Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
494188
Simons Foundation - International
290360
Simons Foundation - International
318881
Simons Foundation - International
EP/K004980/1
Engineering and Physical Sciences Research Council (EPSRC) - International
PubMed
30287815
PubMed Central
PMC6172253
DOI
10.1038/s41467-018-06374-z
PII: 10.1038/s41467-018-06374-z
Knihovny.cz E-zdroje
- MeSH
- arabinonukleosidy biosyntéza MeSH
- fotochemické procesy MeSH
- merkaptopurin MeSH
- oxidace-redukce MeSH
- původ života * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arabinonukleosidy MeSH
- merkaptopurin MeSH
Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.
Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Institute of Physics Polish Academy of Sciences Al Lotników 32 46 PL 02668 Warsaw Poland
Zobrazit více v PubMed
Gilbert W. The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Orgel LE. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004;39:99–123. doi: 10.1080/10409230490460765. PubMed DOI
Islam S, Powner MW. Prebiotic systems chemistry: complexity overcoming clutter. Chem. 2017;2:470–501. doi: 10.1016/j.chempr.2017.03.001. DOI
Eschenmoser A. The search for the chemistry of life’s origin. Tetrahedron. 2007;63:12821–12844. doi: 10.1016/j.tet.2007.10.012. DOI
Anastasi C, et al. RNA: prebiotic product, or biotic invention? Chem. Biodivers. 2007;4:721–739. doi: 10.1002/cbdv.200790060. PubMed DOI
Taylor AI, et al. Catalysts from synthetic genetic polymers. Nature. 2015;518:427–430. doi: 10.1038/nature13982. PubMed DOI PMC
Fuller WD, Sanchez RA, Orgel LE. Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol. 1972;67:25–33. doi: 10.1016/0022-2836(72)90383-X. PubMed DOI
Joyce GF, Schwartz AW, Miller SL, Orgel LE. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA. 1987;84:4398–4402. doi: 10.1073/pnas.84.13.4398. PubMed DOI PMC
Eschenmoser A, Loewenthal E. Chemistry of potentially prebiological natural products. Chem. Soc. Rev. 1992;21:1–16. doi: 10.1039/cs9922100001. DOI
Böhler C, Nielsen PE, Orgel LE. Template switching between PNA and RNA oligonucleotides. Nature. 1995;376:578–581. doi: 10.1038/376578a0. PubMed DOI
Eschenmoser A. Chemical etiology of nucleic acid structure. Science. 1999;284:2118–2124. doi: 10.1126/science.284.5423.2118. PubMed DOI
Nielsen PE. Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res. 1999;32:624–630. doi: 10.1021/ar980010t. DOI
Schöning KU, et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3ʹ → 2ʹ) oligonucleotide system. Science. 2000;290:1347–1351. doi: 10.1126/science.290.5495.1347. PubMed DOI
Orgel LE. Prebiotic adenine revisited: eutectics and photochemistry. Orig. Life Evol. Biosph. 2004;34:361–369. doi: 10.1023/B:ORIG.0000029882.52156.c2. PubMed DOI
Zhang L, Peritz A, Meggers E. A simple glycol nucleic acid. J. Am. Chem. Soc. 2005;127:4174–4175. doi: 10.1021/ja042564z. PubMed DOI
Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459:239–242. doi: 10.1038/nature08013. PubMed DOI
Sutherland JD. Ribonucleotides. Cold Spring Harb. Perspect. Biol. 2010;2:a005439. doi: 10.1101/cshperspect.a005439. PubMed DOI PMC
Powner MW, Sutherland JD. Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. B Biol. Sci. 2011;366:2870–2877. doi: 10.1098/rstb.2011.0134. PubMed DOI PMC
Rios AC, Tor Y. On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr. J. Chem. 2013;53:469–483. doi: 10.1002/ijch.201300009. PubMed DOI PMC
Hud NV, et al. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013;20:466–474. doi: 10.1016/j.chembiol.2013.03.012. PubMed DOI
Becker S, et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 2016;352:833–836. doi: 10.1126/science.aad2808. PubMed DOI
Stairs S, et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 2017;8:15270. doi: 10.1038/ncomms15270. PubMed DOI PMC
Kim HJ, Benner SA. Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. Proc. Natl Acad. Sci. USA. 2017;114:11315–11320. doi: 10.1073/pnas.1710778114. PubMed DOI PMC
Fialho DM, et al. Glycosylation of a model proto-RNA nucleobase with non-ribose sugars: implications for the prebiotic synthesis of nucleosides. Org. Biomol. Chem. 2018;16:1263–1271. doi: 10.1039/C7OB03017G. PubMed DOI
Martín-Pintado N, et al. The solution structure of double helical arabino nucleic acids (ANA and 2′F-ANA): effect of arabinoses in duplex-hairpin interconversion. Nucleic Acids Res. 2012;40:9329–9339. doi: 10.1093/nar/gks672. PubMed DOI PMC
Noronha AM, et al. Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures, and ribonuclease H susceptibility of ANA·RNA hybrid duplexes. Biochemistry. 2000;39:7050–7062. doi: 10.1021/bi000280v. PubMed DOI
Li F, et al. 2′-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H. Biochemistry. 2006;45:4141–4152. doi: 10.1021/bi052322r. PubMed DOI PMC
Pinheiro VB, et al. Synthetic genetic polymers capable of heredity and evolution. Science. 2012;336:341–344. doi: 10.1126/science.1217622. PubMed DOI PMC
Van Nguyen K, Burrows CJ. A prebiotic role for 8-oxoguanosine as a flavin mimic in pyrimidine dimer photorepair. J. Am. Chem. Soc. 2011;133:14586–14589. doi: 10.1021/ja2072252. PubMed DOI
Leman L, Orgel L, Ghadiri MR. Carbonyl sulfide-mediated prebiotic formation of peptides. Science. 2004;306:283–286. doi: 10.1126/science.1102722. PubMed DOI
Bowler FR, et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 2013;5:383–389. doi: 10.1038/nchem.1626. PubMed DOI PMC
Heuberger BD, Pal A, Del Frate F, Topkar VV, Szostak JW. Replacing uridine with 2-thiouridine enhances the rate and fidelity of nonenzymatic RNA primer extension. J. Am. Chem. Soc. 2015;137:2769–2775. doi: 10.1021/jacs.5b00445. PubMed DOI PMC
Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015;7:301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC
Islam S, Bucar DK, Powner MW. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 2017;9:584–589. doi: 10.1038/nchem.2703. DOI
Xu J, et al. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017;9:303–309. doi: 10.1038/nchem.2664. PubMed DOI PMC
Ikehara M, Ogiso Y. Studies of nucleosides and nucleotides—LIV. Purine cyclonucleosides—19. Further investigations on the cleavage of the 8,2ʹ-O-anhydro linkage. A new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron. 1972;28:3695–3704. doi: 10.1016/S0040-4020(01)93816-5. DOI
Kasting JF. Earth’s early atmosphere. Science. 1993;259:920–926. doi: 10.1126/science.11536547. PubMed DOI
Ribas I, et al. Evolution of the solar activity over time and effects on planetary atmospheres. II. κ-1 Ceti, an analog of the sun when life arose on earth. Astrophys. J. 2010;714:384–395. doi: 10.1088/0004-637X/714/1/384. DOI
Ranjan S, Sasselov DD. Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology. 2016;16:1–80. doi: 10.1089/ast.2015.1359. PubMed DOI
Dreuw A, Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015;5:82–95. doi: 10.1002/wcms.1206. DOI
Hättig C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2) Adv. Quantum Chem. 2005;50:37–60. doi: 10.1016/S0065-3276(05)50003-0. DOI
Martínez-Fernández L, Corral I, Granucci G, Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem. Sci. 2014;5:1336. doi: 10.1039/c3sc52856a. DOI
Pollum M, Crespo-Hernández CE. Communication: the dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J. Chem. Phys. 2014;140:071101. doi: 10.1063/1.4866447. PubMed DOI
Taras-Goślińska K, Burdziński G, Wenska G. Relaxation of the T1excited state of 2-thiothymine, its riboside and deoxyriboside-enhanced nonradiative decay rate induced by sugar substituent. J. Photochem. Photobiol. A Chem. 2014;275:89–95. doi: 10.1016/j.jphotochem.2013.11.003. DOI
Mai S, et al. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016;7:1–8. doi: 10.1038/ncomms13077. PubMed DOI PMC
Bai S, Barbatti M. On the decay of the triplet state of thionucleobases. Phys. Chem. Chem. Phys. 2017;19:12674–12682. doi: 10.1039/C7CP02050C. PubMed DOI
El-Sayed MA. Spin—orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 1963;38:2834–2838. doi: 10.1063/1.1733610. DOI
Fernández-García C, Grefenstette NM, Powner MW. Prebiotic synthesis of aminooxazoline-5′-phosphates in water by oxidative phosphorylation. Chem. Commun. 2017;53:4919–4921. doi: 10.1039/C7CC02183F. PubMed DOI
Coggins AJ, Powner MW. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 2016;9:310–317. doi: 10.1038/nchem.2624. PubMed DOI
Kasting JF, Holland HD, Pinto JP. Oxidant abundances in rainwater and the evolution of atmospheric oxygen. J. Geophys. Res. 1985;90:10497–10510. doi: 10.1029/JD090iD06p10497. PubMed DOI
Sochacka E, Bartos P, Kraszewska K, Nawrot B. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6–7.6 is pH-dependent and results in two distinct products. Bioorg. Med. Chem. Lett. 2013;23:5803–5805. doi: 10.1016/j.bmcl.2013.08.114. PubMed DOI
Hazen RM. Paleomineralogy of the hadean eon: a preliminary species list. Am. J. Sci. 2013;313:807–843. doi: 10.2475/09.2013.01. DOI
Trail D, Watson EB, Tailby ND. The oxidation state of hadean magmas and implications for early earth’s atmosphere. Nature. 2011;480:79–82. doi: 10.1038/nature10655. PubMed DOI
Ranjan, S., Todd, Z. R., Sutherland, J. D. & Sasselov, D. D. Sulfidic anion concentrations on early earth for surficial origins-of-life chemistry. Preprint at https://arxiv.org/abs/1801.07725 (2018). PubMed PMC
Catling, D. C. & Kasting, J. F. Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017).
Liang MC, Hartman H, Kopp RE, Kirschvink JL, Yung YL. Production of hydrogen peroxide in the atmosphere of a snowball earth and the origin of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA. 2006;103:18896–18899. doi: 10.1073/pnas.0608839103. PubMed DOI PMC
Trofimov AB, Schirmer J. An efficient polarization propagator approach to valence electron excitation spectra. J. Phys. B At. Mol. Opt. Phys. 1995;28:2299–2324. doi: 10.1088/0953-4075/28/12/003. DOI
Finley J, Malmqvist PAring, Roos BO, Serrano-Andrés L. The multi-state CASPT2 method. Chem. Phys. Lett. 1998;288:299–306. doi: 10.1016/S0009-2614(98)00252-8. DOI
O’boyle NM, Tenderholt AL, Langner KM. cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 2008;29:839–845. doi: 10.1002/jcc.20823. PubMed DOI
Levine BG, Coe JD, Martínez TJ. Optimizing conical intersections without derivative coupling vectors: application to multistate multireference second-order perturbation theory (MS-CASPT2) J. Phys. Chem. B. 2008;112:405–413. doi: 10.1021/jp0761618. PubMed DOI
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Aquilante F, et al. Molcas 8: new capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016;37:506–541. doi: 10.1002/jcc.24221. PubMed DOI
Knizia G, Klein JEMN. Electron flow in reaction mechanisms-revealed from first principles. Angew. Chem. Int. Ed. 2015;54:5518–5522. doi: 10.1002/anie.201410637. PubMed DOI
CrysAllisPro. Oxford Diffraction (Agilent Technologies, Inc., Yarnton, 2014).
Sheldrick GM, IUCr. A short history of SHELIX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides
2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions