Control of paratuberculosis: who, why and how. A review of 48 countries

. 2019 Jun 13 ; 15 (1) : 198. [epub] 20190613

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31196162
Odkazy

PubMed 31196162
PubMed Central PMC6567393
DOI 10.1186/s12917-019-1943-4
PII: 10.1186/s12917-019-1943-4
Knihovny.cz E-zdroje

Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis.

Animal Health and Welfare Northern Ireland Dungannon Enterprise Centre Dungannon BT71 6JT UK

Animal Health Australia Turner ACT 2612 Australia

Animal Health Care Flanders 2500 Lier Belgium

Animal Health Ireland Carrick on Shannon Co Leitrim N41 WN27 Republic of Ireland

Animal Health Service Thuringian Animal Diseases Fund 07745 Jena Germany

ANSES Laboratoire de Ploufragan Plouzané Niort and GDS France CS 28440 79024 Niort Cedex France

Atlantic Veterinary College Charlottetown Prince Edward Island C1A 4P3 Canada

Biosecurity Queensland Department of Agriculture and Fisheries Toowoomba Queensland 4350 Australia

Clinic for Obstetrics Gynecology and Andrology with Veterinary Ambulance Justus Liebig University Giessen 35392 Giessen Germany

College of Veterinary Medicine University of Minnesota St Paul MN 55108 USA

Comparative Medical Research Institute Tsukuba Ibaraki 305 0856 Japan

DeerPRO Dunedin 9016 New Zealand

Deparment of Biotechnology GLA University Mathura Uttar Pradesh 281 406 India

Department of Infectious Diseases College of Veterinary Medicine Seoul National University Seoul 08826 South Korea

Department of Population Medicine University of Guelph Guelph Ontario N1G 2W1 Canada

Department of Veterinary and Animal Sciences University of Copenhagen DK 1870 Frederiksberg C Denmark

Department of Veterinary Public Health and Preventive Medicine University of Ibadan Ibadan Nigeria

DILAB SENASA Martínez 1640 Buenos Aires Argentina

Disease Research Limited Invermay Agricultural Centre Mosgiel 9092 New Zealand

Escuela de Medicina Veterinaria Universidad de Antioquia Medellín Antioquia 050034076 Colombia

Fachabteilung Gesundheit und Pflegemanagement 8010 Graz Austria

Facultad de Ciencias Veterinarias Universidad Austral de Chile 5090000 Valdivia Chile

Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Autonoma de México 76750 Tequisquiapan Queretaro Mexico

Facultad de Veterinaria Lasplaces 1620 CP 11600 Montevideo Uruguay

Faculté de Médecine Vétérinaire University of Montreal Quebec J2S 6Z9 Canada

Faculty of Animal Science Veterinary Science and Fisheries Agriculture and Forestry University Rampur Chitwan Nepal

Faculty of Veterinary Medicine University of Calgary Calgary Alberta T2N 4N1 Canada

Faculty of Veterinary Medicine University of Thessaly 43100 Karditsa Greece

Faculty of Veterinary Medicine University of Warmia and Mazury 10 718 Olsztyn Poland

Faculty of Veterinary Science Bangladesh Agricultural University Mymensingh 2202 Bangladesh

Faculty of Veterinary Science University of Pretoria Onderstepoort 0110 South Africa

Federal Food Safety and Veterinary Office 3003 Bern Switzerland

Finnish Food Authority Mustialankatu 3 00790 Helsinki Finland

Friedrich Loeffler Institut Federal Research Institute of Animal Health 07743 Jena Germany

GD Animal Health 7400 AA Deventer The Netherlands

Institute for Experimental Pathology at Keldur University of Iceland IS 112 Reykjavík Iceland

Instituto de Investigación en Salud Pública y Zoonosis Universidad Central del Ecuador 17 03 100 Quito Ecuador

Instituto de Investigaciones Científicas y Servicios de Alta Tecnología City of Knowledge Panama City 0843 01103 Panama

Instituto Nacional de Tecnologia Agropecuaria 7620 Balcarce Argentina

Instituto Vasco de Investigacion y Desarrollo Agrario NEIKER 48160 Derio Bizkaia Spain

Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 29027 Podenzano Italy

Ministry of Agriculture and Fisheries Food and Environment ES 28071 Madrid Spain

Ministry of Health General Directorate of Animal Health and Veterinary Medicines 00144 Rome Italy

Ministry of Livestock Agriculture and Fisheries CP 11400 Montevideo Uruguay

Ministry of Livestock Agriculture and Fisheries of Uruguay CP 11300 Montevideo Uruguay

Moredun Research Institute Midlothian EH26 0PZ UK

National Centre for Animal Health Serbithang Bhutan

National Institute of Animal Health Chatuchak Bangkok 10900 Thailand

National Institute of Animal Health National Agriculture and Food Research Organization Tsukuba Ibaraki 305 0856 Japan

National Veterinary Institute SE 751 89 Uppsala Sweden

National Veterinary Institute Veterinary Faculty University of Ljubljana 1000 Ljubljana Slovenia

Niedersächsische Tierseuchenkasse 30169 Hannover Germany

Norwegian Veterinary Institute N 0106 Oslo Norway

Oniris INRA Department Farm Animal Health and Public Health 44307 Nantes cedex 3 France

Regional Association for Animal Identification and Health 5590 Ciney Belgium

School of Veterinary Medicine Shiraz University Shiraz 71441 69155 Iran

School of Veterinary Medicine The University of Zambia 10101 Lusaka Zambia

School of Veterinary Medicine University of Wisconsin Madison Wisconsin 53706 1102 USA

School of Veterinary Science Faculty of Science University of Sydney 425 Werombi Road Camden NSW 2570 Australia

School of Veterinary Sciences Massey University Palmerston North 4441 New Zealand

Scotland's Rural College Edinburgh EH9 3JG UK

Servicio Autonomo Instituto de Biomedicina Universidad Central de Venezuela Caracas Venezuela

Servicio Regional de Investigación y Desarrollo Agroalimentario 33300 Villaviciosa Asturias Spain

Swedish Farm and Animal Health 62254 Romakloster Sweden

USDA APHIS Veterinary Services Riverdale MD 20737 USA

Veterinary Department Universidade Federal de Viçosa Viçosa Minas Gerais 365700 900 Brazil

Veterinary Research Institute 621 00 Brno Czech Republic

Zobrazit více v PubMed

Whittington RJ, Begg DJ, de Silva K, Plain KM, Purdie AC. Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Vet Immunol Immunopathol. 2012;148(1–2):29–47. doi: 10.1016/j.vetimm.2011.03.003. PubMed DOI

Garcia-Ispierto I, Lopez-Gatius F. Early foetal loss correlates positively with seroconversion against Mycobacterium avium paratuberculosis in high-producing dairy cows. Reprod Domest Anim. 2016;51(2):227–231. doi: 10.1111/rda.12670. PubMed DOI

Hasanova L, Pavlik I. Economic impact of paratuberculosis in dairy herds: a review. Vet Med. 2006;51(5):193–211. doi: 10.17221/5539-VETMED. DOI

Benedictus G, Dijkhuizen AA, Stelwagen J. Economic losses due to paratuberculosis in dairy cattle. Vet Rec. 1987;121(7):142–146. doi: 10.1136/vr.121.7.142. PubMed DOI

Bates A, O'Brien R, Liggett S, Griffin F. The effect of sub-clinical infection with Mycobacterium avium subsp. paratuberculosis on milk production in a New Zealand dairy herd. BMC Vet Res. 2018;14(1):93. doi: 10.1186/s12917-018-1421-4. PubMed DOI PMC

Botaro BG, Ruelle E, More SJ, Strain S, Graham DA, O'Flaherty J, Shalloo L. Associations between paratuberculosis ELISA results and test-day records of cows enrolled in the Irish Johne’s disease control program. J Dairy Sci. 2017;100(9):7468–7477. doi: 10.3168/jds.2017-12749. PubMed DOI

Machado G, Kanankege K, Schumann V, Wells S, Perez A, Alvarez J. Identifying individual animal factors associated with Mycobacterium avium subsp. paratuberculosis (MAP) milk ELISA positivity in dairy cattle in the Midwest region of the United States. BMC Vet Res. 2018;14(1):28. doi: 10.1186/s12917-018-1354-y. PubMed DOI PMC

Martins EG, Oliveira P, Oliveira BM, Mendonca D, Niza-Ribeiro J. Association of paratuberculosis sero-status with milk production and somatic cell counts across 5 lactations, using multilevel mixed models, in dairy cows. J Dairy Sci. 2018;101(8):7638–7649. doi: 10.3168/jds.2017-13746. PubMed DOI

McAloon CG, Whyte P, More SJ, Green MJ, O'Grady L, Garcia A, Doherty ML. The effect of paratuberculosis on milk yield - a systematic review and meta-analysis. J Dairy Sci. 2016;99(2):1449–1460. doi: 10.3168/jds.2015-10156. PubMed DOI

Pritchard TC, Coffey MP, Bond KS, Hutchings MR, Wall E. Phenotypic effects of subclinical paratuberculosis (Johne’s disease) in dairy cattle. J Dairy Sci. 2017;100(1):679–690. doi: 10.3168/jds.2016-11323. PubMed DOI

Baptista FM, Nielsen SS, Toft N. Association between the presence of antibodies to Mycobacterium avium subspecies paratuberculosis and somatic cell count. J Dairy Sci. 2008;91(1):109–118. doi: 10.3168/jds.2007-0502. PubMed DOI

Dieguez FJ, Arnaiz I, Sanjuan ML, Vilar MJ, Yus E. Management practices associated with Mycobacterium avium subspecies paratuberculosis infection and the effects of the infection on dairy herds. Vet Rec. 2008;162(19):614–617. doi: 10.1136/vr.162.19.614. PubMed DOI

Rossi G, Grohn YT, Schukken YH, Smith RL. The effect of Mycobacterium avium ssp. paratuberculosis infection on clinical mastitis occurrence in dairy cows. J Dairy Sci. 2017;100(9):7446–7454. doi: 10.3168/jds.2017-12721. PubMed DOI

Wilson DJ, Rossiter C, Han HR, Sears PM. Financial effects of Mycobacterium-Paratuberculosis on mastitis, Milk-production, and cull rate in clinically Normal cows. Agri Practice. 1995;16(3):12–8.

Johnson-Ifearulundu YJ, Kaneene JB, Sprecher DJ, Gardiner JC, Lloyd JW. The effect of subclinical Mycobacterium paratuberculosis infection on days open in Michigan, USA, dairy cows. Prev Vet Med. 2000;46:171–181. doi: 10.1016/S0167-5877(00)00145-8. PubMed DOI

Raizman EA, Fetrow J, Wells SJ, Godden SM, Oakes MJ, Vazquez G. The association between Mycobacterium avium subsp. paratuberculosis fecal shedding or clinical Johne’s disease and lactation performance on two Minnesota, USA dairy farms. Prev Vet Med. 2007;78(3–4):179–195. doi: 10.1016/j.prevetmed.2006.10.006. PubMed DOI

Villarino MA, Jordan ER. Production impact of sub-clinical manifestations of bovine paratuberculosis in dairy cattle. In: Proceedings of the 8th International Colloquium on Paratuberculosis. Manning EJ, Nielsen SS. Copenhagen: International Association for Paratuberculosis; 2005: 269–69.

Raizman EA, Wells SJ, Godden SM, Fetrow J, Oakes JM. The associations between culling due to clinical Johne’s disease or the detection of Mycobacterium avium subsp. paratuberculosis fecal shedding and the diagnosis of clinical or subclinical diseases in two dairy herds in Minnesota, USA. Prev Vet Med. 2007;80(2–3):166–178. doi: 10.1016/j.prevetmed.2007.02.005. PubMed DOI

Raizman EA, Fetrow JP, Wells SJ. Loss of income from cows shedding Mycobacterium avium subspecies paratuberculosis prior to calving compared with cows not shedding the organism on two Minnesota dairy farms. J Dairy Sci. 2009;92(10):4929–4936. doi: 10.3168/jds.2009-2133. PubMed DOI

Ott SL, Wells SJ, Wagner BA. Herd-level economic losses associated with Johne’s disease on US dairy operations. Prev Vet Med. 1999;40(3–4):179–192. doi: 10.1016/S0167-5877(99)00037-9. PubMed DOI

Hendrick SH, Kelton DF, Leslie KE, Lissemore KD, Archambault M, Duffield TF. Effect of paratuberculosis on culling, milk production, and milk quality in dairy herds. J Am Vet Med Assoc. 2005;227(8):1302–1308. doi: 10.2460/javma.2005.227.1302. PubMed DOI

Lombard JE, Garry FB, McCluskey BJ, Wagner BA. Risk of removal and effects on milk production associated with paratuberculosis status in dairy cows. J Am Vet Med Assoc. 2005;227(12):1975–1981. doi: 10.2460/javma.2005.227.1975. PubMed DOI

Smith RL, Strawderman RL, Schukken YH, Wells SJ, Pradhan AK, Espejo LA, Whitlock RH, Van Kessel JS, Smith JM, Wolfgang DR, et al. Effect of Johne’s disease status on reproduction and culling in dairy cattle. J Dairy Sci. 2010;93(8):3513–3524. doi: 10.3168/jds.2009-2742. PubMed DOI

Santman-Berends IMGA, de Bont-Smolenaars AJG, Roos L, Velthuis AGJ, Van SG. Using routinely collected data to evaluate risk factors for mortality of veal calves. Prev Vet Med. 2018;157:86–93. doi: 10.1016/j.prevetmed.2018.05.013. PubMed DOI PMC

Jurkovich V, Bognar B, Balogh K, Kovacs-Weber M, Fornyos K, Szabo RT, Kovacs P, Konyves L, Mezes M. Effects of subclinical Mycobacterium avium ssp. paratuberculosis infection on some physiological parameters, health status and production in dairy cows. Acta Vet Hung. 2016;64(3):301–312. doi: 10.1556/004.2016.029. PubMed DOI

Roy GL, De BJ, Wolf R, Mortier RA, Orsel K, Barkema HW. Experimental infection with Mycobacterium avium subspecies paratuberculosis resulting in decreased body weight in Holstein-Friesian calves. Can Vet J. 2017;58(3):296–298. PubMed PMC

Kudahl AB, Nielsen SS. Effect of paratuberculosis on slaughter weight and slaughter value of dairy cows. J Dairy Sci. 2009;92(9):4340–4346. doi: 10.3168/jds.2009-2039. PubMed DOI

Richardson E, More S. Direct and indirect effects of Johne’s disease on farm and animal productivity in an Irish dairy herd. Irish Vet J. 2009;62(8):526–532. doi: 10.1186/2046-0481-62-8-526. PubMed DOI PMC

Shephard RW, Williams SH, Beckett SD. Farm economic impacts of bovine Johne’s disease in endemically infected Australian dairy herds. Aust Vet J. 2016;94(7):232–239. doi: 10.1111/avj.12455. PubMed DOI

Groenendaal H, Galligan DT, Mulder HA. An economic spreadsheet model to determine optimal breeding and replacement decisions for dairy cattle. J Dairy Sci. 2004;87(7):2146–2157. doi: 10.3168/jds.S0022-0302(04)70034-X. PubMed DOI

Verteramo Chiu LJ, Tauer LW, Al-Mamun MA, Kaniyamattam K, Smith RL, Grohn YT. An agent-based model evaluation of economic control strategies for paratuberculosis in a dairy herd. J Dairy Sci. 2018;101(7):6443–6454. doi: 10.3168/jds.2017-13175. PubMed DOI

Groenendaal H, Nielen M, Jalvingh AW, Horst SH, Galligan DT, Hesselink JW. A simulation of Johne’s disease control. Prev Vet Med. 2002;54(3):225–245. doi: 10.1016/S0167-5877(02)00027-2. PubMed DOI

Groenendaal H, Wolf CA. Farm-level economic analysis of the US National Johne’s disease demonstration herd project. J Am Vet Med Assoc. 2008;233(12):1852–1858. doi: 10.2460/javma.233.12.1852. PubMed DOI

Pillars RB, Grooms DL, Wolf CA, Kaneene JB. Economic evaluation of Johne’s disease control programs implemented on six Michigan dairy farms. Prev Vet Med. 2009;90(3–4):223–232. doi: 10.1016/j.prevetmed.2009.04.009. PubMed DOI

Shephard R, Beckett S, Williams S. Non-regulatory economic impacts of bovine Johne’s disease in endemically infected Australian dairy herds. In: Animal Health Australia, editor. BJD - where to from here? Proceedings of the BJD review forum, Rydges airport, Sydney, 16th February 2015. Canberra: Animal Health Australia; 2015.

Chi J, VanLeeuwen JA, Weersink A, Keefe GP. Direct production losses and treatment costs from bovine viral diarrhoea virus, bovine leukosis virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum. Prev Vet Med. 2002;55(2):137–153. doi: 10.1016/S0167-5877(02)00094-6. PubMed DOI

Tiwari A, VanLeeuwen JA, Dohoo IR, Keefe GP, Weersink A. Estimate of the direct production losses in Canadian dairy herds with subclinical Mycobacterium avium subspecies paratuberculosis infection. Can Vet J. 2008;49(6):569–576. PubMed PMC

Dufour B, Pouillot R, Durand B. A cost/benefit study of paratuberculosis certification in French cattle herds. Vet Res. 2004;35(1):69–81. doi: 10.1051/vetres:2003045. PubMed DOI

Stott AW, Jones GM, Humphry RW, Gunn GJ. Financial incentive to control paratuberculosis (Johne’s disease) on dairy farms in the United Kingdom. Vet Rec. 2005;156(26):825–831. doi: 10.1136/vr.156.26.825. PubMed DOI

Losinger WC. Economic impact of reduced milk production associated with Johne’s disease on dairy operations in the USA. J Dairy Res. 2005;72(4):425–432. doi: 10.1017/S0022029905001007. PubMed DOI

Webb Ware JK, Larsen JWA, Kluver P. Financial effect of bovine Johne’s disease in beef cattle herds in Australia. Aust Vet J. 2012;90(4):116–121. doi: 10.1111/j.1751-0813.2012.00896.x. PubMed DOI

Elzo M, Rae D, Lanhart S, Hembry F, Wasdin J, Driver J. Association between cow reproduction and calf growth traits and ELISA scores for paratuberculosis in a multibreed herd of beef cattle. Tropi Anim Health Prod. 2009;41(6):851–858. doi: 10.1007/s11250-008-9262-y. PubMed DOI

Humphry R, Stott AW, Jones GM, Gunn GJ. An economic evaluation of Johne’s disease (paratuberculosis) in the beef herd using the Markov chain model. In: Caldow G, Gunn GJ, editors. Assessment of surveillance and control of Johne’s disease in farm animals in GB. Edinburgh: SAC; 2001. pp. 67–82.

Groenendaal H, Nielen M, Hesselink JW. Development of the Dutch Johne’s disease control program supported by a simulation model. Prev Vet Med. 2003;60(1):69–90. doi: 10.1016/S0167-5877(03)00083-7. PubMed DOI

Bhattarai B, Fosgate GT, Osterstock JB, Fossler CP, Park SC, Roussel AJ. Perceptions of veterinarians in bovine practice and producers with beef cow-calf operations enrolled in the US voluntary bovine Johne’s disease control program concerning economic losses associated with Johne’s disease. Prev Vet Med. 2013;112(3–4):330–337. doi: 10.1016/j.prevetmed.2013.08.009. PubMed DOI

Roussel AJ. Control of paratuberculosis in beef cattle. Vet Clin North Am Food Anim Pract. 2011;27(3):593–598. doi: 10.1016/j.cvfa.2011.07.005. PubMed DOI

Bush RD, Windsor PA, Toribio JA. Losses of adult sheep due to ovine Johne’s disease in 12 infected flocks over a 3-year period. Aust Vet J. 2006;84(7):246–253. doi: 10.1111/j.1751-0813.2006.00001.x. PubMed DOI

Windsor PA. Managing control programs for ovine caseous lymphadenitis and paratuberculosis in Australia, and the need for persistent vaccination. Vet Med Res Rep. 2014;5:11–22. PubMed PMC

McGregor H, Abbott KA, Whittington RJ. Effects of Mycobacterium avium subsp paratuberculosis infection on serum biochemistry, body weight and wool growth in merino sheep: a longitudinal study. Small Ruminant Res. 2015;125:146–153. doi: 10.1016/j.smallrumres.2015.02.004. DOI

Ashworth S, Gunn GJ. Assessment of surveillance and control of Johne’s disease in farm animals in GB. In: Caldow G, Gunn GJ, editors. Assessment of surveillance and control of Johne’s disease in farm animals in GB. Edinburgh: SAC; 2001. pp. 1–245.

Sardaro R, Pieragostini E, Rubino G, Petazzi F. Impact of Mycobacterium avium subspecies paratuberculosis on profit efficiency in semi-extensive dairy sheep and goat farms of Apulia, southern Italy. Prev Vet Med. 2017;136:56–64. doi: 10.1016/j.prevetmed.2016.11.013. PubMed DOI

Kennedy D, Benedictus G, Nielsen S, Lybeck K, Schwan E, Frössling J, Sergeant E, Kelton D, Nauholz H. Guidelines for certification with respect to the movement of livestock for Mycobacterium avium subsp paratuberculosis (MAP) infection V1.3. Paratuberculosis News. 2017;4:3–17.

Weber MF, van Schaik G, Aalberts M, Velthuis AGJ. Milk quality assurance for paratuberculosis: progress obtained in the cohort of dairy herds that entered the program in 2006-2007. Bull Int Dairy Fed. 2014;475:55–61.

Barratt AS, Arnoult MH, Ahmadi BV, Rich KM, Gunn GJ, Stott AW. A framework for estimating society's economic welfare following the introduction of an animal disease: the case of Johne’s disease. PLoS One. 2018;13(6):e0198436. doi: 10.1371/journal.pone.0198436. PubMed DOI PMC

Garvey M. Mycobacterium avium subspecies paratuberculosis: a possible causative agent in human morbidity and risk to public health safety. Open Vet J. 2018;8(2):172–181. doi: 10.4314/ovj.v8i2.10. PubMed DOI PMC

More S, Botner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortazar Schmidt C, Michel V, et al. Assessment of listing and categorisation of animal diseases within the framework of the animal health law (regulation (EU) No2016/429): paratuberculosis. EFSA J. 2017;15(7). 10.2903/j.efsa.2017.4960. PubMed

Groenendaal H, Zagmutt FJ. Scenario analysis of changes in consumption of dairy products caused by a hypothetical causal link between Mycobacterium avium subspecies paratuberculosis and Crohn's disease. J Dairy Sci. 2008;91(8):3245–3258. doi: 10.3168/jds.2007-0698. PubMed DOI

Waddell L, Rajic A, Stark K, McEwen SA. Mycobacterium avium ssp. paratuberculosis detection in animals, food, water and other sources or vehicles of human exposure: a scoping review of the existing evidence. Prev Vet Med. 2016;132:32–48. doi: 10.1016/j.prevetmed.2016.08.003. PubMed DOI

Waddell LA, Rajić A, Stärk KDC, McEwen SA. The potential public health impact of Mycobacterium avium ssp. paratuberculosis: global opinion survey of topic specialists. Zoo Pub Health. 2016;63(3):212–222. doi: 10.1111/zph.12221. PubMed DOI

Waddell LA, Rajic A, Stärk KDC, McEwen SA. The zoonotic potential of Mycobacterium avium ssp. paratuberculosis: a systematic review and meta-analyses of the evidence. Epidemiol Inf. 2015;143(15):3135–3157. doi: 10.1017/S095026881500076X. PubMed DOI PMC

OIE . Terrestrial animal health code. Paris: OIE; 2017. Chapter 8.13 Paratuberculosis.

European Union Regulation (EU) 2016/429 of the European Parliament and of the council of 9 march 2016 on transmissible animal diseases and amending and repealing certain acts in the area of animal health (‘animal health law’) Off J EU. 2016;59:L84.

Hutchings M, Stevenson K, Greig A, Davidson R, Marion G, Judge J. Infection of non-ruminant wildlife by Mycobacterium avium subsp. paratuberculosis. In: Behr MA, Collins DM, editors. Paratuberculosis organism, disease, control. Wallingford: CABI; 2010. pp. 188–200.

Bryant B, Blyde D, Eamens G, Whittington R. Mycobacterium avium subspecies paratuberculosis cultured from the feces of a southern black rhinoceros (Diceros bicornis minor) with diarrhea and weight loss. J Zoo Wildl Med. 2012;43(2):391–393. doi: 10.1638/2010-0161.1. PubMed DOI

Buergelt CD, Ginn PE. The histopathologic diagnosis of subclinical Johne’s disease in north American Bison (Bison bison) Vet Microbiol. 2000;77(3–4):325–331. doi: 10.1016/S0378-1135(00)00317-5. PubMed DOI

Whittington RJ, Sergeant ES. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp. paratuberculosis in animal populations. Aust Vet J. 2001;79(4):267–278. doi: 10.1111/j.1751-0813.2001.tb11980.x. PubMed DOI

Windsor PA, Whittington RJ. Evidence for age susceptibility of cattle to Johne’s disease. Vet J. 2010;184(1):37–44. doi: 10.1016/j.tvjl.2009.01.007. PubMed DOI

McGregor H, Dhand NK, Dhungyel OP, Whittington RJ. Transmission of Mycobacterium avium subsp. paratuberculosis: dose–response and age-based susceptibility in a sheep model. Prev Vet Med. 2012;107(1–2):76–84. doi: 10.1016/j.prevetmed.2012.05.014. PubMed DOI

Eisenberg SW, Nielen M, Koets AP. Within-farm transmission of bovine paratuberculosis: recent developments. Vet Q. 2012;32(1):31–35. doi: 10.1080/01652176.2012.659870. PubMed DOI

Whittington R, Windsor P. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: a critical review and meta-analysis. Vet J. 2009;179(1):60–69. doi: 10.1016/j.tvjl.2007.08.023. PubMed DOI

Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol. 2004;70(5):2989–3004. doi: 10.1128/AEM.70.5.2989-3004.2004. PubMed DOI PMC

Eppleston J, Begg DJ, Dhand NK, Watt B, Whittington RJ. Environmental survival of Mycobacterium avium subsp. paratuberculosis in different climatic zones of eastern Australia. Appl Environ Microbiol. 2014;80(8):2337–2342. doi: 10.1128/AEM.03630-13. PubMed DOI PMC

Begg DJ, Purdie AC, de Silva K, Dhand NK, Plain KM, Whittington RJ. Variation in susceptibility of different breeds of sheep to Mycobacterium avium subspecies paratuberculosis following experimental inoculation. Vet Res. 2017;48(1):36. doi: 10.1186/s13567-017-0440-7. PubMed DOI PMC

Juste Ramon A., Vazquez Patricia, Ruiz-Larrañaga Otsanda, Iriondo Mikel, Manzano Carmen, Agirre Mikel, Estonba Andone, Geijo Maria V., Molina Elena, Sevilla Iker A., Alonso-Hearn Marta, Gomez Nieves, Perez Valentin, Cortes Adoracion, Garrido Joseba M. Association between combinations of genetic polymorphisms and epidemiopathogenic forms of bovine paratuberculosis. Heliyon. 2018;4(2):e00535. doi: 10.1016/j.heliyon.2018.e00535. PubMed DOI PMC

Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. Candidate gene and genome-wide association studies of Mycobacterium avium subsp paratuberculosis infection in cattle and sheep: a review. Comp Immunol Microbiol Inf Dis. 2011;34(3):197–208. doi: 10.1016/j.cimid.2010.12.003. PubMed DOI

Whittington RJ, Begg DJ, de Silva K, Purdie AC, Dhand NK, Plain KM. Case definition terminology for paratuberculosis (Johne’s disease) BMC Vet Res. 2017;13(1):328. doi: 10.1186/s12917-017-1254-6. PubMed DOI PMC

Vazquez P, Garrido JM, Molina E, Geijo MV, Gomez N, Perez V, Sevilla IA, Alonso-Hearn M, Cortes A, Juste RA. Latent infections are the most frequent form of paratuberculosis in slaughtered Friesian cattle. Span J Ag Res. 2014;12(4):1049. doi: 10.5424/sjar/2014124-5978. DOI

Momotani E, Whipple DL, Thiermann AB, Cheville NF. Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves. Vet Pathol. 1988;25(2):131–137. doi: 10.1177/030098588802500205. PubMed DOI

Merkal RS, Larsen AB, Kopecky KE, Kluge JP, Monlux WS, Lehmann RP, Quinn LY. Experimental paratuberculosis in sheep after oral, intratracheal or intravenous inoculation: serologic and intradermal tests. Am J Vet Res. 1968;29(5):963–969. PubMed

Marcé C, Ezanno P, Weber MF, Seegers H, Pfeiffer DU, Fourichon C. Modeling within-herd transmission of Mycobacterium avium subspecies paratuberculosis in dairy cattle: a review. J Dairy Sci. 2010;93(10):4455–4470. doi: 10.3168/jds.2010-3139. PubMed DOI

Kirkeby C, Graesboll K, Nielsen SS, Christiansen LE, Toft N, Rattenborg E, Halasa T. Simulating the epidemiological and economic impact of paratuberculosis control actions in dairy cattle. Front Vet Sci. 2016;3:90. doi: 10.3389/fvets.2016.00090. PubMed DOI PMC

Konboon Malinee, Bani-Yaghoub Majid, Pithua Patrick O., Rhee Noah, Aly Sharif S. A nested compartmental model to assess the efficacy of paratuberculosis control measures on U.S. dairy farms. PLOS ONE. 2018;13(10):e0203190. doi: 10.1371/journal.pone.0203190. PubMed DOI PMC

Nielsen SS, Toft N. Effect of management practices on paratuberculosis prevalence in Danish dairy herds. J Dairy Sci. 2011;94(4):1849–1857. doi: 10.3168/jds.2010-3817. PubMed DOI

Collins MT, Eggleston V, Manning EJB. Successful control of Johne’s disease in nine dairy herds: results of a six-year field trial. J Dairy Sci. 2010;93(4):1638–1643. doi: 10.3168/jds.2009-2664. PubMed DOI

Kirkeby C, Graesboll K, Nielsen SS, Toft N, Halasa T. Epidemiological and economic consequences of purchasing livestock infected with Mycobacterium avium subsp paratuberculosis. BMC Vet Res. 2017;13(1):202. doi: 10.1186/s12917-017-1119-z. PubMed DOI PMC

Sorge U, Kelton D, Lissemore K, Godkin A, Hendrick S, Wells S. Attitudes of Canadian dairy farmers toward a voluntary Johne’s disease control program. J Dairy Sci. 2010;93(4):1491–1499. doi: 10.3168/jds.2009-2447. PubMed DOI

Wraight MD, McNeil J, Beggs DS, Greenall RK, Humphris TB, Irwin RJ, Jagoe SP, Jemmeson A, Morgan WF, Brightling P, et al. Compliance of Victorian dairy farmers with current calf rearing recommendations for control of Johne’s disease. Vet Microbiol. 2000;77(3–4):429–442. doi: 10.1016/S0378-1135(00)00328-X. PubMed DOI

Ferrouillet C, Wells SJ, Hartmann WL, Godden SM, Carrier J. Decrease of Johne’s disease prevalence and incidence in six Minnesota, USA, dairy cattle herds on a long-term management program. Prev Vet Med. 2009;88(2):128–137. doi: 10.1016/j.prevetmed.2008.08.001. PubMed DOI

Weber M, Aalberts M, Dijkstra T, de Roo A. Results of milk quality assurance programme for paratuberculosis in Dutch dairy herds indicate reduced transmission of the infection. Bull Int Dairy Fed. 2018;493:23–34.

Kalis CHJ, Collins MT, Barkema HW, Hesselink JW. Certification of herds as free of Mycobacterium paratuberculosis infection: actual pooled faecal results versus certification model predictions. Prev Vet Med. 2004;65(3/4):189–204. doi: 10.1016/j.prevetmed.2004.07.005. PubMed DOI

Donat K. The Thuringian bovine paratuberculosis control programme - results and experiences. Berl Munch Tierarztl Wochenschr. 2017;130(1–2):42–49.

Lu Z, Mitchell RM, Smith RL, Van Kessel JS, Chapagain PP, Schukken YH, Grohn YT. The importance of culling in Johne’s disease control. J Theor Biol. 2008;254(1):135–146. doi: 10.1016/j.jtbi.2008.05.008. PubMed DOI

McKenna SL, Keefe GP, Tiwari A, VanLeeuwen J, Barkema HW. Johne’s disease in Canada part II: disease impacts, risk factors, and control programs for dairy producers. Can Vet J. 2006;47(11):1089–1099. PubMed PMC

Dorshorst NC, Collins MT, Lombard JE. Decision analysis model for paratuberculosis control in commercial dairy herds. Prev Vet Med. 2006;75(1–2):92–122. doi: 10.1016/j.prevetmed.2006.02.002. PubMed DOI

Jubb TF, Galvin JW. Herd testing to control bovine Johne’s disease. Vet Microbiol. 2000;77:423–428. doi: 10.1016/S0378-1135(00)00327-8. PubMed DOI

Dore E, Pare J, Cote G, Buczinski S, Labrecque O, Roy JP, Fecteau G. Risk factors associated with transmission of Mycobacterium avium subsp. paratuberculosis to calves within dairy herd: a systematic review. J Vet Intern Med. 2012;26(1):32–45. doi: 10.1111/j.1939-1676.2011.00854.x. PubMed DOI

Lindheim D, Sølverød L. 4th Paratuberculosis forum: 2014; Parma, Italy: international dairy federation. 2014. The Norwegian healthier goats project. Proceedings of the 4th Paratuberculosis forum, Parma, Italy, June 21st 2014; pp. 65–66.

Pillars RB, Grooms DL, Gardiner JC, Kaneene JB. Association between risk-assessment scores and individual-cow Johne’s disease-test status over time on seven Michigan, USA dairy herds. Prev Vet Med. 2011;98(1):10–18. doi: 10.1016/j.prevetmed.2010.10.001. PubMed DOI

Kudahl AB, Nielsen SS, Østergaard S. Strategies for time of culling in control of paratuberculosis in dairy herds. J Dairy Sci. 2011;94(8):3824–3834. doi: 10.3168/jds.2010-3933. PubMed DOI

Smith RL, Al-Mamun MA, Grohn YT. Economic consequences of paratuberculosis control in dairy cattle: a stochastic modeling study. Prev Vet Med. 2017;138:17–27. doi: 10.1016/j.prevetmed.2017.01.007. PubMed DOI PMC

Camanes G, Joly A, Fourichon C, Ben Romdhane R, Ezanno P. Control measures to prevent the increase of paratuberculosis prevalence in dairy cattle herds: an individual-based modelling approach. Vet Res. 2018;49(1):60. doi: 10.1186/s13567-018-0557-3. PubMed DOI PMC

Rangel SJ, Pare J, Dore E, Arango JC, Cote G, Buczinski S, Labrecque O, Fairbrother JH, Roy JP, Wellemans V, et al. A systematic review of risk factors associated with the introduction of Mycobacterium avium spp. paratuberculosis (MAP) into dairy herds. Can Vet J. 2015;56(2):169–177. PubMed PMC

Weber MF, Groenendaal H, van Roermund HJ, Nielen M. Simulation of alternatives for the Dutch Johne’s disease certification-and-monitoring program. Prev Vet Med. 2004;62(1):1–17. doi: 10.1016/j.prevetmed.2003.11.006. PubMed DOI

Weber MF, van Roermund HJ, Vernooij JC, Kalis CH, Stegeman JA. Cattle transfers between herds under paratuberculosis surveillance in the Netherlands are not random. Prev Vet Med. 2006;76(3–4):222–236. doi: 10.1016/j.prevetmed.2006.05.005. PubMed DOI

Bastida F, Juste RA. Paratuberculosis control: a review with a focus on vaccination. J Immune Based Ther Vaccines. 2011;9:8. doi: 10.1186/1476-8518-9-8. PubMed DOI PMC

Reddacliff L, Eppleston J, Windsor P, Whittington R, Jones S. Efficacy of a killed vaccine for the control of paratuberculosis in Australian sheep flocks. Vet Microbiol. 2006;115(1–3):77–90. doi: 10.1016/j.vetmic.2005.12.021. PubMed DOI

Groenendaal H, Zagmutt FJ, Patton EA, Wells SJ. Cost-benefit analysis of vaccination against Mycobacterium avium ssp. paratuberculosis in dairy cattle, given its cross-reactivity with tuberculosis tests. J Dairy Sci. 2015;98(9):6070–6084. doi: 10.3168/jds.2014-8914. PubMed DOI

Serrano M, Elguezabal N, Sevilla IA, Geijo MV, Molina E, Arrazuria R, Urkitza A, Jones GJ, Vordermeier M, Garrido JM, et al. Tuberculosis detection in paratuberculosis vaccinated calves: new alternatives against interference. PLoS One. 2017;12(1):e0169735. doi: 10.1371/journal.pone.0169735. PubMed DOI PMC

Coad M, Clifford DJ, Vordermeier HM, Whelan AO. The consequences of vaccination with the Johne’s disease vaccine, Gudair, on diagnosis of bovine tuberculosis. Vet Rec. 2013;172(10):266. doi: 10.1136/vr.101201. PubMed DOI

Fecteau M. Paratuberculosis in cattle. Vet Clin North Am Food Anim Pract. 2018;34:209–222. doi: 10.1016/j.cvfa.2017.10.011. PubMed DOI

Dhand NK, Eppleston J, Whittington RJ, Windsor PA. Changes in prevalence of ovine paratuberculosis following vaccination with Gudair(R): results of a longitudinal study conducted over a decade. Vaccine. 2016;34(42):5107–5113. doi: 10.1016/j.vaccine.2016.08.064. PubMed DOI

Fridriksdottir V, Gunnarsson E, Sigurdarson S, Gudmundsdottir KB. Paratuberculosis in Iceland: epidemiology and control measures, past and present. Vet Microbiol. 2000;77:263–267. doi: 10.1016/S0378-1135(00)00311-4. PubMed DOI

Benedictus G, Verhoeff J, Schukken YH, Hesselink JW. Dutch paratuberculosis programme history, principles and development. Vet Microbiol. 2000;77:399–413. doi: 10.1016/S0378-1135(00)00325-4. PubMed DOI

Nielsen S. Danish control programme for bovine paratuberculosis. Cattle Pract. 2007;15:161–168.

Roche S, Jones-Bitton A, Meehan M, von Massow M, Kelton D. Evaluating the effect of focus farms on Ontario dairy producers’ knowledge, attitudes, and behaviour toward control of Johne’s disease. J Dairy Sci. 2015;98:5222–5040. doi: 10.3168/jds.2014-8765. PubMed DOI

Ritter C, Jansen J, Roth K, Kastelic J, Adams C, Barkema H. Dairy farmers’ perceptions toward the implementation of on-farm Johne’s disease prevention and control strategies. J Dairy Sci. 2016;99:9114–9125. doi: 10.3168/jds.2016-10896. PubMed DOI

OIE . Manual of diagnostic tests and vaccines for terrestrial animals. Paris: OIE; 2014. Chapter 2.1.11 Paratuberculosis.

Nielsen SS, Toft N. Ante mortem diagnosis of paratuberculosis: a review of accuracies of ELISA, interferon-gamma assay and faecal culture techniques. Vet Microbiol. 2008;129(3–4):217–235. doi: 10.1016/j.vetmic.2007.12.011. PubMed DOI

Kostoulas Polychronis, Nielsen Søren S., Branscum Adam J., Johnson Wesley O., Dendukuri Nandini, Dhand Navneet K., Toft Nils, Gardner Ian A. STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models. Preventive Veterinary Medicine. 2017;138:37–47. doi: 10.1016/j.prevetmed.2017.01.006. PubMed DOI

Kalis CHJ, Barkema HW, Hesselink JW, van Maanen C, Collins MT. Evaluation of two absorbed enzyme-linked immunosorbent assays and a complement fixation test as replacements for fecal culture in the detection of cows shedding Mycobacterium avium subspecies paratuberculosis. J Vet Diagn Investig. 2002;14(3):219–224. doi: 10.1177/104063870201400305. PubMed DOI

Nielsen SS. Transitions in diagnostic tests used for detection of Mycobacterium avium subsp. paratuberculosis infections in cattle. Vet Microbiol. 2008;132:274–282. doi: 10.1016/j.vetmic.2008.05.018. PubMed DOI

Smith RL, Gröhn YT, Pradhan AK, Whitlock RH, Van Kessel JS, Smith JM, Wolfgang DR, Schukken YH. The effects of progressing and nonprogressing Mycobacterium avium ssp. paratuberculosis infection on milk production in dairy cows. J Dairy Sci. 2016;99(2):1383–1390. doi: 10.3168/jds.2015-9822. PubMed DOI PMC

Pitt DJ, Pinch DS, Janmaat A, Condron RJ. An estimate of specificity for a Johne’s disease absorbed ELISA in northern Australian cattle. Aust Vet J. 2002;80(1–2):57–60. doi: 10.1111/j.1751-0813.2002.tb12836.x. PubMed DOI

Kralik P, Pribylova-Dziedzinska R, Kralova A, Kovarcik K, Slana I. Evidence of passive faecal shedding of Mycobacterium avium subsp. paratuberculosis in a Limousin cattle herd. Vet J. 2014;201(1):91–94. doi: 10.1016/j.tvjl.2014.02.011. PubMed DOI

Gumber S, Eamens G, Whittington RJ. Evaluation of a Pourquier ELISA kit in relation to agar gel immunodiffusion (AGID) test for assessment of the humoral immune response in sheep and goats with and without Mycobacterium paratuberculosis infection. Vet Microbiol. 2006;115(1–3):91–101. doi: 10.1016/j.vetmic.2006.01.003. PubMed DOI

Whittington RJ, Fell S, Walker D, McAllister S, Marsh I, Sergeant E, Taragel CA, Marshall DJ, Links IJ. Use of pooled fecal culture for sensitive and economic detection of Mycobacterium avium subsp paratuberculosis infection in flocks of sheep. J Clin Microbiol. 2000;38(7):2550–2556. PubMed PMC

Weber MF, Verhoeff J, van Schaik G, van Maanen C. Evaluation of Ziehl-Neelsen stained faecal smear and ELISA as tools for surveillance of clinical paratuberculosis in cattle in the Netherlands. Prev Vet Med. 2009;92(3):256–266. doi: 10.1016/j.prevetmed.2009.08.017. PubMed DOI

Weber MF, van Schaik G. Results of the Dutch bulk milk quality assurance programme for paratuberculosis. In: Nielsen SS, editor. Proceedings of the 9th international colloquium on Paratuberculosis, Tsukuba, Japan, October 28–November 2, 2007. Derio: International Association for Paratuberculosis; 2007. pp. 324–327.

Whitlock R, Rosenberger A, Sweeney R, et al. Distribution of M paratuberculosis in tissues of cattle form herds infected with Johne’s disease. In: Chiodini R, Hines M, Collins M, et al., editors. Proceedings of the 5th international colloquium on Paratuberculosis, Maddison, USA 29 September - 4 October 1996. Rehoboth: International Association for Paratuberculosis; 1996. pp. 168–174.

More SJ, Cameron AR, Strain S, Cashman W, Ezanno P, Kenny K, Fourichon C, Graham D. Evaluation of testing strategies to identify infected animals at a single round of testing within dairy herds known to be infected with Mycobacterium avium ssp. paratuberculosis. J Dairy Sci. 2015;98(8):5194–5210. doi: 10.3168/jds.2014-8211. PubMed DOI

Sergeant ES, Nielsen SS, Toft N. Evaluation of test-strategies for estimating probability of low prevalence of paratuberculosis in Danish dairy herds. Prev Vet Med. 2008;85(1–2):92–106. doi: 10.1016/j.prevetmed.2008.01.005. PubMed DOI

Berghaus RD, Farver TB, Anderson RJ, Jaravata CC, Gardner IA. Environmental sampling for detection of Mycobacterium avium ssp. paratuberculosis on large California dairies. J Dairy Sci. 2006;89(3):963–970. doi: 10.3168/jds.S0022-0302(06)72161-0. PubMed DOI

Donat K, Hahn N, Eisenberg T, Schlez K, Köhler H, Wolter W, Rohde M, Pützschel R, Rösler U, Failing K, et al. Within-herd prevalence thresholds for the detection of Mycobacterium avium subspecies paratuberculosis-positive dairy herds using boot swabs and liquid manure samples. Epidemiol Inf. 2016;144(2):413–424. doi: 10.1017/S0950268815000977. PubMed DOI

Eamens GJ, Walker DM, Porter NS, Fell SA. Pooled faecal culture for the detection of Mycobacterium avium subsp paratuberculosis in goats. Aust Vet J. 2007;85(6):243–251. doi: 10.1111/j.1751-0813.2007.00160.x. PubMed DOI

Eamens GJ, Whittington RJ, Turner MJ, Austin SL, Fell SA, Marsh IB. Evaluation of radiometric faecal culture and direct PCR on pooled faeces for detection of Mycobacterium avium subsp. paratuberculosis in cattle. Vet Microbiol. 2007;125(1–2):22–35. doi: 10.1016/j.vetmic.2007.04.043. PubMed DOI

Coelho A, Pinto M, Miranda A, Coelho A, Pires M, Matos M. Comparative evaluation of PCR in Ziehl-Neelsen stained smears and PCR in tissues for diagnosis of Mycobacterium avium subsp. paratuberculosis. 2010;48:948–950. PubMed

Kalis CHJ, Collins MT, Hesselink JW, Barkema HW. Specificity of two tests for the early diagnosis of bovine paratuberculosis based on cell-mediated immunity: the Johnin skin test and the gamma interferon assay. Vet Microbiol. 2003;97(1):73–86. doi: 10.1016/j.vetmic.2003.07.003. PubMed DOI

Reddacliff LA, Whittington RJ. Experimental infection of weaner sheep with S strain Mycobacterium avium subsp. paratuberculosis. Vet Microbiol. 2003;96(3):247–258. doi: 10.1016/j.vetmic.2003.07.004. PubMed DOI

Nielsen SS, Toft N. Bulk tank milk ELISA for detection of antibodies to Mycobacterium avium subsp. paratuberculosis: correlation between repeated tests and within-herd antibody-prevalence. Prev Vet Med. 2014;113(1):96–102. doi: 10.1016/j.prevetmed.2013.10.013. PubMed DOI

Nielsen SS, Thamsborg SM, Houe H, Bitsch V. Bulk-tank milk ELISA antibodies for estimating the prevalence of paratuberculosis in Danish dairy herds. Prev Vet Med. 2000;44:1–7. doi: 10.1016/S0167-5877(00)00098-2. PubMed DOI

Nielsen SS, Thamsborg SM, Houe H, Bitsch VV. Corrigendum to “bulk-tank milk ELISA antibodies for estimating the prevalence of paratuberculosis in danish dairy herds”. Prev Vet Med. 2000;46(4):297. doi: 10.1016/S0167-5877(00)00164-1. PubMed DOI

Nielsen S. Developments in diagnosis and control of bovine paratuberculosis. CAB Rev. 2014;9(012):1–12. doi: 10.1079/PAVSNNR20149012. DOI

Kennedy D, Citer L. Paratuberculosis control measures in Australia. In: Behr M, Collins D, editors. Paratuberculosis organism, disease, control. Wallingford: CAB International; 2010. pp. 330–343.

Nielsen S. Proceedings of the 10th international colloquium on Paratuberculosis. Minneapolis: International Association for Paratuberculosis; 2009. Programmes on paratuberculosis in Europe; pp. 101–108.

Geraghty T, Graham DA, Mullowney P, More SJ. A review of bovine Johne’s disease control activities in 6 endemically infected countries. Prev Vet Med. 2014;116(1–2):1–11. doi: 10.1016/j.prevetmed.2014.06.003. PubMed DOI

Whitlock R. Paratuberculosis control measures in the USA. In: Behr M, Collins D, editors. Paratuberculosis organism, disease, control. Wallingford: CAB International; 2010. pp. 319–329.

Bakker D. Paratuberculosis control measures in Europe. In: Behr M, Collins D, editors. Paratuberculosis organism, disease, control. Wallingford: CAB International; 2010. pp. 306–318.

Gautam M, Ridler A, Wilson PR, Heuer C. Control of clinical paratuberculosis in New Zealand pastoral livestock. N Z Vet J. 2018;66(1):1–8. doi: 10.1080/00480169.2017.1379914. PubMed DOI

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

Thrusfield M. Veterinary epidemiology. 2nd ed. Oxford: Blackwell Science Ltd; 2000.

Norton S, Johnson WO, Jones G, Heuer C. Evaluation of diagnostic tests for Johne’s disease (Mycobacterium avium subspecies paratuberculosis) in New Zealand dairy cows. J Vet Diagn Investig. 2010;22(3):341–351. doi: 10.1177/104063871002200301. PubMed DOI

Stringer LA, Wilson PR, Heuer C, Hunnam JC, Verdugo C, Mackintosh CG. Prevalence of Mycobacterium avium subsp. paratuberculosis in farmed red deer (Cervus elaphus) with grossly normal mesenteric lymph nodes. NZ Vet J. 2013;61(3):147–152. doi: 10.1080/00480169.2012.755888. PubMed DOI

OIE . Terrestrial animal health code. Paris: OIE; 2017. Chapter 8.11 infection with Mycobacterium tuberculoisis complex.

Anon. BJD - where to from here? A fresh approach to the management of Johne’s disease. In: Cattle: management plan for cattle production conditions. Canberra: Animal Health Australia; 2015.

Steinberg H. Johne’s disease (Mycobaterium paratuberculosis) in a Jimela topi (Damaliscus lunatus jimela) J Zoo Anim Med. 1988;19:33–41. doi: 10.2307/20094850. DOI

Ahteensuu M, Sandin P. The precautionary principle. In: Roeser S, Hillerbrand R, Sandin P, Peterson M, editors. Handbook of risk theory: epistemology, decision theory, ethics, and social implications of risk. Dordrecht: Springer Netherlands; 2012. pp. 961–978.

Houe H, Nielsen LR, Nielsen S. Control and eradication of endemic infectious diseases in cattle. United Kingdom: College Publications; 2014.

Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten V, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, et al. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis. 2018;65(Suppl 1):125–148. doi: 10.1111/tbed.12723. PubMed DOI

Pouillot R, Dufour B, Durand B. A deterministic and stochastic simulation model for intra-herd paratuberculosis transmission. Vet Res. 2004;35(1):53–68. doi: 10.1051/vetres:2003046. PubMed DOI

Mitchell RM, Whitlock RH, Stehman SM, Benedictus A, Chapagain PP, Grohn YT, Schukken YH. Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Prev Vet Med. 2008;83(3–4):360–380. doi: 10.1016/j.prevetmed.2007.09.006. PubMed DOI

Good M, Bakker D, Duignan A, Collins DM. The history of in vivo tuberculin testing in bovines: tuberculosis, a “one health” issue. Front Vet Sci. 2018;5:59. doi: 10.3389/fvets.2018.00059. PubMed DOI PMC

Botsaris G, Liapi M, Kakogiannis C, Dodd CER, Rees CED. Detection of Mycobacterium avium subsp. paratuberculosis in bulk tank milk by combined phage-PCR assay: evidence that plaque number is a good predictor of MAP. Int J Food Microbiol. 2013;164(1):76–80. doi: 10.1016/j.ijfoodmicro.2013.03.023. PubMed DOI

Bull TJ, Munshi T, Mikkelsen H, Hartmann SB, Sorensen MR, Garcia JS, Lopez-Perez PM, Hofmann S, Hilpert K, Jungersen G. Improved culture medium (Tika) for Mycobacterium avium subspecies paratuberculosis (MAP) matches qPCR sensitivity and reveals significant proportions of non-viable MAP in lymphoid tissue of vaccinated MAP challenged animals. Front Microbiol. 2016;7:2112. PubMed PMC

Gardner IA, Nielsen SS, Whittington RJ, Collins MT, Bakker D, Harris B, Sreevatsan S, Lombard JE, Sweeney R, Smith DR, et al. Consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis in ruminants. Prev Vet Med. 2011;211:18–34. doi: 10.1016/j.prevetmed.2011.04.002. PubMed DOI

Whittington RJ, Taragel CA, Ottaway S, Marsh I, Seaman J, Fridriksdottir V. Molecular epidemiological confirmation and circumstances of occurrence of sheep (S) strains of Mycobacterium avium subsp. paratuberculosis in cases of paratuberculosis in cattle in Australia and sheep and cattle in Iceland. Vet Microbiol. 2001;79(4):311–322. doi: 10.1016/S0378-1135(00)00364-3. PubMed DOI

Moloney BJ, Whittington RJ. Cross species transmission of ovine Johne’s disease from sheep to cattle: an estimate of prevalence in exposed susceptible cattle. Aust Vet J. 2008;86(4):117–123. doi: 10.1111/j.1751-0813.2008.00272.x. PubMed DOI

Verdugo C, Pleydell E, Price-Carter M, Prattley D, Collins D, de Lisle G, Vogue H, Wilson P, Heuer C. Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis isolated from sheep, cattle and deer on New Zealand pastoral farms. Prev Vet Med. 2014;117(3–4):436–446. doi: 10.1016/j.prevetmed.2014.09.009. PubMed DOI

Whittington RJ, Hope AF, Marshall DJ, Taragel CA, Marsh I. Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis: IS900 restriction fragment length polymorphism and IS1311 polymorphism analyses of isolates from animals and a human in Australia. J Clin Microbiol. 2000;38:3240–3248. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...