.U., Zhao C., Liu B., He N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016;4:16050. doi: 10.1038/boneres.2016.50. PubMed DOI PMC
Motamedian S.R., Hosseinpour S., Ahsaie M.G., Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J. Stem Cells. 2015;7:657. doi: 10.4252/wjsc.v7.i3.657. PubMed DOI PMC
Hutmacher D.W., Woodfield T.B.F., Dalton P.D. Tissue Engineering. 2nd ed. Elsevier; London, UK: 2015. Scaffold design and fabrication; pp. 311–346.
Sears N.A., Seshadri D.R., Dhavalikar P.S., Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 2016;22:298–310. doi: 10.1089/ten.teb.2015.0464. PubMed DOI
Nishio Y., Suzuki H., Sato K. Molecular orientation and optical anisotropy induced by the stretching of poly(vinyl alcohol) poly(N-vinyl pyrrolidone) blends. Polymer. 1994;35:1452–1461. doi: 10.1016/0032-3861(94)90345-X. DOI
Sachlos E., Czernuszka J.T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 2003;5:39–40. doi: 10.22203/eCM.v005a03. PubMed DOI
Subia B., Kundu J., Kundu S.C. Tissue Engineering. InTech; Rijeka, Croatia: 2010. Biomaterial scaffold fabrication techniques for potential tissue engineering applications.
Lasprilla A.J.R., Martinez G.A.R., Lunelli B.H., Jardini A.L., Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnol. Adv. 2012;30:321–328. doi: 10.1016/j.biotechadv.2011.06.019. PubMed DOI
Shum A.W.T., Mak A.F.T. Morphological and biomechanical characterization of poly(glycolic acid) scaffolds after in vitro degradation. Polym. Degrad. Stab. 2003;81:141–149. doi: 10.1016/S0141-3910(03)00083-1. DOI
Lam C.X.F., Hutmacher D.W., Schantz J.-T., Woodruff M.A., Teoh S.H. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J. Biomed. Mater. Res. Part A. 2009;90:906–919. doi: 10.1002/jbm.a.32052. PubMed DOI
Zhang W., Yang Y., Zhang K., Luo T., Tang L., Li Y. Silk-Poly(lactic-co-glycolic acid) Scaffold/Mesenchymal Stem Cell Composites for Anterior Cruciate Ligament Reconstruction in Rabbits. J. Biomater. Tissue Eng. 2017;7:571–581. doi: 10.1166/jbt.2017.1604. DOI
Stratton S., Shelke N.B., Hoshino K., Rudraiah S., Kumbar S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016;1:93–108. doi: 10.1016/j.bioactmat.2016.11.001. PubMed DOI PMC
Ramalingam M., Tiwari A., Ramakrishna S., Kobayashi H. Integrated Biomaterials for Biomedical Technology. John Wiley & Sons; New York, NY, USA: 2012.
Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. PubMed DOI
Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI
Sultana N., Mokhtar M., Hassan M.I., Jin R.M., Roozbahani F., Khan T.H. Chitosan-based nanocomposite scaffolds for tissue engineering applications. Mater. Manuf. Process. 2015;30:273–278. doi: 10.1080/10426914.2014.892610. DOI
Wang F., Wang M., She Z., Fan K., Xu C., Chu B., Chen C., Shi S., Tan R. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration. Mater. Sci. Eng. C. 2015;52:155–162. doi: 10.1016/j.msec.2015.03.013. PubMed DOI
Madihally S.V., Matthew H.W.T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. doi: 10.1016/S0142-9612(99)00011-3. PubMed DOI
Suh J.-K.F., Matthew H.W.T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials. 2000;21:2589–2598. PubMed
Kim I.-Y., Seo S.-J., Moon H.-S., Yoo M.-K., Park I.-Y., Kim B.-C., Cho C.-S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008;26:1–21. doi: 10.1016/j.biotechadv.2007.07.009. PubMed DOI
Nettles D.L., Elder S.H., Gilbert J.A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002;8:1009–1016. doi: 10.1089/107632702320934100. PubMed DOI
Jafari M., Paknejad Z., Rad M.R., Motamedian S.R., Eghbal M.J., Nadjmi N., Khojasteh A. Polymeric scaffolds in tissue engineering: A literature review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017;105:431–459. doi: 10.1002/jbm.b.33547. PubMed DOI
Bedian L., Villalba-Rodriguez A.M., Hernández-Vargas G., Parra-Saldivar R., Iqbal H.M.N. Bio-based materials with novel characteristics for tissue engineering applications—A review. Int. J. Biol. Macromol. 2017;98:837–846. doi: 10.1016/j.ijbiomac.2017.02.048. PubMed DOI
Arce Guerrero S., Valencia Llano C., Garzón-Alvarado D.A. Obtención de un biocompuesto constituido por fosfato tricálcico y quitosana para ser usado como sustituto óseo en un modelo animal. Rev. Cuba. Investig. Biomédicas. 2012;31:268–277.
Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2013;70:431–453. doi: 10.1007/s00289-012-0802-2. DOI
Georgieva N., Bryaskova R., Tzoneva R. New Polyvinyl alcohol-based hybrid materials for biomedical application. Mater. Lett. 2012;88:19–22. doi: 10.1016/j.matlet.2012.07.111. DOI
Pangon A., Saesoo S., Saengkrit N., Ruktanonchai U., Intasanta V. Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydr. Polym. 2016;138:156–165. doi: 10.1016/j.carbpol.2015.11.039. PubMed DOI
Chahal S., Hussain F.S.J., Kumar A., Rasad M.S.B.A., Yusoff M.M. Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly(vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chem. Eng. Sci. 2016;144:17–29. doi: 10.1016/j.ces.2015.12.030. DOI
Kheradmandi M., Vasheghani-Farahani E., Ghiaseddin A., Ganji F. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold. J. Biomed. Mater. Res. Part A. 2016;104:1720–1727. doi: 10.1002/jbm.a.35702. PubMed DOI
Kanimozhi K., Basha S.K., Kumari V.S. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 2016;61:484–491. doi: 10.1016/j.msec.2015.12.084. PubMed DOI
Echeverri C.E., Vallejo C., Londoño M.E. Síntesis y caracterización de hidrogeles de alcohol polivinílico por la técnica de congelamiento/descongelamiento para aplicaciones médicas. Rev. EIA. 2009;12:59–66.
Kumar H.M.P.N., Prabhakar M.N., Prasad C.V., Rao K.M., Reddy T.V.A.K., Rao K.C., Subha M.C.S. Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30 C. Carbohydr. Polym. 2010;82:251–255. doi: 10.1016/j.carbpol.2010.04.021. DOI
Rao S.H., Harini B., Shadamarshan R.P.K., Balagangadharan K., Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signaling in bone tissue engineering. Int. J. Biol. Macromol. 2017;110:88–96. doi: 10.1016/j.ijbiomac.2017.09.029. PubMed DOI
Thien D.V.H., Hsiao S.W., Ho M.H., Li C.H., Shih J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013;48:1640–1645. doi: 10.1007/s10853-012-6921-1. DOI
Mi Zo S., Singh D., Kumar A., Cho Y.W., Oh T.H., Han S.S. Chitosan-hydroxyapatite macroporous matrix for bone tissue engineering. Curr. Sci. 2012;102:1438–1446.
Brun V., Guillaume C., Mechiche Alami S., Josse J., Jing J., Draux F., Bouthors S., Laurent-Maquin D., Gangloff S.C., Kerdjoudj H., et al. Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering. Biomed. Mater. Eng. 2014;24:63–73. PubMed
Chen Y., Yu J., Ke Q., Gao Y., Zhang C., Guo Y. Bioinspired fabrication of carbonated hydroxyapatite/chitosan nanohybrid scaffolds loaded with TWS119 for bone regeneration. Chem. Eng. J. 2018;341:112–125. doi: 10.1016/j.cej.2018.02.010. DOI
Tsiourvas D., Sapalidis A., Papadopoulos T. Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater. Today Commun. 2016;7:59–66. doi: 10.1016/j.mtcomm.2016.03.006. DOI
Li Y., Liu T., Zheng J., Xu X. Glutaraldehyde-crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin. J. Appl. Polym. Sci. 2013;130:1539–1547. doi: 10.1002/app.39339. DOI
Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841. doi: 10.1016/S0142-9612(03)00374-0. PubMed DOI
Bernal A., Kuritka I., Saha P. Preparation and characterization of poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend: A biomaterial with latent medical applications. J. Appl. Polym. Sci. 2013;127:3560–3568. doi: 10.1002/app.37723. DOI
Elt O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. PubMed
Alhosseini S.N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., Kargozar S., Jalali N. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 2012;7:25. doi: 10.2147/IJN.S25376. PubMed DOI PMC
Mansur H.S., de Costa E.S., Mansur A.A.P., Barbosa-Stancioli E.F. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater. Sci. Eng. C. 2009;29:1574–1583. doi: 10.1016/j.msec.2008.12.012. DOI
Ramay H.R., Zhang M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials. 2003;24:3293–3302. doi: 10.1016/S0142-9612(03)00171-6. PubMed DOI
Berzina-Cimdina L., Borodajenko N. Infrared Spectroscopy-Materials Science, Engineering and Technology. InTech; Rijeka, Croatia: 2012. Research of calcium phosphates using Fourier transform infrared spectroscopy.
Fathi M.H., Hanifi A., Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 2008;202:536–542. doi: 10.1016/j.jmatprotec.2007.10.004. DOI
Kumar G.N.H., Rao J.L., Gopal N.O., Narasimhulu K.V., Chakradhar R.P.S., Rajulu A.V. Spectroscopic investigations of Mn2+ ions doped polyvinylalcohol films. Polymer. 2004;45:5407–5415. doi: 10.1016/j.polymer.2004.05.068. DOI
Holland B.J., Hay J.N. The thermal degradation of poly(vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI
Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. DOI
Bernal A., Kuritka I., Kasparkova V., Saha P. The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. J. Appl. Polym. Sci. 2013;128:175–180. doi: 10.1002/app.38133. DOI
Bernal-Ballén A., Kuritka I., Saha P. Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate-PVA. Int. J. Polym. Sci. 2016;2016:3172545. doi: 10.1155/2016/3172545. DOI
Pawlak A., Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta. 2003;396:153–166. doi: 10.1016/S0040-6031(02)00523-3. DOI
Marsano E., Vicini S., Skopińska J., Wisniewski M., Sionkowska A. Chitosan and poly(vinyl pyrrolidone): Compatibility and miscibility of blends. Macromol. Symp. 2004;218:251–260. doi: 10.1002/masy.200451426. DOI
Oliveira J.M., Rodrigues M.T., Silva S.S., Malafaya P.B., Gomes M.E., Viegas C.A., Dias I.R., Azevedo J.T., Mano J.F., Reis R.L. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–6137. doi: 10.1016/j.biomaterials.2006.07.034. PubMed DOI
Li M., Cheng S., Yan H. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chem. 2007;9:894. doi: 10.1039/b618045k. DOI
Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2000;12:10815–10837.
De Souza Costa-Júnior E., Pereira M.M., Mansur H.S. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J. Mater. Sci. Mater. Med. 2009;20:553–561. doi: 10.1007/s10856-008-3627-7. PubMed DOI
Figueiredo K.C.S., Alves T.L.M., Borges C.P. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J. Appl. Polym. Sci. 2009;111:3074–3080. doi: 10.1002/app.29263. DOI
Zheng H., Du Y., Yu J., Huang R., Zhang L. Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers. J. Appl. Polym. Sci. 2001;80:2558–2565. doi: 10.1002/app.1365. DOI
Koosha M., Mirzadeh H. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. Part A. 2015;103:3081–3093. doi: 10.1002/jbm.a.35443. PubMed DOI
Miya M., Iwamoto R., Mima S. FT-IR study of intermolecular interactions in polymer blends. J. Polym. Sci. Part B Polym. Phys. 1984;22:1149–1151. doi: 10.1002/pol.1984.180220615. DOI
Zhou Y.S., Yang D.Z., Nie J. Effect of PVA content on morphology, swelling and mechanical property of crosslinked chitosan/PVA nanofibre. Plast. Rubber Compos. 2007;36:254–258. doi: 10.1179/174328907X191440. DOI
Yu Z., Li B., Chu J., Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr. Polym. 2018;184:214–220. doi: 10.1016/j.carbpol.2017.12.043. PubMed DOI
Bhajantri R.F., Ravindrachary V., Harisha A., Crasta V., Nayak S.P., Poojary B. Microstructural studies on BaCl2 doped poly(vinyl alcohol) Polymer. 2006;47:3591–3598. doi: 10.1016/j.polymer.2006.03.054. DOI
Liang S., Yang J., Zhang X., Bai Y. The thermal-electrical properties of polyvinyl alcohol/AgNO3 films. J. Appl. Polym. Sci. 2011;122:813–818. doi: 10.1002/app.34060. DOI
Chuang W.-Y., Young T.-H., Yao C.-H., Chiu W.-Y. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials. 1999;20:1479–1487. doi: 10.1016/S0142-9612(99)00054-X. PubMed DOI
Milosavljević N.B., Kljajević L.M., Popović I.G., Filipović J.M., Kalagasidis Krušić M.T. Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polym. Int. 2010;59:686–694.
Gonzalez-Campos J.B., Prokhorov E., Luna-Barcenas G., Fonseca-Garcia A., Sanchez I.C. Dielectric relaxations of chitosan: The effect of water on the α-relaxation and the glass transition temperature. J. Polym. Sci. Part B Polym. Phys. 2009;47:2259–2271. doi: 10.1002/polb.21823. DOI
Hu H., Xin J.H., Hu H., Chan A., He L. Glutaraldehyde–chitosan and poly(vinyl alcohol) blends, and fluorescence of their nano-silica composite films. Carbohydr. Polym. 2013;91:305–313. doi: 10.1016/j.carbpol.2012.08.038. PubMed DOI
Cascone M.G., Barbani N.P., Giusti C.C., Ciardelli G., Lazzeri L. Bioartificial polymeric materials based on polysaccharides. J. Biomater. Sci. Polym. Ed. 2001;12:267–281. doi: 10.1163/156856201750180807. PubMed DOI
Bonilla J., Fortunati E., Atarés L., Chiralt A., Kenny J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol—Chitosan biodegradable films. Food Hydrocoll. 2014;35:463–470. doi: 10.1016/j.foodhyd.2013.07.002. DOI
Lewandowska K. Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim. Acta. 2009;493:42–48. doi: 10.1016/j.tca.2009.04.003. DOI
Dehnad D., Mirzaei H., Emam-Djomeh Z., Jafari S.-M., Dadashi S. Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohydr. Polym. 2014;109:148–154. doi: 10.1016/j.carbpol.2014.03.063. PubMed DOI
Ahmad A.L., Yusuf N.M., Ooi B.S. Preparation and modification of poly(vinyl) alcohol membrane: Effect of crosslinking time towards its morphology. Desalination. 2012;287:35–40. doi: 10.1016/j.desal.2011.12.003. DOI
Hsieh W.-C., Chang C.-P., Lin S.-M. Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids Surf. B Biointerfaces. 2007;57:250–255. doi: 10.1016/j.colsurfb.2007.02.004. PubMed DOI
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Mansur H.S., Costa H.S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem. Eng. J. 2008;137:72–83. doi: 10.1016/j.cej.2007.09.036. DOI
Sasaki M., Hongo H., Hasegawa T., Suzuki R., Zhusheng L., de Freitas P.H.L., Yamada T., Oda K., Yamamoto T., Li M., et al. Morphological aspects of the biological function of the osteocytic lacunar canalicular system and of osteocyte-derived factors. Oral Sci. Int. 2012;9:1–8. doi: 10.1016/S1348-8643(12)00009-2. DOI
Bonewald L.F. The amazing osteocyte. J. Bone Miner. Res. 2011;26:229–238. doi: 10.1002/jbmr.320. PubMed DOI PMC
Bloch S.L., Kristensen S.L., Sørensen M.S. The viability of perilabyrinthine osteocytes: A quantitative study using bulk-stained undecalcified human temporal bones. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012;295:1101–1108. doi: 10.1002/ar.22492. PubMed DOI
Asran A.S., Henning S., Michler G.H. Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer. 2010;51:868–876. doi: 10.1016/j.polymer.2009.12.046. DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC