Optimal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Cut-Offs: A Cross-Sectional Study in the Czech Population
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA UPOL LF 2019
Univerzita Palackého v Olomouci
PubMed
31108989
PubMed Central
PMC6571793
DOI
10.3390/medicina55050158
PII: medicina55050158
Knihovny.cz E-zdroje
- Klíčová slova
- HOMA-IR, cut-off point, insulin resistance, prediabetes, type 2 diabetes mellitus,
- MeSH
- cholesterol analýza krev MeSH
- dospělí MeSH
- glukosa analýza MeSH
- glukózový toleranční test metody MeSH
- homeostáza účinky léků fyziologie MeSH
- inzulin analýza krev MeSH
- inzulinová rezistence fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- logistické modely MeSH
- odds ratio MeSH
- odhad potřeb MeSH
- průřezové studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cholesterol MeSH
- glukosa MeSH
- inzulin MeSH
Background and Objectives: The key pathogenetic mechanism of glucose metabolism disorders, insulin resistance (IR), can be assessed using the Homeostasis Model Assessment of IR (HOMA-IR). However, its application in clinical practice is limited due to the absence of cut-offs. In this study, we aimed to define the cut-offs for the Czech population. Methods: After undergoing anthropometric and biochemical studies, the sample of 3539 individuals was divided into either nondiabetics, including both subjects with normal glucose tolerance (NGT, n = 1947) and prediabetics (n = 1459), or diabetics (n = 133). The optimal HOMA-IR cut-offs between subgroups were determined to maximize the sum of the sensitivity and specificity for diagnosing type 2 diabetes mellitus (T2DM) or prediabetes. The predictive accuracy was illustrated using receiver operating characteristic (ROC) curves. Logistic regression was performed to assess the association between a target variable (presence/absence of T2DM) depending on the HOMA-IR score as well as on the age and sex. Results: The HOMA-IR cut-off between nondiabetics and diabetics for both sexes together was 3.63, with a sensitivity of 0.56 and a specificity of 0.86. The area under the ROC curve was 0.73 for T2DM diagnosing in both sexes. The HOMA-IR cut-off between the NGT subjects and prediabetics was 1.82, with a sensitivity of 0.60 and a specificity of 0.66. Logistic regression showed that increased HOMA-IR is a risk factor for the presence of T2DM (odds ratio (OR) 1.2, 95% confidence interval (CI) 1.14-1.28, p < 0.0001). The predictive ability of HOMA-IR in diagnosing T2DM is statistically significantly lower in females (OR 0.66, 95% CI 0.44-0.98). The results are valid for middle-aged European adults. Conclusions: The results suggest the existence of HOMA-IR cut-offs signaling established IR. Introduction of the instrument into common clinical practice, together with the known cut-offs, may contribute to preventing T2DM.
Zobrazit více v PubMed
Oni T., Unwin N. Why the communicable/non-communicable disease dichotomy is problematic for public health control strategies: Implications of multimorbidity for health systems in an era of health transition. Int. Health. 2015;7:390–399. doi: 10.1093/inthealth/ihv040. PubMed DOI PMC
Casagrande S.S., Menke A., Linder B., Osganian S.K., Cowie C.C. Cardiovascular risk factors in adolescents with prediabetes. Diabet. Med. 2018;35:1202–1209. doi: 10.1111/dme.13661. PubMed DOI PMC
Yamada C., Mitsuhashi T., Hiratsuka N., Inabe F., Araida N., Takahashi E. Optimal reference interval for homeostasis model assessment of insulin resistance in a Japanese population. J. Diabetes Investig. 2011;2:373–376. doi: 10.1111/j.2040-1124.2011.00113.x. PubMed DOI PMC
Tang Q., Li X., Song P., Xu L. Optimal cut-off values for the homeostasis model assessment of insulin resistance (HOMA-IR) and pre-diabetes screening: Developments in research and prospects for the future. Drug Discov. Ther. 2015;9:380–385. doi: 10.5582/ddt.2015.01207. PubMed DOI
Lee C.H., Shih A.Z., Woo Y.C., Fong C.H., Leung O.Y., Janus E., Cheung B.M., Lam K.S. Optimal cut-offs of homeostasis model assessment of insulin resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: A 15-year prospective study in Chinese. PLoS ONE. 2016;11:e0163424. doi: 10.1371/journal.pone.0163424. PubMed DOI PMC
Pisprasert V., Ingram K.H., Lopez-Davila M.F., Munoz A.J., Garvey W.T. Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: Impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care. 2013;36:845–853. doi: 10.2337/dc12-0840. PubMed DOI PMC
Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI
Ruopp M.D., Perkins N.J., Whitcomb B.W., Schisterman E.F. Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008;50:419–430. doi: 10.1002/bimj.200710415. PubMed DOI PMC
Alberti K.G.M.M., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., Fruchart J.C., James W.P.T., Loria C.M., Smith S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644. PubMed DOI
Bonora E., Targher G., Alberiche M., Bonadonna R.C., Saggiani F., Zenere M.B., Monauni T., Muggeo M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care. 2000;23:57–63. doi: 10.2337/diacare.23.1.57. PubMed DOI
Wallace T.M., Levy J.C., Matthews D.R. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–1495. doi: 10.2337/diacare.27.6.1487. PubMed DOI
Diabetes Prevention Program Research Group. Knowler W.C., Fowler S.E., Hamman R.F., Christophi C.A., Hoffman H.J., Brenneman A.T., Brown-Friday J.O., Goldberg R., Venditti E., et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–1686. doi: 10.1016/S0140-6736(09)61457-4. PubMed DOI PMC
Sumner A.E., Cowie C.C. Ethnic differences in the ability of triglyceride levels to identify insulin resistance. Atherosclerosis. 2008;196:696–703. doi: 10.1016/j.atherosclerosis.2006.12.018. PubMed DOI
Drabsch T., Holzapfel C., Stecher L., Petzold J., Skurk T., Hauner H. Associations between C-reactive protein, insulin sensitivity, and resting metabolic rate in adults: A mediator analysis. Front. Endocrinol. (Lausanne) 2018;9:556. doi: 10.3389/fendo.2018.00556. PubMed DOI PMC
Zhong V.W., Bancks M.P., Schreiner P.J., Lewis C.E., Steffen L.M., Meigs J.B., Schrader L.A., Schorr M., Miller K.K., Sidney S., et al. Insulin resistance since early adulthood and appendicular lean mass in middle-aged adults without diabetes: 20 years of the CARDIA study. J. Diabetes Complications. 2019;33:84–90. doi: 10.1016/j.jdiacomp.2018.09.011. PubMed DOI PMC
Cӑtoi A.F., Pârvu A.E., Andreicuț A.D., Mironiuc A., Crӑciun A., Cӑtoi C., Pop I.D. Metabolically healthy versus unhealthy morbidly obese: Chronic inflammation, nitro-oxidative stress, and insulin resistance. Nutrients. 2018;10:1199. doi: 10.3390/nu10091199. PubMed DOI PMC
Freeman A.M., Pennings N. Insulin Resistance. [(accessed on 15 December 2018)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK507839/
Singh Y., Garg M.K., Tandon N., Marwaha R.K. A study of insulin resistance by HOMA-IR and its cut-off value to identify metabolic syndrome in urban Indian adolescents. J. Clin. Res. Pediatr. Endocrinol. 2013;5:245–251. doi: 10.4274/Jcrpe.1127. PubMed DOI PMC
Cardenas-Vargas E., Nava J.A., Garza-Veloz I., Torres-Castañeda M.C., Galván-Tejada C.E., Cid-Baez M.A., Castañeda-Arteaga R.E., Ortiz-Castro Y., Trejo-Ortiz P.M., Araujo-Espino R., et al. The influence of obesity on puberty and insulin resistance in Mexican children. Int. J. Endocrinol. 2018;2018:7067292. doi: 10.1155/2018/7067292. PubMed DOI PMC
Diabetes Prevention Program Research Group. Perreault L., Pan Q., Mather K.J., Watson K.E., Hamman R.F., Kahn S.E. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: Results from the Diabetes Prevention Program Outcomes Study. Lancet. 2012;379:2243–2251. doi: 10.1016/S0140-6736(12)60525-X. PubMed DOI PMC
Kang E.S., Yun Y.S., Park S.W., Kim H.J., Ahn C.W., Song Y.D., Cha B.S., Lim S.K., Kim K.R., Lee H.C. Limitation of the validity of the homeostasis model assessment as an index of insulin resistance in Korea. Metabolism. 2005;54:206–211. doi: 10.1016/j.metabol.2004.08.014. PubMed DOI
The Changes of Cholesterol Profile at the Different Insulin Resistance Range in the Czech Republic