The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No "Strain," No Gain

. 2018 ; 9 () : 1969. [epub] 20190109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30687364

The topic of Cannabis curries controversy in every sphere of influence, whether politics, pharmacology, applied therapeutics or even botanical taxonomy. Debate as to the speciation of Cannabis, or a lack thereof, has swirled for more than 250 years. Because all Cannabis types are eminently capable of cross-breeding to produce fertile progeny, it is unlikely that any clear winner will emerge between the "lumpers" vs. "splitters" in this taxonomical debate. This is compounded by the profusion of Cannabis varieties available through the black market and even the developing legal market. While labeled "strains" in common parlance, this term is acceptable with respect to bacteria and viruses, but not among Plantae. Given that such factors as plant height and leaflet width do not distinguish one Cannabis plant from another and similar difficulties in defining terms in Cannabis, the only reasonable solution is to characterize them by their biochemical/pharmacological characteristics. Thus, it is best to refer to Cannabis types as chemical varieties, or "chemovars." The current wave of excitement in Cannabis commerce has translated into a flurry of research on alternative sources, particularly yeasts, and complex systems for laboratory production have emerged, but these presuppose that single compounds are a desirable goal. Rather, the case for Cannabis synergy via the "entourage effect" is currently sufficiently strong as to suggest that one molecule is unlikely to match the therapeutic and even industrial potential of Cannabis itself as a phytochemical factory. The astounding plasticity of the Cannabis genome additionally obviates the need for genetic modification techniques.

Zobrazit více v PubMed

Anderson L. C. (1980). Leaf variation among

Appendino G., Taglialatela-Scafati O., Minassi A., Pollastro F., Ballero L. M., Maxia A., et al. (2015).

Bailey L. H., Bailey E. Z. (1976).

Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M. H., Vogel Z., et al. (1998). An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. PubMed DOI

Berman P., Futoran K., Lewitus G. M., Mukha D., Benami M., Shlomi T., et al. (2018). A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in PubMed DOI PMC

Blasco-Benito S., Seijo-Vila M., Caro-Villalobos M., Tundidor I., Andradas C., Garcia-Taboada E., et al. (2018). Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. PubMed DOI

Bohlmann F., Hoffmann E. (1979). Cannabigerol-ahnliche verbindungen aus DOI

Bonn-Miller M. O., ElSohly M. A., Loflin M. J. E., Chandra S., Vandrey R. (2018). Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches. PubMed DOI PMC

Booth J. K., Page J. E., Bohlmann J. (2017). Terpene synthases from PubMed DOI PMC

Brickell C. D., Alexander C., David J. C., Hetterscheid W. L. A., Leslie A. C., Malecot V., et al. (2009).

Carvalho A., Hansen E. H., Kayser O., Carlsen S., Stehle F. (2017). Designing microorganisms for heterologous biosynthesis of cannabinoids. PubMed DOI PMC

Clarke R. C., Merlin M. D. (2013).

Clarke R. C., Merlin M. D. (2016). DOI

Cunha J. M., Carlini E. A., Pereira A. E., Ramos O. L., Pimentel C., Gagliardi R., et al. (1980). Chronic administration of cannabidiol to healthy volunteers and epileptic patients. PubMed DOI

Datwyler S. L., Weiblen G. D. (2006). Genetic variation in hemp and marijuana ( PubMed DOI

de Meijer E. (2004). “The breeding of cannabis cultivars for pharmaceutical end uses,” in

de Meijer E. P., Bagatta M., Carboni A., Crucitti P., Moliterni V. M., Ranalli P., et al. (2003). The inheritance of chemical phenotype in PubMed PMC

de Meijer E. P. M., Hammond K. M. (2005). The inheritance of chemical phenotype in DOI

de Meijer E. P. M., Hammond K. M., Micheler M. (2009a). The inheritance of chemical phenotype in

de Meijer E. P. M., Hammond K. M., Sutton A. (2009b). The inheritance of chemical phenotype in

Devinsky O., Cross J. H., Laux L., Marsh E., Miller I., Nabbout R., et al. (2017). Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. PubMed DOI

Devinsky O., Marsh E., Friedman D., Thiele E., Laux L., Sullivan J., et al. (2016). Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. PubMed DOI

Devinsky O., Patel A. D., Thiele E. A., Wong M. H., Appleton R., Harden C. L., et al. (2018). Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. PubMed DOI PMC

Dufresnes C., Jan C., Bienert F., Goudet J., Fumagalli L. (2017). Broad-scale genetic diversity of PubMed DOI PMC

Elzinga S., Fischedick J., Podkolinski R., Raber J. C. (2015). Cannabinoids and terpenes as chemotaxonomic markers in cannabis.

Farhi M., Marhevka E., Masci T., Marcos E., Eyal Y., Ovadis M., et al. (2011). Harnessing yeast subcellular compartments for the production of plant terpenoids. PubMed DOI

Food and Drug Administration (2015). DOI

Fuchs L. (1999).

Gallily R., Yekhtin Z., Hanus L. (2014). Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. DOI

Gaoni Y., Mechoulam R. (1964). Isolation, structure and partial synthesis of an active constituent of hashish. DOI

Goldstein B. (2016).

Hillig K. W. (2005a). A combined analysis of agronomic traits and allozyme allele frequencies for 69 DOI

Hillig K. W. (2005b). Genetic evidence for speciation in DOI

Hillig K. W., Mahlberg P. G. (2004). A chemotaxonomic analysis of cannabinoid variation in PubMed DOI

Johnson J. R., Burnell-Nugent M., Lossignol D., Ganae-Motan E. D., Potts R., Fallon M. T. (2010). Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. PubMed DOI

Lamarck J. B. (1783).

Lewis M. A., Russo E. B., Smith K. M. (2018). Pharmacological foundations of Cannabis chemovars. PubMed DOI

Linnaeus C. (1753).

McPartland J., Guy G. W., Hegman W. (2018). DOI

McPartland J. M. (2018). PubMed DOI PMC

McPartland J. M., Clarke R. C., Watson D. P. (2000). DOI

McPartland J. M., Guy G. W. (2017). Models of cannabis taxonomy, cultural bias, and conflicts between scientific and vernacular names. DOI

McPartland J. M., Mediavilla V. (2001). “Non-cannabinoids in cannabis,” in

McPartland J. M., Pruitt P. L. (1999). Side effects of pharmaceuticals not elicited by comparable herbal medicines: the case of tetrahydrocannabinol and marijuana. PubMed

McPartland J. M., Russo E. B. (2001). Cannabis and cannabis extracts: greater than the sum of their parts? DOI

McPartland J. M., Russo E. B. (2014). “Non-phytocannabinoid constituents of cannabis and herbal synergy,” in

Mechoulam R., Ben-Shabat S. (1999). From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. PubMed DOI

Oswald M., Fischer M., Dirninger N., Karst F. (2007). Monoterpenoid biosynthesis in PubMed DOI

Pacher P., Mechoulam R. (2011). Is lipid signaling through cannabinoid 2 receptors part of a protective system? PubMed DOI PMC

Pamplona F. A., da Silva L. R., Coan A. C. (2018). Potential clinical benefits of CBD-rich PubMed DOI PMC

Piomelli D., Russo E. B. (2016). The PubMed DOI PMC

Russo E. B. (2007). History of cannabis and its preparations in saga, science, and sobriquet. PubMed DOI

Russo E. B. (2011). Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. PubMed DOI PMC

Russo E. B. (2016). Beyond Cannabis: plants and the endocannabinoid system. PubMed DOI

Russo E. B. (2017). Cannabis and epilepsy: an ancient treatment returns to the fore. PubMed DOI

Russo E. B., Jiang H. E., Li X., Sutton A., Carboni A., del Bianco F., et al. (2008). Phytochemical and genetic analyses of ancient cannabis from Central Asia. PubMed DOI PMC

Russo E. B., Marcu J. (2017). Cannabis pharmacology: the usual suspects and a few promising leads. PubMed DOI

Russo E. B., McPartland J. M. (2003). Cannabis is more than simply Delta(9)-tetrahydrocannabinol. PubMed DOI

Sawler J., Stout J. M., Gardner K. M., Hudson D., Vidmar J., Butler L., et al. (2015). The genetic structure of marijuana and hemp. PubMed DOI PMC

Schultes R., Klein W., Plowman T., Lockwood T. (1974). Cannabis: an example of taxonomic neglect.

Shoyama Y., Takeuchi A., Taura F., Tamada T., Adachi M., Kuroki R., et al. (2005). Crystallization of Delta1-tetrahydrocannabinolic acid (THCA) synthase from PubMed DOI PMC

Sirikantaramas S., Morimoto S., Shoyama Y., Ishikawa Y., Wada Y., Shoyama Y., et al. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Delta1-tetrahydrocannabinolic acid synthase from PubMed DOI

Small E. (2015). Evolution and classification of DOI

Small E. (2017).

Small E., Cronquist A. (1976). A practical and natural taxonomy for DOI

Small E., Marcus D. (2003). Tetrahydrocannabinol levels in hemp ( DOI

Song B.-H., Wang X.-Q., Li F.-Z., Hong D.-Y. (2001). Furnter evidence for the paraphyly of the Celtidaceae from the chloroplast gene mat K. DOI

Sulak D., Saneto R., Goldstein B. (2017). The current status of artisanal cannabis for the treatment of epilepsy in the United States. PubMed DOI

Taura F., Dono E., Sirikantaramas S., Yoshimura K., Shoyama Y., Morimoto S. (2007). Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic PubMed DOI

Taura F., Morimoto S., Shoyama Y. (1996). Purification and characterization of cannabidiolic-acid synthase from PubMed DOI

Thiele E. A., Marsh E. D., French J. A., Mazurkiewicz-Beldzinska M., Benbadis S. R., Joshi C., et al. (2018). Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. PubMed DOI

Usher G. (1996).

van Bakel H., Stout J. M., Cote A. G., Tallon C. M., Sharpe A. G., Hughes T. R., et al. (2011). The draft genome and transcriptome of PubMed DOI PMC

Weigreffe S. J., Sytsma K. J., Guries R. P. (1998). The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping. DOI

Wilkinson J. D., Whalley B. J., Baker D., Pryce G., Constanti A., Gibbons S., et al. (2003). Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects? PubMed DOI

Wirtshafter D. (1997). “Nutritional value of hemp seed and hemp seed oil,” in

Xi Z. X., Peng X. Q., Li X., Song R., Zhang H. Y., Liu Q. R., et al. (2011). Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. PubMed DOI PMC

Yang M.-Q., van Velzen R., Bakker F. T., Sattarian A., Li D.-Z., Yi T.-S. (2013). Molecular phylogenetics and character evolution of Cannabaceae. DOI

Zirpel B., Degenhardt F., Martin C., Kayser O., Stehle F. (2017). Engineering yeasts as platform organisms for cannabinoid biosynthesis. PubMed DOI

Zirpel B., Degenhardt F., Zammarelli C., Wibberg D., Kalinowski J., Stehle F., et al. (2018). Optimization of Delta(9)-tetrahydrocannabinolic acid synthase production in PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...