• This record comes from PubMed

Comprehensive Analysis of the Real Lifestyles of T1D Patients for the Purpose of Designing a Personalized Counselor for Prandial Insulin Dosing

. 2019 May 23 ; 11 (5) : . [epub] 20190523

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
No.15-25710A (P08 panel) The Czech Health Research Council

Post-prandial hyperglycemia is still a challenging issue in intensified insulin therapy. Data of 35 T1D patients during a four-week period were analyzed: RT-CGM (real time continuous glucose monitoring) record, insulin doses, diet (including meal photos), energy expenditure, and other relevant conditions. Patients made significant errors in carbohydrate counting (in 56% of cooked and 44% of noncooked meals), which resulted in inadequate insulin doses. Subsequently, a mobile application was programmed to provide individualized advice on prandial insulin dose. When using the application, a patient chooses only the type of categorized situation (e.g., meals with other relevant data) without carbohydrates counting. The application significantly improved postprandial glycemia as normoglycemia was reached in 95/105 testing sessions. Other important findings of the study include: A high intake of saturated fat (median: 162% of recommended intake); a low intake of fiber and vitamin C (median: 42% and 37%, respectively, of recommended intake); an increase in overweight/obesity status (according to body fat measurement), especially in women (median of body fat: 30%); and low physical activity (in 16/35 patients). The proposed individualized approach without carbohydrate counting may help reach postprandial normoglycemia but it is necessary to pay attention to the lifestyle habits of T1D patients too.

See more in PubMed

Skrha J., Sumnik Z., Pelikanova T., Kvapil M. Recommendation for management of the type 1 Diabetes mellitus. DMEV. 2016;19:156–159. (In Czech)

Kovatchev BP. Metrics for glycaemic control—from HbA1c to continuous glucose monitoring. Nat Rev Endocrinol. 2017;13:425–436. doi: 10.1038/nrendo.2017.3. PubMed DOI

Schmidt S., Nørgaard K. Bolus calculators. J. Diabetes Sci. Technol. 2014;8:1035–1041. doi: 10.1177/1932296814532906. PubMed DOI PMC

Kopecky M., Kikalova K., Charamza J. The secular trend in body height and weight in the adult population in the Czech Republic. Čas.Lék.čes. 2016;155:357–364. (In Czech) PubMed

Neu A., Lange K., Barrett T., Cameron F., Dorchy H., Hoey H., Jarosz-Chobot P., Mortensen H.B., Robert J.J., Robertson K., et al. Hvidoere Study Group Classifying insulin regimens—difficulties and proposal for comprehensive new definitions. Pediatr. Diabetes. 2015;16:402–406. doi: 10.1111/pedi.12275. PubMed DOI

Meade L.T., Rushton W.E. Accuracy of Carbohydrate Counting in Adults. Clin. Diabetes. 2016;34:142–147. doi: 10.2337/diaclin.34.3.142. PubMed DOI PMC

Gurnani M., Pais V., Cordeiro K., Steele S., Chen S., Hamilton J.K. One potato, two potato,… assessing carbohydrate counting accuracy in adolescents with type 1 diabetes. Pediatr. Diabetes. 2018;19:1302–1308. doi: 10.1111/pedi.12717. PubMed DOI

Uchendu C., Blake H. Effectiveness of cognitive-behavioural therapy on glycaemic control and psychological outcomes in adults with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabet Med. 2017;34:328–339. doi: 10.1111/dme.13195. PubMed DOI

Bally L., Dehais J., Nakas C.T., Anthimopoulos M., Laimer M., Rhyner D., Rosenberg G., Zueger T., Diem P., Mougiakakou S., et al. Carbohydrate Estimation Supported by the GoCARB System in Individuals With Type 1 Diabetes: A Randomized Prospective Pilot Study. Diabetes Care. 2017;40:e6–e7. doi: 10.2337/dc16-2173. PubMed DOI

Vasiloglou M.F., Mougiakakou S., Aubry E., Bokelmann A., Fricker R., Gomes F., Guntermann C., Meyer A., Studerus D., Stanga Z. A Comparative Study on Carbohydrate Estimation: GoCARB vs. Dietitians. Nutrients. 2018;10 doi: 10.3390/nu10060741. PubMed DOI PMC

Lee M., Gatton T.M., Lee K.K. A monitoring and advisory system for diabetes patient management using a rule-based method and KNN. Sensors. 2010;10:3934–3953. doi: 10.3390/s100403934. PubMed DOI PMC

Contreras I., Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J. Med. Internet. Res. 2018;20:e10775. doi: 10.2196/10775. PubMed DOI PMC

Boiroux D., Aradóttir T.B., Nørgaard K., Poulsen N.K., Madsen H., Jørgensen J.B. An Adaptive Nonlinear Basal-Bolus Calculator for Patients with Type 1 Diabetes. J. Diabetes Sci. Technol. 2017;11:29–36. doi: 10.1177/1932296816666295. PubMed DOI PMC

Pesl P., Herrero P., Reddy M., Xenou M., Oliver N., Johnston D., Toumazou C., Georgiou P. An Advanced Bolus Calculator for Type 1 Diabetes: System Architecture and Usability Results. IEEE J. Biomed. Health Inform. 2016;20:11–17. doi: 10.1109/JBHI.2015.2464088. PubMed DOI

Cappon G., Vettoretti M., Marturano F., Facchinetti A., Sparacino G. A Neural-Network-Based Approach to Personalize Insulin Bolus Calculation Using Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2018;12:265–272. doi: 10.1177/1932296818759558. PubMed DOI PMC

Vettoretti M., Cappon G., Acciaroli G., Facchinetti A., Sparacino G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018;12:1064–1071. doi: 10.1177/1932296818774078. PubMed DOI PMC

Katz M.L., Mehta S., Nansel T., Quinn H., Lipsky L.M., Laffel L.M. Associations of nutrient intake with glycemic control in youth with type 1 diabetes: Differences by insulin regimen. Diabetes Technol. Ther. 2014;16:512–518. doi: 10.1089/dia.2013.0389. PubMed DOI PMC

Merger S.R., Kerner W., Stadler M., Zeyfang A., Jehle P., Müller-Korbsch M., Holl R.W., DPV Initiative. German BMBF Competence Network Diabetes mellitus Prevalence and comorbidities of double diabetes. Diabetes Res. Clin. Pract. 2016;119:48–56. doi: 10.1016/j.diabres.2016.06.003. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...