• This record comes from PubMed

Electrically induced and detected Néel vector reversal in a collinear antiferromagnet

. 2018 Nov 08 ; 9 (1) : 4686. [epub] 20181108

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 30409971
PubMed Central PMC6224378
DOI 10.1038/s41467-018-07092-2
PII: 10.1038/s41467-018-07092-2
Knihovny.cz E-resources

Antiferromagnets are enriching spintronics research by many favorable properties that include insensitivity to magnetic fields, neuromorphic memory characteristics, and ultra-fast spin dynamics. Designing memory devices with electrical writing and reading is one of the central topics of antiferromagnetic spintronics. So far, such a combined functionality has been demonstrated via 90° reorientations of the Néel vector generated by the current-induced spin orbit torque and sensed by the linear-response anisotropic magnetoresistance. Here we show that in the same antiferromagnetic CuMnAs films as used in these earlier experiments we can also control 180° Néel vector reversals by switching the polarity of the writing current. Moreover, the two stable states with opposite Néel vector orientations in this collinear antiferromagnet can be electrically distinguished by measuring a second-order magnetoresistance effect. We discuss the general magnetic point group symmetries allowing for this electrical readout effect and its specific microscopic origin in CuMnAs.

See more in PubMed

Chappert C, Fert A, Van Dau FN. The emergence of spin electronics in data storage. Nat. Mater. 2007;6:813–823. doi: 10.1038/nmat2024. PubMed DOI

MacDonald AH, Tsoi M. Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011;369:3098–3114. doi: 10.1098/rsta.2011.0014. PubMed DOI

Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI

Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI

Jungwirth T, et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018;14:200–203. doi: 10.1038/s41567-018-0063-6. DOI

Železný J, Wadley P, Olejník K, Hoffmann A, Ohno H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 2018;14:220–228. doi: 10.1038/s41567-018-0062-7. DOI

Grimmer H. General relations for transport properties in magnetically ordered crystals. Acta Crystallogr. Sect. A. 1993;49:763–771. doi: 10.1107/S0108767393003770. DOI

Chen H, Niu Q, MacDonald AH. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI

Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI

Nayak AK, et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016;2:e1501870. doi: 10.1126/sciadv.1501870. PubMed DOI PMC

Liu ZQ, et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 2018;1:172–177. doi: 10.1038/s41928-018-0040-1. DOI

Železný J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI

Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI

Roy P, Otxoa RM, Wunderlich J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B. 2016;94:014439. doi: 10.1103/PhysRevB.94.014439. DOI

Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 2017;8:15434. doi: 10.1038/ncomms15434. PubMed DOI PMC

Bodnar SY, et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 2018;9:348. doi: 10.1038/s41467-017-02780-x. PubMed DOI PMC

Meinert M, Graulich D, Matalla-Wagner T. Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. Phys. Rev. Appl. 2018;9:064040. doi: 10.1103/PhysRevApplied.9.064040. DOI

Zhou XF, et al. Strong orientation-dependent spin-orbit torque in thin films of the antiferromagnet Mn2Au. Phys. Rev. Appl. 2018;9:054028. doi: 10.1103/PhysRevApplied.9.054028. DOI

Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI

Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI

Marti X, et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014;13:367–374. doi: 10.1038/nmat3861. PubMed DOI

Kriegner D, et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016;7:11623. doi: 10.1038/ncomms11623. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Ultrashort spin-orbit torque generated by femtosecond laser pulses

. 2022 Dec 13 ; 12 (1) : 21550. [epub] 20221213

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...