Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water

. 2018 Oct 04 ; 9 (1) : 4073. [epub] 20181004

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30287815

Grantová podpora
494188 Simons Foundation - International
290360 Simons Foundation - International
318881 Simons Foundation - International
EP/K004980/1 Engineering and Physical Sciences Research Council (EPSRC) - International

Odkazy

PubMed 30287815
PubMed Central PMC6172253
DOI 10.1038/s41467-018-06374-z
PII: 10.1038/s41467-018-06374-z
Knihovny.cz E-zdroje

Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.

Zobrazit více v PubMed

Gilbert W. The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Orgel LE. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. doi: 10.1080/10409230490460765. PubMed DOI

Islam S, Powner MW. Prebiotic systems chemistry: complexity overcoming clutter. Chem. 2017;2:470–501. doi: 10.1016/j.chempr.2017.03.001. DOI

Eschenmoser A. The search for the chemistry of life’s origin. Tetrahedron. 2007;63:12821–12844. doi: 10.1016/j.tet.2007.10.012. DOI

Anastasi C, et al. RNA: prebiotic product, or biotic invention? Chem. Biodivers. 2007;4:721–739. doi: 10.1002/cbdv.200790060. PubMed DOI

Taylor AI, et al. Catalysts from synthetic genetic polymers. Nature. 2015;518:427–430. doi: 10.1038/nature13982. PubMed DOI PMC

Fuller WD, Sanchez RA, Orgel LE. Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol. 1972;67:25–33. doi: 10.1016/0022-2836(72)90383-X. PubMed DOI

Joyce GF, Schwartz AW, Miller SL, Orgel LE. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA. 1987;84:4398–4402. doi: 10.1073/pnas.84.13.4398. PubMed DOI PMC

Eschenmoser A, Loewenthal E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 1992;21:1–16. doi: 10.1039/cs9922100001. DOI

Böhler C, Nielsen PE, Orgel LE. Template switching between PNA and RNA oligonucleotides. Nature. 1995;376:578–581. doi: 10.1038/376578a0. PubMed DOI

Eschenmoser A. Chemical etiology of nucleic acid structure. Science. 1999;284:2118–2124. doi: 10.1126/science.284.5423.2118. PubMed DOI

Nielsen PE. Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res. 1999;32:624–630. doi: 10.1021/ar980010t. DOI

Schöning KU, et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3ʹ → 2ʹ) oligonucleotide system. Science. 2000;290:1347–1351. doi: 10.1126/science.290.5495.1347. PubMed DOI

Orgel LE. Prebiotic adenine revisited: eutectics and photochemistry. Orig. Life Evol. Biosph. 2004;34:361–369. doi: 10.1023/B:ORIG.0000029882.52156.c2. PubMed DOI

Zhang L, Peritz A, Meggers E. A simple glycol nucleic acid. J. Am. Chem. Soc. 2005;127:4174–4175. doi: 10.1021/ja042564z. PubMed DOI

Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI

Sutherland JD. Ribonucleotides. Cold Spring Harb. Perspect. Biol. 2010;2:a005439. doi: 10.1101/cshperspect.a005439. PubMed DOI PMC

Powner MW, Sutherland JD. Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2870–2877. doi: 10.1098/rstb.2011.0134. PubMed DOI PMC

Rios AC, Tor Y. On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr. J. Chem. 2013;53:469–483. doi: 10.1002/ijch.201300009. PubMed DOI PMC

Hud NV, et al. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI

Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI

Stairs S, et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 2017;8:15270. doi: 10.1038/ncomms15270. PubMed DOI PMC

Kim HJ, Benner SA. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl Acad. Sci. USA. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC

Fialho DM, et al. Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Org. Biomol. Chem. 2018;16:1263–1271. doi: 10.1039/C7OB03017G. PubMed DOI

Martín-Pintado N, et al. The solution structure of double helical arabino nucleic acids (ANA and 2′F-ANA): effect of arabinoses in duplex-hairpin interconversion. Nucleic Acids Res. 2012;40:9329–9339. doi: 10.1093/nar/gks672. PubMed DOI PMC

Noronha AM, et al. Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures, and ribonuclease H susceptibility of ANA·RNA hybrid duplexes. Biochemistry. 2000;39:7050–7062. doi: 10.1021/bi000280v. PubMed DOI

Li F, et al. 2′-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H. Biochemistry. 2006;45:4141–4152. doi: 10.1021/bi052322r. PubMed DOI PMC

Pinheiro VB, et al. Synthetic genetic polymers capable of heredity and evolution. Science. 2012;336:341–344. doi: 10.1126/science.1217622. PubMed DOI PMC

Van Nguyen K, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI

Leman L, Orgel L, Ghadiri MR. Carbonyl sulfide-mediated prebiotic formation of peptides. Science. 2004;306:283–286. doi: 10.1126/science.1102722. PubMed DOI

Bowler FR, et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 2013;5:383–389. doi: 10.1038/nchem.1626. PubMed DOI PMC

Heuberger BD, Pal A, Del Frate F, Topkar VV, Szostak JW. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J. Am. Chem. Soc. 2015;137:2769–2775. doi: 10.1021/jacs.5b00445. PubMed DOI PMC

Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015;7:301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC

Islam S, Bucar DK, Powner MW. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 2017;9:584–589. doi: 10.1038/nchem.2703. DOI

Xu J, et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC

Ikehara M, Ogiso Y. Studies of nucleosides and nucleotides—LIV. Purine cyclonucleosides—19. Further investigations on the cleavage of the 8,2ʹ-O-anhydro linkage. A new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron. 1972;28:3695–3704. doi: 10.1016/S0040-4020(01)93816-5. DOI

Kasting JF. Earth’s early atmosphere. Science. 1993;259:920–926. doi: 10.1126/science.11536547. PubMed DOI

Ribas I, et al. Evolution of the solar activity over time and effects on planetary atmospheres. II. κ-1 Ceti, an analog of the sun when life arose on earth. Astrophys. J. 2010;714:384–395. doi: 10.1088/0004-637X/714/1/384. DOI

Ranjan S, Sasselov DD. Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology. 2016;16:1–80. doi: 10.1089/ast.2015.1359. PubMed DOI

Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015;5:82–95. doi: 10.1002/wcms.1206. DOI

Hättig C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2) Adv. Quantum Chem. 2005;50:37–60. doi: 10.1016/S0065-3276(05)50003-0. DOI

Martínez-Fernández L, Corral I, Granucci G, Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem. Sci. 2014;5:1336. doi: 10.1039/c3sc52856a. DOI

Pollum M, Crespo-Hernández CE. Communication: the dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J. Chem. Phys. 2014;140:071101. doi: 10.1063/1.4866447. PubMed DOI

Taras-Goślińska K, Burdziński G, Wenska G. Relaxation of the T1excited state of 2-thiothymine, its riboside and deoxyriboside-enhanced nonradiative decay rate induced by sugar substituent. J. Photochem. Photobiol. A Chem. 2014;275:89–95. doi: 10.1016/j.jphotochem.2013.11.003. DOI

Mai S, et al. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms13077. PubMed DOI PMC

Bai S, Barbatti M. On the decay of the triplet state of thionucleobases. Phys. Chem. Chem. Phys. 2017;19:12674–12682. doi: 10.1039/C7CP02050C. PubMed DOI

El-Sayed MA. Spin—orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 1963;38:2834–2838. doi: 10.1063/1.1733610. DOI

Fernández-García C, Grefenstette NM, Powner MW. Prebiotic synthesis of aminooxazoline-5′-phosphates in water by oxidative phosphorylation. Chem. Commun. 2017;53:4919–4921. doi: 10.1039/C7CC02183F. PubMed DOI

Coggins AJ, Powner MW. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 2016;9:310–317. doi: 10.1038/nchem.2624. PubMed DOI

Kasting JF, Holland HD, Pinto JP. Oxidant abundances in rainwater and the evolution of atmospheric oxygen. J. Geophys. Res. 1985;90:10497–10510. doi: 10.1029/JD090iD06p10497. PubMed DOI

Sochacka E, Bartos P, Kraszewska K, Nawrot B. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6–7.6 is pH-dependent and results in two distinct products. Bioorg. Med. Chem. Lett. 2013;23:5803–5805. doi: 10.1016/j.bmcl.2013.08.114. PubMed DOI

Hazen RM. Paleomineralogy of the hadean eon: a preliminary species list. Am. J. Sci. 2013;313:807–843. doi: 10.2475/09.2013.01. DOI

Trail D, Watson EB, Tailby ND. The oxidation state of hadean magmas and implications for early earth’s atmosphere. Nature. 2011;480:79–82. doi: 10.1038/nature10655. PubMed DOI

Ranjan, S., Todd, Z. R., Sutherland, J. D. & Sasselov, D. D. Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry. Preprint at https://arxiv.org/abs/1801.07725 (2018). PubMed PMC

Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017).

Liang MC, Hartman H, Kopp RE, Kirschvink JL, Yung YL. Production of hydrogen peroxide in the atmosphere of a snowball earth and the origin of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA. 2006;103:18896–18899. doi: 10.1073/pnas.0608839103. PubMed DOI PMC

Trofimov AB, Schirmer J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B At. Mol. Opt. Phys. 1995;28:2299–2324. doi: 10.1088/0953-4075/28/12/003. DOI

Finley J, Malmqvist PAring, Roos BO, Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998;288:299–306. doi: 10.1016/S0009-2614(98)00252-8. DOI

O’boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008;29:839–845. doi: 10.1002/jcc.20823. PubMed DOI

Levine BG, Coe JD, Martínez TJ. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2) J. Phys. Chem. B. 2008;112:405–413. doi: 10.1021/jp0761618. PubMed DOI

Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI

Aquilante F, et al. Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016;37:506–541. doi: 10.1002/jcc.24221. PubMed DOI

Knizia G, Klein JEMN. Electron flow in reaction mechanisms-revealed from first principles. Angew. Chem. Int. Ed. 2015;54:5518–5522. doi: 10.1002/anie.201410637. PubMed DOI

CrysAllisPro. Oxford Diffraction (Agilent Technologies, Inc., Yarnton, 2014).

Sheldrick GM, IUCr. A short history of SHELIX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace