Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains

. 2019 May ; 64 (3) : 273-281. [epub] 20181117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30449016

Grantová podpora
STM.A130.17.034 Uniwersytet Medyczny im. Piastów Slaskich we Wroclawiu
ST.A130.16.031 Uniwersytet Medyczny im. Piastów Slaskich we Wroclawiu

Odkazy

PubMed 30449016
PubMed Central PMC6529389
DOI 10.1007/s12223-018-0665-5
PII: 10.1007/s12223-018-0665-5
Knihovny.cz E-zdroje

The variability of Helicobacter pylori morphology and the heterogeneity of virulence factors expressed by these bacteria play a key role as a driving force for adaptation to the hostile stomach environment. The aim of the study was to determine the relationship between the presence of certain genes encoding virulence factors and H. pylori morphology. One reference and 13 clinical H. pylori strains with a known virulence profile (vacA, cagA, babA2, dupA, and iceA) were used in this study. Bacteria were cultured for 1 h and 24 h in stressogenic culture conditions, i.e., serum-free BHI broths at suboptimal conditions (room temperature and atmosphere, without shaking). H. pylori cell morphology was observed by light and scanning electron microscopy. The vacA polymorphism and the cagA and babA2 presence were positively correlated with the reduction in cell size. Exposure to short-time stressogenic conditions caused more intense transformation to coccoid forms in highly pathogenic H. pylori type I strains (35.83% and 47.5% for type I s1m2 and I s1m1, respectively) than in intermediate-pathogenic type III (8.17%) and low pathogenic type II (9.92%) strains. The inverse relationship was observed for the number of rods, which were more common in type III (46.83%) and II (48.42%) strains than in type I s1m2 (19.25%) or I s1m1 (6.58%) strains. Our results suggest that there is a close relationship between the presence of virulence genes of H. pylori strains and their adaptive morphological features.

Zobrazit více v PubMed

Amieva M, Peek RM. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology. 2016;150:64–78. doi: 10.1053/j.gastro.2015.09.004. PubMed DOI PMC

Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization. World J Gastroenterol. 2017;23:4158–4169. doi: 10.3748/wjg.v23.i23.4158. PubMed DOI PMC

Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest. 2009;119:2475–2487. doi: 10.1172/JCI38605. PubMed DOI PMC

Azevedo NF, Almeida C, Cerqueira L, Dias S, Keevil CW, Vieira MJ. Coccoid form of Helicobacter pylori as a morphological manifestation of cell adaptation to the environment. Appl Environ Microbiol. 2007;73:3423–3427. doi: 10.1128/AEM.00047-07. PubMed DOI PMC

Biernat M, Iwańczak B, Grabińska J, Junka A, Łaczmański Ł, Gościniak G (2010) The prevalence of dupA gene of H. pylori strains in Polish children. Helicobacter 15:366

Biernat M, Gościniak G, Iwańczak B. Prevalence of Helicobacter pylori cagA, vacA, iceA, babA2 genotypes in Polish children and adolescents with gastroduodenal disease. Postepy Hig Med Dosw. 2014;68:1015–1021. doi: 10.5604/17322693.1118211. PubMed DOI

Cellini L, Grande R, Di Campli E, Traini T, Di Giulio M, Lannutti SN, Lattanzio R. Dynamic colonization of Helicobacter pylori in human gastric mucosa. Scand J Gastroenterol. 2008;43:178–185. doi: 10.1080/00365520701675965. PubMed DOI

Chaiyanan S, Chaiyanan S, Grim C, Maugel T, Huq A, Colwell RR. Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environ Microbiol. 2007;9:393–402. doi: 10.1111/j.1462-2920.2006.01150.x. PubMed DOI

Chaput C, Ecobichon C, Cayet N, Girardin SE, Werts C, Guadagnini S, Prévost MC, Mengin-Lecreulx D, Labigne A, Boneca IG. Role of AmiA in the morphological transition of Helicobacter pylori and in immune escape. PLoS Pathog. 2006;2:e97. doi: 10.1371/journal.ppat.0020097. PubMed DOI PMC

Chiou PY, Luo CH, Chang KC, Lin NT. Maintenance of the cell morphology by MinC in Helicobacter pylori. PLoS One. 2013;8:e71208. doi: 10.1371/journal.pone.0071208. PubMed DOI PMC

Dalia AB, Weiser JN. Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe. 2011;10:486–496. doi: 10.1016/j.chom.2011.09.009. PubMed DOI PMC

Faghri J, Poursina F, Moghim S, Zarkesh Esfahani H, Nasr Esfahani B, Fazeli H, Mirzaei N, Jamshidian A, Ghasemian Safaei H. Morphological and bactericidal effects of different antibiotics on Helicobacter pylori. Jundishapur J Microbiol. 2014;7:e8704. doi: 10.5812/jjm.8704. PubMed DOI PMC

Ghaffar NM, Connerton PL, Connerton IF. Filamentation of Campylobacter in broth cultures. Front Microbiol. 2015;6:657. doi: 10.3389/fmicb.2015.00657. PubMed DOI PMC

Hirsch C, Tegtmeyer N, Rohde M, Rowland M, Oyarzabal OA, Backert S. Live Helicobacter pylori in the root canal of endodontic-infected deciduous teeth. J Gastroenterol. 2012;47:936–940. doi: 10.1007/s00535-012-0618-8. PubMed DOI

Horvath DJ, Jr, Dabdoub SM, Li B, Vanderbrink BA, Justice SS. New paradigms of urinary tract infections: implications for patient management. Indian J Urol. 2012;28:154–158. doi: 10.4103/0970-1591.98455. PubMed DOI PMC

Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci. 2006;103:19884–19889. doi: 10.1073/pnas.0606329104. PubMed DOI PMC

Justice SS, Harrison A, Becknell B, Mason KM. Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett. 2014;360:1–8. doi: 10.1111/1574-6968.12602. PubMed DOI PMC

Krebs SJ, Taylor RK. Nutrient-dependent, rapid transition of Vibrio cholerae to coccoid morphology and expression of the toxin co-regulated pilus in this form. Microbiology. 2011;157:2942–2953. doi: 10.1099/mic.0.048561-0. PubMed DOI PMC

Krogfelt KA, Poulsen LK, Molin S. Identification of coccoid Escherichia coli BJ4 cells in the large intestine of streptomycin-treated mice. Infect Immun. 1993;61:5029–5034. PubMed PMC

Larussa T, Leone I, Suraci E, Imeneo M, Luzza F. Helicobacter pylori and T helper cells: mechanisms of immune escape and tolerance. J Immunol Res. 2015;2015:1–10. doi: 10.1155/2015/981328. PubMed DOI PMC

Loke MF, Ng CG, Vilashni Y, Lim J, Ho B. Understanding the dimorphic lifestyles of human gastric pathogen Helicobacter pylori using the SWATH-based proteomics approach. Sci Rep. 2016;6:26784. doi: 10.1038/srep26784. PubMed DOI PMC

Lu H, Hsu PI, Graham DY, Yamaoka Y. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology. 2005;128:833–848. doi: 10.1053/j.gastro.2005.01.009. PubMed DOI PMC

Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol. 2016;22:6619–6628. doi: 10.3748/wjg.v22.i29.6619. PubMed DOI PMC

Macegoniuk K, Grela E, Biernat M, Psurski M, Gościniak G, Dziełak A, Mucha A, Wietrzyk J, Berlicki Ł, Grabowiecka A. Aminophosphinates against Helicobacter pylori ureolysis - biochemical and whole-cell inhibition characteristics. PLoS One. 2017;12:e0182437. doi: 10.1371/journal.pone.0182437. PubMed DOI PMC

Malfertheiner P, Megraud F, O’Morain CA, Gisbert JP, Kuipers EJ, Axon AT, Bazzoli F, Gasbarrini A, Atherton J, Graham DY, Hunt R, Moayyedi P, Rokkas T, Rugge M, Selgrad M, Suerbaum S, Sugano K, El-Omar EM, European Helicobacter and Microbiota Study Group and Consensus panel Management of Helicobacter pylori infection - the Maastricht V/Florence consensus report. Gut. 2017;66:6–30. doi: 10.1136/gutjnl-2016-312288. PubMed DOI

Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1:1311–1315. doi: 10.1016/S0140-6736(84)91816-6. PubMed DOI

Nayak AK, Rose JB. Detection of Helicobacter pylori in sewage and water using a new quantitative PCR method with SYBR® green. J Appl Microbiol. 2007;103:1931–1941. doi: 10.1111/j.1365-2672.2007.03435.x. PubMed DOI

Odenbreit S, Swoboda K, Barwig I, Ruhl S, Borén T, Koletzko S, Haas R. Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun. 2009;77:3782–3790. doi: 10.1128/IAI.00364-09. PubMed DOI PMC

Park SA, Ko A, Lee NG. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol. 2011;11:96. doi: 10.1186/1471-2180-11-96. PubMed DOI PMC

Queiroz DM, Rocha GA, Rocha AM, Moura SB, Saraiva IE, Gomes LI, Soares TF, Melo FF, Cabral MM, Oliveira CA. DupA polymorphisms and risk of Helicobacter pylori-associated diseases. Int J Med Microbiol. 2011;301:225–228. doi: 10.1016/j.ijmm.2010.08.019. PubMed DOI

Ramamurthy T, Ghosh A, Pazhani GP, Shinoda S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health. 2014;2:103. doi: 10.3389/fpubh.2014.00103. PubMed DOI PMC

Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, Atherton JC. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007;133:926–936. doi: 10.1053/j.gastro.2007.06.056. PubMed DOI

Roesler BM, Rabelo-Gonçalves EMA, Zeitune JMR (2014) Virulence factors of Helicobacter pylori: a review. Clin Med Insights Gastroenterol 7:9–17 PubMed PMC

Rossetti V, Ammann TW, Thurnheer T, Bagheri HC, Belibasakis GN. Phenotypic diversity of multicellular filamentation in oral streptococci. PLoS One. 2013;8:e76221. doi: 10.1371/journal.pone.0076221. PubMed DOI PMC

Shao C, Zhou Y, Sun Y, Wang H, Qu W, Yu H, Chen C, Jia J. Analysis of aztreonam-inducing proteome changes in nondividing filamentous Helicobacter pylori. Curr Microbiol. 2012;65:108–115. doi: 10.1007/s00284-012-0132-5. PubMed DOI

Shiota S, Matsunari O, Watada M, Hanada K, Yamaoka Y. Systematic review and meta-analysis: the relationship between the Helicobacter pylori dupA gene and clinical outcomes. Gut Pathog. 2010;2:13. doi: 10.1186/1757-4749-2-13. PubMed DOI PMC

Shiota S, Watada M, Matsunari O, Iwatani S, Suzuki R, Yamaoka Y. Helicobacter pylori iceA, clinical outcomes, and correlation with cagA: a meta-analysis. PLoS One. 2012;7:e30354. doi: 10.1371/journal.pone.0030354. PubMed DOI PMC

Singh M, Prasad K, Yachha S. Elongated Helicobacter pylori in gastric mucosa of children associated with gastric disease. J Pediatr Infect Dis. 2015;3:35–39. doi: 10.1055/s-0035-1556967. DOI

Takeuchi H, Nakazawa T, Okamoto T, Shirai M, Kimoto M, Nishioka M, Con SA, Morimoto N, Sugiura T. Cell elongation and cell death of Helicobacter pylori is modulated by the disruption of cdrA (cell division-related gene A) Microbiol Immunol. 2006;50:487–497. doi: 10.1111/j.1348-0421.2006.tb03819.x. PubMed DOI

Talebi Bezmin Abadi A. Strategies used by Helicobacter pylori to establish persistent infection. World J Gastroenterol. 2017;23:2870–2882. doi: 10.3748/wjg.v23.i16.2870. PubMed DOI PMC

Talebi Bezmin Abadi A, Taghvaei T, Wolfram L, Kusters JG. Infection with Helicobacter pylori strains lacking dupA is associated with an increased risk of gastric ulcer and gastric cancer development. J Med Microbiol. 2012;61:23–30. doi: 10.1099/jmm.0.027052-0. PubMed DOI

Torres LE, Melián K, Moreno A, Alonso J, Sabatier CA, Hernández M, Bermúdez L, Rodríguez BL. Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol. 2009;15:204–210. doi: 10.3748/wjg.15.204. PubMed DOI PMC

Veyrier FJ, Biais N, Morales P, Belkacem N, Guilhen C, Ranjeva S, Sismeiro O, Péhau-Arnaudet G, Rocha EP, Werts C, Taha MK, Boneca IG. Common cell shape evolution of two nasopharyngeal pathogens. PLoS Genet. 2015;11:e1005338. doi: 10.1371/journal.pgen.1005338. PubMed DOI PMC

Vitoriano I, Saraiva-Pava KD, Rocha-Gonçalves A, Santos A, Lopes AI, Oleastro M, Roxo-Rosa M. Ulcerogenic Helicobacter pylori strains isolated from children: a contribution to get insight into the virulence of the bacteria. PLoS One. 2011;6:e26265. doi: 10.1371/journal.pone.0026265. PubMed DOI PMC

Xiang Z, Censini S, Bayeli PF, Telford JL, Figura N, Rappuoli R, Covacci A. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun. 1995;63:94–98. PubMed PMC

Zambon CF, Navaglia F, Basso D, Rugge M, Plebani M. Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J Clin Pathol. 2003;56:287–291. doi: 10.1136/jcp.56.4.287. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...