The Case for the Entourage Effect and Conventional Breeding of Clinical Cannabis: No "Strain," No Gain
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30687364
PubMed Central
PMC6334252
DOI
10.3389/fpls.2018.01969
Knihovny.cz E-zdroje
- Klíčová slova
- cannabidiol, cannabinoid, cannabis, genetically modified organism, genomics, hemp, marijuana, tetrahydrocannabinol,
- Publikační typ
- časopisecké články MeSH
The topic of Cannabis curries controversy in every sphere of influence, whether politics, pharmacology, applied therapeutics or even botanical taxonomy. Debate as to the speciation of Cannabis, or a lack thereof, has swirled for more than 250 years. Because all Cannabis types are eminently capable of cross-breeding to produce fertile progeny, it is unlikely that any clear winner will emerge between the "lumpers" vs. "splitters" in this taxonomical debate. This is compounded by the profusion of Cannabis varieties available through the black market and even the developing legal market. While labeled "strains" in common parlance, this term is acceptable with respect to bacteria and viruses, but not among Plantae. Given that such factors as plant height and leaflet width do not distinguish one Cannabis plant from another and similar difficulties in defining terms in Cannabis, the only reasonable solution is to characterize them by their biochemical/pharmacological characteristics. Thus, it is best to refer to Cannabis types as chemical varieties, or "chemovars." The current wave of excitement in Cannabis commerce has translated into a flurry of research on alternative sources, particularly yeasts, and complex systems for laboratory production have emerged, but these presuppose that single compounds are a desirable goal. Rather, the case for Cannabis synergy via the "entourage effect" is currently sufficiently strong as to suggest that one molecule is unlikely to match the therapeutic and even industrial potential of Cannabis itself as a phytochemical factory. The astounding plasticity of the Cannabis genome additionally obviates the need for genetic modification techniques.
Zobrazit více v PubMed
Anderson L. C. (1980). Leaf variation among Cannabis species from a controlled garden. Bot. Mus. Lealf. Harv. Univ. 28 61–69.
Appendino G., Taglialatela-Scafati O., Minassi A., Pollastro F., Ballero L. M., Maxia A., et al. (2015). Helichrysum italicum: the sleeping giant of Mediterranean herbal medicine. Herbalgram 105 34–45.
Bailey L. H., Bailey E. Z. (1976). Hortus Third: A Concise Dictionary of Plants Cultivated in the United States and Canada. New York, NY: Macmillan.
Ben-Shabat S., Fride E., Sheskin T., Tamiri T., Rhee M. H., Vogel Z., et al. (1998). An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur. J. Pharmacol. 353 23–31. 10.1016/S0014-2999(98)00392-6 PubMed DOI
Berman P., Futoran K., Lewitus G. M., Mukha D., Benami M., Shlomi T., et al. (2018). A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci. Rep. 8:14280. 10.1038/s41598-018-32651-4 PubMed DOI PMC
Blasco-Benito S., Seijo-Vila M., Caro-Villalobos M., Tundidor I., Andradas C., Garcia-Taboada E., et al. (2018). Appraising the “entourage effect”: antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 157 285–293. 10.1016/j.bcp.2018.06.025 PubMed DOI
Bohlmann F., Hoffmann E. (1979). Cannabigerol-ahnliche verbindungen aus Helichrysum umbraculigerum. Phytochemistry 18 1371–1374. 10.1016/0031-9422(79)83025-3 DOI
Bonn-Miller M. O., ElSohly M. A., Loflin M. J. E., Chandra S., Vandrey R. (2018). Cannabis and cannabinoid drug development: evaluating botanical versus single molecule approaches. Int. Rev. Psychiatry 30 277–284. 10.1080/09540261.2018.1474730 PubMed DOI PMC
Booth J. K., Page J. E., Bohlmann J. (2017). Terpene synthases from Cannabis sativa. PLoS One 12:e0173911. 10.1371/journal.pone.0173911 PubMed DOI PMC
Brickell C. D., Alexander C., David J. C., Hetterscheid W. L. A., Leslie A. C., Malecot V., et al. (2009). International Code of Nomenclature for Cultivated Plants. Leuven: International Society for Horticultural Science.
Carvalho A., Hansen E. H., Kayser O., Carlsen S., Stehle F. (2017). Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res. 17:fox037. 10.1093/femsyr/fox037 PubMed DOI PMC
Clarke R. C., Merlin M. D. (2013). Cannabis: Evolution and Ethnobotany. Berkeley, CA: University of California Press.
Clarke R. C., Merlin M. D. (2016). Cannabis domestication, breeding history, present-day genetic diversity, and future prospects. Crit. Rev. Plant Sci. 35 293–327. 10.1080/07352689.2016.1267498 DOI
Cunha J. M., Carlini E. A., Pereira A. E., Ramos O. L., Pimentel C., Gagliardi R., et al. (1980). Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21 175–185. 10.1159/000137430 PubMed DOI
Datwyler S. L., Weiblen G. D. (2006). Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J. Forensic Sci. 51 371–375. 10.1111/j.1556-4029.2006.00061.x PubMed DOI
de Meijer E. (2004). “The breeding of cannabis cultivars for pharmaceutical end uses,” in Medicinal Uses of Cannabis and Cannabinoids eds Guy G. W., Whittle B. A., Robson P. (London: Pharmaceutical Press; ) 55–70.
de Meijer E. P., Bagatta M., Carboni A., Crucitti P., Moliterni V. M., Ranalli P., et al. (2003). The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163 335–346. PubMed PMC
de Meijer E. P. M., Hammond K. M. (2005). The inheritance of chemical phenotype in Cannabis sativa L. (II): cannabigerol predominant plants. Euphytica 145 189–198. 10.1007/s10681-005-1164-8 DOI
de Meijer E. P. M., Hammond K. M., Micheler M. (2009a). The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene proportion. Euphytica 165 293–311.
de Meijer E. P. M., Hammond K. M., Sutton A. (2009b). The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168 95–112.
Devinsky O., Cross J. H., Laux L., Marsh E., Miller I., Nabbout R., et al. (2017). Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N. Engl. J. Med. 376 2011–2020. 10.1056/NEJMoa1611618 PubMed DOI
Devinsky O., Marsh E., Friedman D., Thiele E., Laux L., Sullivan J., et al. (2016). Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. 15 270–278. 10.1016/S1474-4422(15)00379-8 PubMed DOI
Devinsky O., Patel A. D., Thiele E. A., Wong M. H., Appleton R., Harden C. L., et al. (2018). Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology 90 e1204–e1211. 10.1212/WNL.0000000000005254 PubMed DOI PMC
Dufresnes C., Jan C., Bienert F., Goudet J., Fumagalli L. (2017). Broad-scale genetic diversity of Cannabis for forensic applications. PLoS One 12:e0170522. 10.1371/journal.pone.0170522 PubMed DOI PMC
Elzinga S., Fischedick J., Podkolinski R., Raber J. C. (2015). Cannabinoids and terpenes as chemotaxonomic markers in cannabis. Nat. Prod. Chem. Res. 3:181.
Farhi M., Marhevka E., Masci T., Marcos E., Eyal Y., Ovadis M., et al. (2011). Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab. Eng. 13 474–481. 10.1016/j.ymben.2011.05.001 PubMed DOI
Food and Drug Administration (2015). Botanical Drug Development Guidance for Industry ed. Services U.S.D.o.H.a.H. (Washington, DC: Food and Drug Administration; ). 10.1016/j.ymben.2011.05.001 DOI
Fuchs L. (1999). The Great Herbal of Leonhart Fuchs: De Historia Stirpium Commentarii Insignes, 1542 (Notable Commentaries on the History of Plants). Stanford, CA: Stanford University Press.
Gallily R., Yekhtin Z., Hanus L. (2014). Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacol. Pharm. 6 75–85. 10.4236/pp.2015.62010 DOI
Gaoni Y., Mechoulam R. (1964). Isolation, structure and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86 1646–1647. 10.1021/ja01062a046 DOI
Goldstein B. (2016). Cannabis in the Treatment of Pediatric Epilepsy. Chicago, IL: O’Shaughnessy’s; 7–9.
Hillig K. W. (2005a). A combined analysis of agronomic traits and allozyme allele frequencies for 69 Cannabis accessions. J. Ind. Hemp 10 17–30. 10.1300/J237v10n01_03 DOI
Hillig K. W. (2005b). Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 52 161–180. 10.1007/s10722-003-4452-y PubMed DOI
Hillig K. W., Mahlberg P. G. (2004). A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am. J. Bot. 91 966–975. 10.3732/ajb.91.6.966 PubMed DOI
Johnson J. R., Burnell-Nugent M., Lossignol D., Ganae-Motan E. D., Potts R., Fallon M. T. (2010). Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J. Pain Symptom Manage. 39 167–179. 10.1016/j.jpainsymman.2009.06.008 PubMed DOI
Lamarck J. B. (1783). Encyclopédie Méthodique Botanique. Paris: Chez Panckoucke.
Lewis M. A., Russo E. B., Smith K. M. (2018). Pharmacological foundations of Cannabis chemovars. Planta Med. 84 225–233. 10.1055/s-0043-122240 PubMed DOI
Linnaeus C. (1753). Species Plantarum. Holmiae: Laurentii Salvii.
McPartland J., Guy G. W., Hegman W. (2018). Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: a probabilistic synthesis of fossil pollen studies. Veg. His. Archaeobot. 27 635–648. 10.1007/s00334-018-0678-7 DOI
McPartland J. M. (2018). Cannabis systematics at the levels of family, genus and species. Cannabis Cannabinoid Res. 3 203–212. 10.1089/can.2018.0039 PubMed DOI PMC
McPartland J. M., Clarke R. C., Watson D. P. (2000). Hemp Diseases and Pests: Management and Biological Control. Wallingford: CABI; 10.1079/9780851994543.0000 DOI
McPartland J. M., Guy G. W. (2017). Models of cannabis taxonomy, cultural bias, and conflicts between scientific and vernacular names. Bot. Rev. 83 327–381. 10.1007/s12229-017-9187-0 DOI
McPartland J. M., Mediavilla V. (2001). “Non-cannabinoids in cannabis,” in Cannabis and Cannabinoids eds Grotenhermen F., Russo E. B. (Binghamton, NY: Haworth Press; ) 401–409.
McPartland J. M., Pruitt P. L. (1999). Side effects of pharmaceuticals not elicited by comparable herbal medicines: the case of tetrahydrocannabinol and marijuana. Altern. Ther. Health Med. 5 57–62. PubMed
McPartland J. M., Russo E. B. (2001). Cannabis and cannabis extracts: greater than the sum of their parts? J. Cannabis Ther. 1 103–132. 10.1300/J175v01n03_08 DOI
McPartland J. M., Russo E. B. (2014). “Non-phytocannabinoid constituents of cannabis and herbal synergy,” in Handbook of Cannabis ed. Pertwee R. G. (Oxford: Oxford University Press; ) 280–295.
Mechoulam R., Ben-Shabat S. (1999). From gan-zi-gun-nu to anandamide and 2-arachidonoylglycerol: the ongoing story of cannabis. Nat. Prod. Rep. 16 131–143. 10.1039/a703973e PubMed DOI
Oswald M., Fischer M., Dirninger N., Karst F. (2007). Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 7 413–421. 10.1111/j.1567-1364.2006.00172.x PubMed DOI
Pacher P., Mechoulam R. (2011). Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res. 50 193–211. 10.1016/j.plipres.2011.01.001 PubMed DOI PMC
Pamplona F. A., da Silva L. R., Coan A. C. (2018). Potential clinical benefits of CBD-rich Cannabis extracts over purified CBD in treatment-resistant epilepsy: observational data meta-analysis. Front. Neurol. 9:759. 10.3389/fneur.2018.00759 PubMed DOI PMC
Piomelli D., Russo E. B. (2016). The Cannabis sativa versus Cannabis indica debate: an interview with Ethan Russo, MD. Cannabis Cannabinoid Res. 1 44–46. 10.1089/can.2015.29003.ebr PubMed DOI PMC
Russo E. B. (2007). History of cannabis and its preparations in saga, science, and sobriquet. Chem. Biodivers. 4 1614–1648. 10.1002/cbdv.200790144 PubMed DOI
Russo E. B. (2011). Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163 1344–1364. 10.1111/j.1476-5381.2011.01238.x PubMed DOI PMC
Russo E. B. (2016). Beyond Cannabis: plants and the endocannabinoid system. Trends Pharmacol. Sci. 37 594–605. 10.1016/j.tips.2016.04.005 PubMed DOI
Russo E. B. (2017). Cannabis and epilepsy: an ancient treatment returns to the fore. Epilepsy Behav. 70(Pt B) 292–297. 10.1016/j.yebeh.2016.09.040 PubMed DOI
Russo E. B., Jiang H. E., Li X., Sutton A., Carboni A., del Bianco F., et al. (2008). Phytochemical and genetic analyses of ancient cannabis from Central Asia. J. Exp. Bot. 59 4171–4182. 10.1093/jxb/ern260 PubMed DOI PMC
Russo E. B., Marcu J. (2017). Cannabis pharmacology: the usual suspects and a few promising leads. Adv. Pharmacol. 80 67–134. 10.1016/bs.apha.2017.03.004 PubMed DOI
Russo E. B., McPartland J. M. (2003). Cannabis is more than simply Delta(9)-tetrahydrocannabinol. Psychopharmacology 165 431–432. 10.1007/s00213-002-1348-z PubMed DOI
Sawler J., Stout J. M., Gardner K. M., Hudson D., Vidmar J., Butler L., et al. (2015). The genetic structure of marijuana and hemp. PLoS One 10:e0133292. 10.1371/journal.pone.0133292 PubMed DOI PMC
Schultes R., Klein W., Plowman T., Lockwood T. (1974). Cannabis: an example of taxonomic neglect. Bot. Mus. Lealf. Harv. Univ. 23 337–367.
Shoyama Y., Takeuchi A., Taura F., Tamada T., Adachi M., Kuroki R., et al. (2005). Crystallization of Delta1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61(Pt 8) 799–801. 10.1107/S1744309105023365 PubMed DOI PMC
Sirikantaramas S., Morimoto S., Shoyama Y., Ishikawa Y., Wada Y., Shoyama Y., et al. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279 39767–39774. 10.1074/jbc.M403693200 PubMed DOI
Small E. (2015). Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot. Rev. 81 189–294. 10.1007/s12229-015-9157-3 DOI
Small E. (2017). Cannabis: A Complete Guide. Boca Raton, FL: CRC Press.
Small E., Cronquist A. (1976). A practical and natural taxonomy for Cannabis. Taxon 25 405–435. 10.2307/1220524 DOI
Small E., Marcus D. (2003). Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ. Bot. 57 545–558. 10.1663/0013-0001(2003)057[0545:TLIHCS]2.0.CO;2 DOI
Song B.-H., Wang X.-Q., Li F.-Z., Hong D.-Y. (2001). Furnter evidence for the paraphyly of the Celtidaceae from the chloroplast gene mat K. Plant Syst. Evol. 228 107–115. 10.1007/s006060170041 DOI
Sulak D., Saneto R., Goldstein B. (2017). The current status of artisanal cannabis for the treatment of epilepsy in the United States. Epilepsy Behav. 70(Pt B) 328–333. 10.1016/j.yebeh.2016.12.032 PubMed DOI
Taura F., Dono E., Sirikantaramas S., Yoshimura K., Shoyama Y., Morimoto S. (2007). Production of Delta(1)-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem. Biophys. Res. Commun. 361 675–680. 10.1016/j.bbrc.2007.07.079 PubMed DOI
Taura F., Morimoto S., Shoyama Y. (1996). Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271 17411–17416. 10.1074/jbc.271.29.17411 PubMed DOI
Thiele E. A., Marsh E. D., French J. A., Mazurkiewicz-Beldzinska M., Benbadis S. R., Joshi C., et al. (2018). Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391 1085–1096. 10.1016/S0140-6736(18)30136-3 PubMed DOI
Usher G. (1996). The Wordsmith Dictionary of Botany. Ware: Wordsworth Reference.
van Bakel H., Stout J. M., Cote A. G., Tallon C. M., Sharpe A. G., Hughes T. R., et al. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biol. 12:R102. 10.1186/gb-2011-12-10-r102 PubMed DOI PMC
Weigreffe S. J., Sytsma K. J., Guries R. P. (1998). The Ulmaceae, one family or two? Evidence from chloroplast DNA restriction site mapping. Plant Syst. Evol. 210 249–270. 10.1007/BF00985671 DOI
Wilkinson J. D., Whalley B. J., Baker D., Pryce G., Constanti A., Gibbons S., et al. (2003). Medicinal cannabis: is delta9-tetrahydrocannabinol necessary for all its effects? J. Pharm. Pharmacol. 55 1687–1694. 10.1211/0022357022304 PubMed DOI
Wirtshafter D. (1997). “Nutritional value of hemp seed and hemp seed oil,” in Cannabis in Medical Practice ed. Mathre M. L. (Jefferson, NC: McFarland and Company; ) 181–191.
Xi Z. X., Peng X. Q., Li X., Song R., Zhang H. Y., Liu Q. R., et al. (2011). Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat. Neurosci. 14 1160–1166. 10.1038/nn.2874 PubMed DOI PMC
Yang M.-Q., van Velzen R., Bakker F. T., Sattarian A., Li D.-Z., Yi T.-S. (2013). Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62 473–485. 10.12705/623.9 DOI
Zirpel B., Degenhardt F., Martin C., Kayser O., Stehle F. (2017). Engineering yeasts as platform organisms for cannabinoid biosynthesis. J. Biotechnol. 259 204–212. 10.1016/j.jbiotec.2017.07.008 PubMed DOI
Zirpel B., Degenhardt F., Zammarelli C., Wibberg D., Kalinowski J., Stehle F., et al. (2018). Optimization of Delta(9)-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J. Biotechnol. 272–273, 40–47. 10.1016/j.jbiotec.2018.03.008 PubMed DOI