• This record comes from PubMed

Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel

. 2019 Jun 19 ; 20 (12) : . [epub] 20190619

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
664216 Grantová Agentura, Univerzita Karlova
19-03063S Grantová Agentura České Republiky

Identification of novel proteins with changed expression in resistant cancer cells could be helpful in elucidation mechanisms involved in the development of acquired resistance to paclitaxel. In this study, we carried out a 2D-PAGE using the mitochondrial-enriched fraction from paclitaxel-resistant MCF7/PacR cells compared to original paclitaxel-sensitive MCF7 breast cancer cells. Differentially expressed proteins were identified employing mass spectrometry. We found that lysosomal cathepsin D and mitochondrial abhydrolase-domain containing protein 11 (ABHD11) had decreased expression in MCF7/PacR cells. On the other hand, mitochondrial carbamoyl-phosphate synthetase 1 (CPS1) and ATPase family AAA-domain containing protein 3A and 3B (ATAD3A, ATAD3B) were overexpressed in MCF7/PacR cells. Further, we showed that there was no difference in localization of CPS1 in MCF7 and MCF7/PacR cells. We demonstrated a significant increase in the number of CPS1 positive MCF7/PacR cells, using FACS analysis, compared to the number of CPS1 positive MCF7 cells. Silencing of CPS1 expression by specific siRNA had no significant effect on the resistance of MCF7/PacR cells to paclitaxel. To summarize, we identified several novel proteins of a mitochondrial fraction whose role in acquired resistance to paclitaxel in breast cancer cells should be further assessed.

See more in PubMed

Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:359–386. doi: 10.1002/ijc.29210. PubMed DOI

Anampa J., Makower D., Sparano J.A. Progress in adjuvant chemotherapy for breast cancer: An overview. BMC Med. 2015;13:195. doi: 10.1186/s12916-015-0439-8. PubMed DOI PMC

Theriault R.L., Carlson R.W., Allred C., Anderson B.O., Burstein H.J., Edge S.B., Farrar W.B., Forero A., Giordano S.H., Goldstein L.J., et al. National comprehensive cancer network. Breast cancer, version 3.2013: Featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. 2013;11:753–760. doi: 10.6004/jnccn.2013.0098. PubMed DOI PMC

Coates A.S., Winer E.P., Goldhirsch A., Gelber R.D., Gnant M., Piccart-Gebhart M., Thürlimann B., Senn H.J. Panel members. Tailoring therapies—Improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 2015;26:1533–1546. doi: 10.1093/annonc/mdv221. PubMed DOI PMC

Mustacchi G., De Laurentiis M. The role of taxanes in triple-negative breast cancer: Literature review. Drug Des. Dev. Ther. 2015;9:4303–4318. doi: 10.2147/DDDT.S86105. PubMed DOI PMC

Weaver B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell. 2014;25:2677–2681. doi: 10.1091/mbc.e14-04-0916. PubMed DOI PMC

Manfredi J.J., Parness J., Horwitz S.B. Taxol binds to cellular microtubules. J. Cell Biol. 1982;94:688–696. doi: 10.1083/jcb.94.3.688. PubMed DOI PMC

Snyder J.P., Nettles J.H., Cornett B., Downing K.H., Nogales E. The binding conformation of Taxol in beta-tubulin: A model based on electron crystallographic density. Proc. Natl. Acad. Sci. USA. 2001;98:5312–5316. doi: 10.1073/pnas.051309398. PubMed DOI PMC

Xiao H., Verdier-Pinard P., Fernandez-Fuentes N., Burd B., Angeletti R., Fiser A., Horwitz S.B., Orr G.A. Insights into mechanism of microtubule stabilization by Taxol. Proc. Natl. Acad. Sci. USA. 2006;103:10166–10173. doi: 10.1073/pnas.0603704103. PubMed DOI PMC

Woods C.M., Zhu J., McQueney P.A., Bollag D., Lazarides E. Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol. Med. 1995;1:506–526. doi: 10.1007/BF03401588. PubMed DOI PMC

Gascoigne K.E., Taylor S.S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci. 2009;122:2579–2585. doi: 10.1242/jcs.039719. PubMed DOI

Ajabnoor G.M., Crook T., Coley H.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis. 2012;3:e260. doi: 10.1038/cddis.2011.139. PubMed DOI PMC

Chen S.Y., Hu S.S., Dong Q., Cai J.X., Zhang W.P., Sun J.Y., Wang T.T., Xie J.J., He H.R., Xing J.F., et al. Establishment of paclitaxel-resistant breast cancer cell line and nude mice models, and underlying multidrug resistance mechanisms in vitro and in vivo. Asian Pac. J. Cancer Prev. 2013;14:6135–6140. doi: 10.7314/APJCP.2013.14.10.6135. PubMed DOI

Němcová-Fürstová V., Kopperová D., Balušíková K., Ehrlichová M., Brynychová V., Václavíková R., Daniel P., Souček P., Kovář J. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol. Appl. Pharmacol. 2016;310:215–228. doi: 10.1016/j.taap.2016.09.020. PubMed DOI

Boichuk S., Galembikova A., Sitenkov A., Khusnutdinov R., Dunaev P., Valeeva E., Usolova N. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol. Lett. 2017;14:5039–5045. doi: 10.3892/ol.2017.6795. PubMed DOI PMC

Zhang J., Zhao J., Zhang W., Liu G., Yin D., Li J., Zhang S., Li H. Establishment of paclitaxel-resistant cell line and the underlying mechanism on drug resistance. Int. J. Gynecol. Cancer. 2012;22:1450–1456. doi: 10.1097/IGC.0b013e31826e2382. PubMed DOI

Duran G.E., Wang Y.C., Moisan F., Francisco E.B., Sikic B.I. Decreased levels of baseline and drug-induced tubulin polymerisation are hallmarks of resistance to taxanes in ovarian cancer cells and are associated with epithelial-to-mesenchymal transition. Br. J. Cancer. 2017;116:1318–1328. doi: 10.1038/bjc.2017.102. PubMed DOI PMC

Gonçalves A., Braguer D., Kamath K., Martello L., Briand C., Horwitz S., Wilson L., Jordan M.A. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. USA. 2001;98:11737–11742. doi: 10.1073/pnas.191388598. PubMed DOI PMC

Sobue S., Mizutani N., Aoyama Y., Kawamoto Y., Suzuki M., Nozawa Y., Ichihara M., Murate T. Mechanism of paclitaxel resistance in a human prostate cancer cell line, PC3-PR, and its sensitization by cabazitaxel. Biochem. Biophys. Res. Commun. 2016;479:808–813. doi: 10.1016/j.bbrc.2016.09.128. PubMed DOI

Takeda M., Mizokami A., Mamiya K., Li Y.Q., Zhang J., Keller E.T., Namiki M. The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate. 2007;67:955–967. doi: 10.1002/pros.20581. PubMed DOI

Zhou J., Cheng S.C., Luo D., Xie Y. Study of multi-drug resistant mechanisms in taxol-resistant hepatocellular carcinoma QGY-TR 50 cell line. Biochem. Biophys. Res. Commun. 2001;280:1237–1242. doi: 10.1006/bbrc.2001.4268. PubMed DOI

Vaidyanathan A., Sawers L., Gannon A.L., Chakravarty P., Scott A.L., Bray S.E., Ferguson M.J., Smith G. ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br. J. Cancer. 2016;115:431–441. doi: 10.1038/bjc.2016.203. PubMed DOI PMC

Orr G.A., Verdier-Pinard P., McDaid H., Horwitz S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003;22:7280–7295. doi: 10.1038/sj.onc.1206934. PubMed DOI PMC

Martínéz C., García-Martín E., Pizarro R.M., García-Gamito F.J., Agúndez J.A.G. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: Implications for drug therapy. Br. J. Cancer. 2002;87:681–686. doi: 10.1038/sj.bjc.6600494. PubMed DOI PMC

Smoter M., Bodnar L., Duchnowska R., Stec R., Grala B., Szczylik C. The role of Tau protein in resistance to paclitaxel. Cancer Chemother. Pharmacol. 2011;68:553–557. doi: 10.1007/s00280-011-1696-7. PubMed DOI PMC

Murray S., Briasoulis E., Linardou H., Bafaloukos D., Papadimitriou C. Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev. 2012;38:890–903. doi: 10.1016/j.ctrv.2012.02.011. PubMed DOI

Gao B., Russell A., Beesley J., Chen X.Q., Healey S., Henderson M., Wong M., Emmanuel C., Galletta L., Johnatty S.E., et al. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphism in ovarian cancer. Sci. Rep. 2014;4:4669. doi: 10.1038/srep04669. PubMed DOI PMC

Jelínek M., Balušíková K., Daniel P., Němcová-Fürstová V., Kirubakaran P., Jaček M., Wei L., Wang X., Vondrášek J., Ojima I., et al. Substituents at the C3′ and C3′N positions are critical for taxanes to overcome acquired resistance of cancer cells to paclitaxel. Toxicol. Appl. Pharmacol. 2018;347:79–91. doi: 10.1016/j.taap.2018.04.002. PubMed DOI PMC

Alam A., Kowal J., Broude E., Roninson I., Locher K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science. 2019;363:753–756. doi: 10.1126/science.aav7102. PubMed DOI PMC

Pavlíková N., Bartoňová I., Balušíková K., Kopperová D., Halada P., Kovář J. Differentially expressed proteins in MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp. Cell Res. 2015;333:1–10. doi: 10.1016/j.yexcr.2014.12.005. PubMed DOI

Palmfeldt J., Bross P. Proteomics of human mitochondria. Mitochondrion. 2017;33:2–14. doi: 10.1016/j.mito.2016.07.006. PubMed DOI

Tait S.W., Green D.R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol. 2013;5:a008706. doi: 10.1101/cshperspect.a008706. PubMed DOI PMC

Fernie A.R., Carrari F., Sweetlove L.J. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant. Biol. 2004;7:254–261. doi: 10.1016/j.pbi.2004.03.007. PubMed DOI

Tait S.W., Green D.R. Mitochondria and cell signalling. J. Cell Sci. 2012;125:807–815. doi: 10.1242/jcs.099234. PubMed DOI PMC

McBride H.M., Neuspiel M., Wasiak S. Mitochondria: More than just a powerhouse. Curr. Biol. 2006;16:R551–R560. doi: 10.1016/j.cub.2006.06.054. PubMed DOI

Weinberg S.E., Sena L.A., Chandel N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–417. doi: 10.1016/j.immuni.2015.02.002. PubMed DOI PMC

Joshi A.D., Mustafa M.G., Lichti C.F., Elferink C.J. Homocitrullination is a novel histone H1 epigenetic mark dependent on aryl hydrocarbon receptor recruitment of carbamoyl-phosphate synthase 1. J. Biol. Chem. 2015;290:27767–27778. doi: 10.1074/jbc.M115.678144. PubMed DOI PMC

Rowland A.A., Voeltz G.K. Endoplasmic reticulum-mitochondria contacts: Function of the junction. Nat. Rev. Mol. Cell Biol. 2012;13:607–625. doi: 10.1038/nrm3440. PubMed DOI PMC

Tristan C., Shahani N., Sedlak T.W., Sawa A. The diverse functions of GAPDH: Views from different subcellular compartments. Cell. Signal. 2011;23:317–323. doi: 10.1016/j.cellsig.2010.08.003. PubMed DOI PMC

Benes P., Vetvicka V., Fusek M. Cathepsin d-many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 2008;68:12–28. doi: 10.1016/j.critrevonc.2008.02.008. PubMed DOI PMC

Achour O., Ashraf Y., Bridiau N., Kacem M., Poupard N., Bordenave-Juchereau S., Sannier F., Lamerant-Fayel N., Kieda C., Liaudet-Coopman E., et al. Alteration of cathepsin D trafficking induced by hypoxia and extracellular acidification in MCF-7 breast cancer cells. Biochimie. 2016;121:123–130. doi: 10.1016/j.biochi.2015.11.007. PubMed DOI

Zhan Y., Wang K., Li Q., Zou Y., Chen B., Gong Q., Ho H.I., Yin T., Zhang F., Lu Y., et al. The novel autophagy inhibitor alpha-hederin promoted paclitaxel cytotoxicity by increasing reactive oxygen species accumulation in non-small cell lung cancer cells. Int. J. Mol. Sci. 2018;19:3221. doi: 10.3390/ijms19103221. PubMed DOI PMC

Xing W., Archer T.K. Upstream stimulatory factors mediate estrogen receptor activation of the cathepsin D promoter. Mol. Endocrinol. 1998;12:1310–1321. doi: 10.1210/mend.12.9.0159. PubMed DOI

Dabrosin C., Johansson A.C., Ollinger K. Decreased secretion of cathepsin D in breast cancer in vivo by tamoxifen: Mediated by the mannose-6-phosphate/IGF-II receptor? Breast Cancer Res. Treat. 2004;85:229–238. doi: 10.1023/B:BREA.0000025417.82291.36. PubMed DOI

Johansson A.C., Steen H., Ollinger K., Roberg K. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ. 2003;10:1253–1259. doi: 10.1038/sj.cdd.4401290. PubMed DOI

Emert-Sedlak L., Shangary S., Rabinovitz A., Miranda M.B., Delach S.M., Johnson D.E. Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol. Cancer Ther. 2005;4:733–742. doi: 10.1158/1535-7163.MCT-04-0301. PubMed DOI

Zuzarte-Luis V., Montero J.A., Kawakami Y., Izpisua-Belmonte J.C., Hurle J.M. Lysosomal cathepsins in embryonic programmed cell death. Dev. Biol. 2007;301:205–217. doi: 10.1016/j.ydbio.2006.08.008. PubMed DOI

Castino R., Peracchio C., Salini A., Nicotra G., Trincheri N.F., Démoz M., Valente G., Isidoro C. Chemotherapy drug response in ovarian cancer cells strictly depends on a cathepsin D-Bax activation loop. J. Cell. Mol. Med. 2009;13:1096–1109. doi: 10.1111/j.1582-4934.2008.00435.x. PubMed DOI PMC

Jancekova B., Ondrouskova E., Knopfova L., Smarda J., Benes P. Enzymatically active cathepsin D sensitizes breast carcinoma cells to TRAIL. Tumour Biol. 2016;37:10685–10696. doi: 10.1007/s13277-016-4958-5. PubMed DOI

Lord C.C., Thomas G., Brown J.M. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim. Biophys. Acta. 2013;1831:792–802. doi: 10.1016/j.bbalip.2013.01.002. PubMed DOI PMC

Pober S. Williams-Beuren syndrome. N. Engl. J. Med. 2010;362:239–252. doi: 10.1056/NEJMra0903074. PubMed DOI

Arya M., Srinivasan M., Rajasekharan R. Human alpha beta hydrolase domain containing protein 11 and its yeast homolog are lipid hydrolases. Biochem. Biophys. Res. Commun. 2017;487:875–880. doi: 10.1016/j.bbrc.2017.04.145. PubMed DOI

Fukasawa Y., Tsuji J., Fu S.C., Tomii K., Horton P., Imai K. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC

Wiedl T., Arni S., Roschitzki B., Grossmann J., Collaud S., Soltermann A., Hillinger S., Aebersold R., Weder W. Activity-based proteomics: Identification of ABHD11 and ESD activities as potential biomarkers for human lung adenocarcinoma. J. Proteom. 2011;74:1884–1894. doi: 10.1016/j.jprot.2011.04.030. PubMed DOI

Yang Y., Shao Y., Zhu M., Li Q., Yang F., Lu X., Xu C., Xiao B., Sun Y., Guo J. Using gastric juice lncRNA-ABHD11-AS1 as a novel type of biomarker in the screening of gastric cancer. Tumor Biol. 2016;37:1183–1188. doi: 10.1007/s13277-015-3903-3. PubMed DOI

Lei X., Li L., Duan X. Long non-coding RNA ABHD11-AS1 promotes colorectal cancer development through regulation of miR-133a/SOX4 axis. Biosci. Rep. 2018:BSR20181386. doi: 10.1042/BSR20181386. PubMed DOI PMC

Qiao X., Lv S.X., Qiao Y., Li Q.P., Ye B., Wang C.C., Miao L. Long noncoding RNA ABHD11-AS1 predicts the prognosis of pancreatic cancer patients and serves as a promoter by activation the PI3K-AKT pathway. Eur. Rev. Med. Pharmacol. Sci. 2018;22:8630–8639. doi: 10.26355/eurrev_201812_16627. PubMed DOI

Liu Y., Wang L.L., Chen S., Zong Z.H., Guan X., Zhao Y. LncRNA ABHD11-AS1 promotes the development of endometrial carcinoma by targeting cyclin D1. J. Cell. Mol. Med. 2018;22:3955–3964. doi: 10.1111/jcmm.13675. PubMed DOI PMC

De Cima S., Polo L.M., Díez-Fernández C., Martínez A.I., Cervera J., Fita I., Rubio V. Structure of human carbamoyl phosphate synthetase: Deciphering the on/off switch of human ureagenesis. Sci. Rep. 2015;5:16950. doi: 10.1038/srep16950. PubMed DOI PMC

Çeliktas M., Tanaka I., Tripathi S.C., Fahrmann J.F., Aguilar-Bonavides C., Villalobos P., Delgado O., Dhillon D., Dennison J.B., Ostrin E.J., et al. Role of CPS1 in cell growth, metabolism and prognosis in LKB1-Inactivated lung adenocarcinoma. J. Natl. Cancer Inst. 2017;109:1–9. doi: 10.1093/jnci/djw231. PubMed DOI PMC

Kim J., Hu Z., Cai L., Li K., Choi E., Faubert B., Bezwada D., Rodriguez-Canales J., Villalobos P., Lin Y.F., et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017;546:168–172. doi: 10.1038/nature22359. PubMed DOI PMC

Brown K.A., McInnes K.J., Takagi K., Ono K., Hunger N.I., Wang L., Sasano H., Simpson E.R. LKB1 expression is inhibited by estradiol-17β in MCF-7 cells. J. Steroid Biochem. Mol. Biol. 2011;127:439–443. doi: 10.1016/j.jsbmb.2011.06.005. PubMed DOI

Lee Y.Y., Li C.F., Lin C.Y., Lee S.W., Sheu M.J., Lin L.C., Chen T.J., Wu T.F., Hsing C.H. Overexpression of CPS1 is an independent negative prognosticator in rectal cancers receiving concurrent chemoradiotherapy. Tumour Biol. 2014;35:11097–11105. doi: 10.1007/s13277-014-2425-8. PubMed DOI

Cardona D.M., Zhang X., Liu C. Loss of carbamoyl phosphate synthetase I in small-intestinal adenocarcinoma. Am. J. Clin. Pathol. 2009;132:877–882. doi: 10.1309/AJCP74XGRFWTFLJU. PubMed DOI

Dye R.B., Fink S.P., Williams R.C., Jr. Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau. J. Biol. Chem. 1993;268:6847–6850. PubMed

Bauer J.A., Chakravarthy A.B., Rosenbluth J.M., Mi D., Seeley E.H., De Matos Granja-Ingram N., Olivares M.G., Kelley M.C., Mayer I.A., Meszoely I.M., et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin. Cancer Res. 2010;16:681–690. doi: 10.1158/1078-0432.CCR-09-1091. PubMed DOI PMC

Da Cruz S., Xenarios I., Langridge J., Vilbois F., Parone P.A., Martinou J.C. Proteomic analysis of the mouse liver mitochondrial inner membrane. J. Biol. Chem. 2003;278:41566–41571. doi: 10.1074/jbc.M304940200. PubMed DOI

Li S., Rousseau D. ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression. J. Bioenerg. Biomembr. 2012;44:189–197. doi: 10.1007/s10863-012-9424-5. PubMed DOI

Gilquin B., Taillebourg E., Cherradi N., Hubstenberger A., Gay O., Merle N., Assard N., Fauvarque M.O., Tomohiro S., Kuge O., et al. The AAA+ ATPase ATAD3A controls mitochondrial dynamics at the interface of the inner and outer membranes. Mol. Cell. Biol. 2010;30:1984–1996. doi: 10.1128/MCB.00007-10. PubMed DOI PMC

Frickey T., Lupas A.N. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 2004;146:2–10. doi: 10.1016/j.jsb.2003.11.020. PubMed DOI

Wang Y., Bogenhagen D.F. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J. Biol. Chem. 2006;281:25791–25802. doi: 10.1074/jbc.M604501200. PubMed DOI

He J., Mao C.C., Reyes A., Sembongi H., Di Re M., Granycome C., Clippingdale A.B., Fearnley I.M., Harbour M., Robinson A.J., et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell. Biol. 2007;176:141–146. doi: 10.1083/jcb.200609158. PubMed DOI PMC

Teng Y., Ren X., Li H., Shull A., Kim J., Cowell J.K. Mitochondrial ATAD3A combines with GRP78 to regulate WASF3 metastasis-promoting protein. Oncogene. 2016;35:333–343. doi: 10.1038/onc.2015.86. PubMed DOI PMC

Peralta S., Goffart S., Williams S.L., Diaz F., Garcia S., Nissanka N., Area-Gomez E., Pohjoismäki J., Moraes C.T. ATAD3 controls mitochondrial cristae structure, influencing mtDNA replication and cholesterol levels in muscle. J. Cell. Sci. 2018;131:jcs217075. doi: 10.1242/jcs.217075. PubMed DOI PMC

Hubstenberger A., Labourdette G., Baudier J., Rousseau D. ATAD 3A and ATAD 3B are distal 1p-located genes differentially expressed in human glioma cell lines and present in vitro anti-oncogenic and chemoresistant properties. Exp. Cell Res. 2008;314:2870–2883. doi: 10.1016/j.yexcr.2008.06.017. PubMed DOI

You W.C., Chiou S.H., Huang C.Y., Chiang S.F., Yang C.L., Sudhakar J.N., Lin T.Y., Chiang I.P., Shen C.C., Cheng W.Y., et al. Mitochondrial protein ATPase family AAA domain containing 3A correlates with radioresistance in glioblastoma. Neuro. Oncol. 2013;15:1342–1352. doi: 10.1093/neuonc/not077. PubMed DOI PMC

Huang K.H., Chow K.C., Chang H.W., Lin T.Y., Lee M.C. ATPase family AAA domain containing 3A is an anti-apoptotic factor and secretion regulator of PSA in prostate cancer. Int. J. Mol. Med. 2011;28:9–15. doi: 10.3892/ijmm.2011.670. PubMed DOI

Merle N., Féraud O., Gilquin B., Hubstenberger A., Kieffer-Jacquinot S., Assard N., Bennaceur-Griscelli A., Honnorat J., Baudier J. ATAD3B is a human embryonic stem cell specific mitochondrial protein, re-expressed in cancer cells, that functions as dominant negative for the ubiquitous ATAD3A. Mitochondrion. 2012;12:441–448. doi: 10.1016/j.mito.2012.05.005. PubMed DOI

Calcagno A.M., Ambudkar S.V. Molecular mechanisms of drug resistance in single-step and multi-step drug-selected cancer cells. Methods Mol. Biol. 2010;596:77–93. doi: 10.1007/978-1-60761-416-6_5. PubMed DOI PMC

Jelínek M., Balušíková K., Kopperová D., Němcová-Fürstová V., Šrámek J., Fidlerová J., Zanardi I., Ojima I., Kovář J. Caspase-2 is involved in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 2013;13:42. doi: 10.1186/1475-2867-13-42. PubMed DOI PMC

Jelínek M., Balušíková K., Schmiedlová M., Němcová-Fürstová V., Šrámek J., Stančíková J., Zanardi I., Ojima I., Kovář J. The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int. 2015;15:8. doi: 10.1186/s12935-015-0155-7. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...