Deciphering the Origin and Evolution of the X1X2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31672672
National Natural Science Foundation of China
2017C04003
Project of Zhejiang Province of China
401962/2016-4
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2018/22033-1
Fundação de Amparo à Pesquisa do Estado de São Paulo
88881.136128/2017-01
CAPES/Alexander von Humboldt
PubMed
31336568
PubMed Central
PMC6678977
DOI
10.3390/ijms20143571
PII: ijms20143571
Knihovny.cz E-zdroje
- Klíčová slova
- Oplegnathus, centric fusion, comparative genomic hybridization, multiple sex chromosomes, whole chromosome painting,
- MeSH
- genetické markery MeSH
- genom MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- mapování chromozomů MeSH
- pohlavní chromozomy * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ryby klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- genetické markery MeSH
- heterochromatin MeSH
Oplegnathus fasciatus and O. punctatus (Teleostei: Centrarchiformes: Oplegnathidae), are commercially important rocky reef fishes, endemic to East Asia. Both species present an X1X2Y sex chromosome system. Here, we investigated the evolutionary forces behind the origin and differentiation of these sex chromosomes, with the aim to elucidate whether they had a single or convergent origin. To achieve this, conventional and molecular cytogenetic protocols, involving the mapping of repetitive DNA markers, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) were applied. Both species presented similar 2n, karyotype structure and hybridization patterns of repetitive DNA classes. 5S rDNA loci, besides being placed on the autosomal pair 22, resided in the terminal region of the long arms of both X1 chromosomes in females, and on the X1 and Y chromosomes in males. Furthermore, WCP experiments with a probe derived from the Y chromosome of O. fasciatus (OFAS-Y) entirely painted the X1 and X2 chromosomes in females and the X1, X2, and Y chromosomes in males of both species. CGH failed to reveal any sign of sequence differentiation on the Y chromosome in both species, thereby suggesting the shared early stage of neo-Y chromosome differentiation. Altogether, the present findings confirmed the origin of the X1X2Y sex chromosomes via Y-autosome centric fusion and strongly suggested their common origin.
College of Fisheries Zhejiang Ocean University Zhoushan 316100 China
Secretaria de Estado de Educação de Mato Grosso SEDUC MT Cuiabá MT 78049 909 Brazil
University Clinic Jena Institute of Human Genetics 07747 Jena Germany
Zobrazit více v PubMed
Fricke R., Eschmeyer W., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References, California Academy of Sciences. California Academy of Sciences; San Francisco, CA, USA: 2019. [(accessed on 20 April 2019)]. Electronic Version. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
Meng Q.W., Su J.X., Miao X.Z. Fish Taxonomy. China Agriculture Press; Beijing, China: 1995.
Xiao Z.Z., Xiao Y.S., Ma D.Y., Xu S.H., Liu Q.H., Li J. Relationship between Oplegnathus fasciatus and Oplegnathus punctatus revealed by mtDNA sequences. Acta Ocean. Sin. 2011;33:115–123.
Xiao Y., Li J., Ren G., Ma D., Wang Y., Xiao Z., Xu S. Pronounced population genetic differentiation in the rock bream Oplegnathus fasciatus inferred from mitochondrial DNA sequences. Mitochondrial DNA A. 2016;27:2045–2052. PubMed
Shin Y., Jung M., Shin G.H., Jung H.J., Baek S.J., Lee G.Y., Kang B.C., Shim J., Hong J.M., Park J.Y., et al. First draft genome sequence of the rock bream in the family Oplegnathidae. Sci. Data. 2018;5:180234. doi: 10.1038/sdata.2018.234. PubMed DOI PMC
Xiao Y., Xiao Z., Ma D., Liu J., Li J. Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): The first chromosome-level draft genome in the family Oplegnathidae. Gigascience. 2019;8:giz013. PubMed PMC
Xu D., You F., Lou B., Geng Z., Li J., Xiao Z.Z. Comparative analysis of karyotype and C-banding in male and female Oplegnathus fasciatus. Acta Hydrobiol. Sin. 2012;36:552–557. (In Chinese)
Xue R., An H., Liu Q.H., Xiao Z.Z., Wang Y.F., Li J. Karyotype and Ag-NORs in male and female of Oplegnathus punctatus. Ocean. Limnol. Sin. 2016;47:626–632.
Li P.Z., Cao D.D., Liu X.B., Wang Y.J., Yu H.Y., Li X.J., Zhang Q.Q., Wang X.B. Karyotype analysis and ribosomal gene localization of spotted knifejaw Oplegnathus punctatus. Genet. Mol. Res. 2016;15:gmr15049159. doi: 10.4238/gmr15049159. PubMed DOI
Xu D., Lou B., Xu H., Li S., Geng Z. Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. Mar. Biotechnol. 2013;15:221–229. doi: 10.1007/s10126-012-9480-1. PubMed DOI
Toder R., O’Neill R.J., Wienberg J., O’Brien P.C., Voullaire L., Marshall-Graves J.A. Comparative chromosome painting between two marsupials: Origins of an XX/XY1Y sex chromosome system. Mamm. Genome. 1997;8:418–422. doi: 10.1007/s003359900459. PubMed DOI
Rens W., Grutzner F., O’Brien P.C.M., Fairclough H., Graves J.A.M., Ferguson-Smith M.A. From the cover: Resolution and evolution of the duck-billed platypus karyotype with an X1Y1XYXYXYXY male sex chromosome constitution. Proc. Natl. Acad. Sci. USA. 2004;101:16257–16261. doi: 10.1073/pnas.0405702101. PubMed DOI PMC
Kitano J., Peichel C.L. Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fishes. 2012;94:549–558. doi: 10.1007/s10641-011-9853-8. PubMed DOI PMC
Moreira-Filho O., Bertollo L.A.C., Galetti Jr P.M. Evidences for a multiple sex chromosome system with female heterogamety in Apareiodon affinis (Pisces, Parodontidae) Caryologia. 1980;33:83–91. doi: 10.1080/00087114.1980.10796821. DOI
Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Herrera I.M.Á., Al E. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae) Biol. J. Linn. Soc. 2013;109:377–408. doi: 10.1111/bij.12056. DOI
Šíchová J., Ohno M., Dincă V., Watanabe M., Sahara K., Marec F. Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. Biol. J. Linn. Soc. 2016;118:457–471. doi: 10.1111/bij.12756. DOI
Giovannotti M., Trifonov V.A., Paoletti A., Kichigin I.G., O’Brien P.C., Kasai F., Giovagnoli G., Ng B.L., Ruggeri P., Cerioni P.N., et al. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae) Chromosoma. 2016;126:245–260. doi: 10.1007/s00412-016-0585-6. PubMed DOI
Howell E.C., Armstrong S.J., Filatov D.A. Evolution of neo-sex chromosomes in Silene diclinis. Genetics. 2009;182:1109–1115. doi: 10.1534/genetics.109.103580. PubMed DOI PMC
Ogata M., Hasegawa Y., Ohtani H., Mineyama M., Miura I. The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity. 2008;100:92–99. doi: 10.1038/sj.hdy.6801068. PubMed DOI
Castillo E.R., Marti D.A., Bidau C. Sex and neo-sex chromosomes in Orthoptera: A review. J. Orthoptera Res. 2011;19:213–231. doi: 10.1665/034.019.0207. DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Frydrychová R.Č., Neven L.G., Sahara K., Marec F. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Palacios-Gimenez O.M., Cabral-de-Mello D.C. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: A case of the unusual XX0 sex chromosome system in Orthoptera. Mol. Genet. Genomics. 2015;290:623–631. doi: 10.1007/s00438-014-0947-9. PubMed DOI
Kaiser V.B., Bachtrog D. Evolution of sex chromosomes in insects. Annu. Rev. Genet. 2010;44:91–112. doi: 10.1146/annurev-genet-102209-163600. PubMed DOI PMC
Ross J.A., Urton J.R., Boland J., Shapiro M.D., Peichel C.L. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae) PLoS Genet. 2009;5:e1000391. doi: 10.1371/journal.pgen.1000391. PubMed DOI PMC
Schartl M., Schmid M., Nanda I. Dynamics of vertebrate sex chromosome evolution: From equal size to giants and dwarfs. Chromosoma. 2016;125:553–571. doi: 10.1007/s00412-015-0569-y. PubMed DOI
Nanda I., Schories S., Tripathi N., Dreyer C., Haaf T., Schmid M., Schartl M. Sex chromosome polymorphism in guppies. Chromosoma. 2014;123:373–383. doi: 10.1007/s00412-014-0455-z. PubMed DOI
Reichwald K., Petzold A., Koch P., Downie B.R., Hartmann N., Pietsch S., Baumgart M., Chalopin D., Felder M., Bens M., et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell. 2015;163:1527–1538. doi: 10.1016/j.cell.2015.10.071. PubMed DOI
Gamble T. Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 2016;25:2114–2116. doi: 10.1111/mec.13648. PubMed DOI
Guiguen Y., Fostier A., Herpin A. Sex determination and differentiation in fish: Genetic, genomic, and endocrine aspects. In: Wang H.-P., Piferrer F., Chen S.-L., editors. Sex Control in Aquaculture. 1st ed. Volume 1 John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2019.
Blanco D.R., Vicari M.R., Lui R.L., Bertollo L.A.C., Traldi J.B., Moreira-Filho O. The role of the Robertsonian rearrangements in the origin of the XX/XYY sex chromosome system and in the chromosomal differentiation in Harttia species (Siluriformes, Loricariidae) Rev. Fish Biol. Fish. 2013;23:127–134. doi: 10.1007/s11160-012-9283-5. DOI
Blanco D.R., Vicari M.R., Lui R.L., Artoni R.F., de Almeida M.C., Traldi J.B., Margarido V.P., Moreira-Filho O. Origin of the XX1XX/XXY sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica. 2014;142:119–126. PubMed
Soares R.X., Bertollo L.A.C., Cioffi M.B., Costa G.W.W.F., Molina W.F. Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2 /X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): An evolutionary perspective. Genet. Mol. Res. 2014;13:2470–2479. doi: 10.4238/2014.April.3.19. PubMed DOI
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251–272. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Krysanov E., Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes) Comp. Cytogenet. 2018;12:387–402. doi: 10.3897/CompCytogen.v12i3.25092. PubMed DOI PMC
Da Silva M., Matoso D.A., Artoni R.F., Feldberg E. New approach data in electric fish (Teleostei: Gymnotus): Sex chromosome evolution and repetitive DNA. Zebrafish. 2014;11:528–535. doi: 10.1089/zeb.2013.0966. PubMed DOI
Almeida J.S., Migues V.H., Diniz D., Affonso P.R.A.M. A unique sex chromosome system in the knifefish Gymnotus bahianus with inferences about chromosomal evolution of Gymnotidae. J. Hered. 2015;106:177–183. doi: 10.1093/jhered/esu087. PubMed DOI
Cardoso A.L., Pieczarka J.C., Nagamachi C.Y. X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus. Genet. Mol. Biol. 2015;38:213–219. doi: 10.1590/S1415-4757382220140189. PubMed DOI PMC
Bitencourt J.A., Sampaio I., Ramos R.T.C., Vicari M.R., Affonso P.R.A.M. First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus. Zebrafish. 2016;14:90–95. doi: 10.1089/zeb.2016.1333. PubMed DOI
Zhang S., Zheng J., Zhang J., Wang Z., Wang Y., Cai M. Cytogenetic characterization and description of an X1X1X2X2/X1X2Y sex chromosome system in Collichthys lucidus (Richardson, 1844) Acta Oceanol. Sin. 2018;37:34–3940. doi: 10.1007/s13131-018-1152-1. DOI
Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido-Ramos M.A., editor. Repetitive DNA. Volume 7. Karger Publishers; Basel, Switzerland: 2012. pp. 197–221. PubMed
Symonová R., Howell W. Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Ferguson-Smith M.A., Trifonov V. Mammalian karyotype evolution. Nat. Rev. Genet. 2007;8:950–962. doi: 10.1038/nrg2199. PubMed DOI
Traut W., Sahara K., Otto T.D., Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Altmanová M., Rovatsos M., Kratochvíl L., Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol. J. Linn. Soc. 2016;118:618–633. doi: 10.1111/bij.12751. DOI
Sember A., Bertollo L.A.C., Ráb P., Yano C.F., Hatanaka T., de Oliveira E.A., Cioffi M.B. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:1–12. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC
Valenzuela N., Badenhorst D., Montiel E.E., Literman R. Molecular cytogenetic search for cryptic sex chromosomes in painted turtles Chrysemys picta. Cytogenet. Genome Res. 2014;144:39–46. doi: 10.1159/000366076. PubMed DOI
Yano C.F., Bertollo L.A.C., Ezaz T., Trifonov V., Sember A., Liehr T., Cioffi M.B. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) Heredity. 2017;118:276–283. doi: 10.1038/hdy.2016.83. PubMed DOI PMC
Montiel E.E., Badenhorst D., Tamplin J., Burke R.L., Valenzuela N. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma. 2017;126:105–113. doi: 10.1007/s00412-016-0576-7. PubMed DOI
De Oliveira E.A., Sember A., Bertollo L.A.C., Yano C.F., Ezaz T., Moreira-Filho O., Hatanaka T., Trifonov V., Liehr T., Al-Rikabi A.B.H., et al. Tracking the evolutionary pathway of sex chromosomes among fishes: Characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI
Zrzavá M., Hladová I., Dalíková M., Šíchová J., Õunap E., Kubíčková S., Marec F. Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes. 2018;9:279. doi: 10.3390/genes9060279. PubMed DOI PMC
Pokorná M., Rens W., Rovatsos M., Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet. Genome Res. 2014;142:190–196. doi: 10.1159/000358847. PubMed DOI
Pokorná M., Giovannotti M., Kratochvíl L., Caputo V., Olmo E., Ferguson-Smith M.A., Rens W. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma. 2012;121:409–418. doi: 10.1007/s00412-012-0371-z. PubMed DOI
Henning F., Moysés C.B., Calcagnotto D., Meyer A., Almeida-Toledo L.F. Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia) Heredity. 2011;106:391–400. doi: 10.1038/hdy.2010.82. PubMed DOI PMC
Carvalho P.C., de Oliveira E.A., Bertollo L.A.C., Yano C.F., Oliveira C., Decru E., Jegede O.I., Hatanaka T., Liehr T., Al-Rikabi A.B.H., et al. First chromosomal analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into relationship between African and Neotropical fish groups. Front. Genet. 2017;8:203. doi: 10.3389/fgene.2017.00203. PubMed DOI PMC
Noronha R.C.R., Nagamachi C.Y., O’Brien P.C.M., Ferguson-Smith M.A., Pieczarka J.C. Neo-XY body: An analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet. Genome Res. 2009;124:37–43. doi: 10.1159/000200086. PubMed DOI
Cioffi M.B., Sánchez A., Marchal J.A., Kosyakova N., Liehr T., Trifonov V., Bertollo L.A.C. Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species. Genetica. 2011;139:1065–1072. doi: 10.1007/s10709-011-9610-0. PubMed DOI
Da Silva W.O., da Costa M.J., Pieczarka J.C., Rissino J., Pereira J.C., Ferguson-Smith M.A., Nagamachi C.Y. Identification of two independent X-autosome translocations in closely related mammalian (Proechimys) species. Sci. Rep. 2019;9:1–11. PubMed PMC
Xu D., Lou B., Bertollo L.A.C., Cioffi M.D.B. Chromosomal mapping of microsatellite repeats in the rock bream fish Oplegnathus fasciatus, with emphasis of their distribution in the neo-Y chromosome. Mol. Cytogenet. 2013;6:12. doi: 10.1186/1755-8166-6-12. PubMed DOI PMC
Ferreira M., Garcia C., Matoso D.A., de Jesus I.S., Feldberg E. A new multiple sex chromosome system X1X1X2X2/X1Y1X2Y2 in Siluriformes: Cytogenetic characterization of Bunocephalus coracoideus (Aspredinidae) Genetica. 2016;144:591–599. doi: 10.1007/s10709-016-9927-9. PubMed DOI
Cioffi M.B., Martins C., Vicari M.R., Rebordinos L., Bertollo L.A.C. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): Unusual accumulation of repetitive sequences on the X chromosome. Sex Dev. 2010;4:176–185. doi: 10.1159/000309726. PubMed DOI
Cioffi M.B., Martins C., Bertollo L.A.C. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 2010;10:271–279. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC
Martins N.F., Bertollo L.A.C., Troy W.P., Feldberg E., de Souza Valentin F.C., Cioffi M.B. Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): Comparative chromosome mapping of repetitive sequences. Rev. Fish Biol. Fish. 2013;23:261–269. doi: 10.1007/s11160-012-9292-4. DOI
Yano C.F., Bertollo L.A.C., Molina W., Liehr T., Cioffi M. Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae) Comp. Cytogenet. 2014;8:139–151. PubMed PMC
Parise-Maltempi P.P., Martins C., Oliveira C., Foresti F. Identification of a new repetitive element in the sex chromosomes of Leporinus elongatus (Teleostei: Characiformes: Anostomidae): New insights into the sex chromosomes of Leporinus. Cytogenet. Genome Res. 2007;116:218–223. doi: 10.1159/000098190. PubMed DOI
Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosome Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI
Palacios-Gimenez O.M., Castillo E.R., Marti D.A., Cabral-de-Mello D.C. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol. Biol. 2013;13:167. doi: 10.1186/1471-2148-13-167. PubMed DOI PMC
McKee B.D., Karpen G.H. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990;61:61–72. doi: 10.1016/0092-8674(90)90215-Z. PubMed DOI
Ota K., Tateno Y., Gojobori T. Highly differentiated and conserved sex chromosome in fish species (Aulopus japonicus: Teleostei, Aulopidae) Gene. 2003;317:187–193. doi: 10.1016/S0378-1119(03)00702-9. PubMed DOI
Guerrero R.F., Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution. 2014;68:2747–2756. doi: 10.1111/evo.12481. PubMed DOI
Galián J., Proença S.J.R., Vogler A.P. Evolutionary dynamics of autosomal-heterosomal rearrangements in a multiple-X chromosome system of tiger beetles (Cicindelidae) BMC Evol. Biol. 2007;7:1–10. doi: 10.1186/1471-2148-7-158. PubMed DOI PMC
Ocalewicz K. Telomeres in Fishes. Cytogenet. Genome Res. 2013;141:114–125. doi: 10.1159/000354278. PubMed DOI
Meyne J., Baker R.J., Hobart H.H., Hsu T.C., Ryder O.A., Ward O.G., Wiley J.E., Wurster-Hill D.H., Yates T.L., Moyzis R.K. Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma. 1990;99:3–10. doi: 10.1007/BF01737283. PubMed DOI
Rovatsos M., Kratochvíl L., Altmanová M., Pokorná M.J. Interstitial telomeric motifs in squamate reptiles: When the exceptions outnumber the rule. PLoS ONE. 2015;10:e0134985. doi: 10.1371/journal.pone.0134985. PubMed DOI PMC
Matsubara K., Uno Y., Srikulnath K., Matsuda Y., Miller E., Olsson M. No interstitial telomeres on autosomes but remarkable amplification of telomeric repeats on the W sex chromosome in the sand lizard (Lacerta agilis) J. Hered. 2015;106:753–757. doi: 10.1093/jhered/esv083. PubMed DOI
Cioffi M.B., Bertollo L.A.C. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity. 2010;105:554–561. doi: 10.1038/hdy.2010.18. PubMed DOI
Favarato R.M., Silva M., de Oliveira R.R., Matoso D. Cytogenetic diversity and the evolutionary dynamics of rDNA genes and telomeric sequences in the Ancistrus genus (Loricariidae: Ancistrini) Zebrafish. 2016;13:103–111. doi: 10.1089/zeb.2015.1140. PubMed DOI
Schemberger M.O., Bellafronte E., Nogaroto V., Almeida M.C., Schühli G.S., Artoni R.F., Moreira-Filho O., Vicari M.R. Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes) Genetica. 2011;139:1499–1508. doi: 10.1007/s10709-012-9649-6. PubMed DOI
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI
Sambrook J., Russell D.W. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Basset P., Yannic G., Yang F., O’Brien P.C.M., Graphodatsky A.S., Ferguson-Smith M.A., Balmus G., Volobouev V.T., Hausser J. Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group. Chromosome Res. 2006;14:253–262. doi: 10.1007/s10577-006-1041-x. PubMed DOI
Martins C. Chromosomes and repetitive DNAs: A contribution to the knowledge of fish genome. In: Pisano E., Ozouf-Costaz C., Foresti F., Kapoor B.G., editors. Fish Cytogenetics. Science Publisher; Enfield, UK: 2007. pp. 421–453.
Kejnovský E., Hobza R., Čermák T., Kubát Z., Vyskot B. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity. 2009;102:533–541. doi: 10.1038/hdy.2009.17. PubMed DOI
Pokorná M., Kratochvíl L., Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:1–7. doi: 10.1186/1471-2156-12-90. PubMed DOI PMC
Poltronieri J., Marquioni V., Bertollo L.A.C., Kejnovský E., Molina W.F., Liehr T., Cioffi M.B. Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): Unequal accumulation on the W chromosomes. Cytogenet. Genome Res. 2014;142:40–45. doi: 10.1159/000355908. PubMed DOI
Gunski R., Kretschmer R., de Souza M., Furo I., Barcellos S., Costa A., Cioffi M.B., de Oliveira E., Garnero A. Evolution of bird sex chromosomes narrated by repetitive sequences: Unusual W-chromosome enlargement in Gallinula melanops (Aves: Gruiformes: Rallidae) Cytogenet. Genome Res. 2019 doi: 10.1159/000501381. in press. PubMed DOI
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Marshall Graves J.A. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
de Freitas N.L., Al-Rikabi A.B.H., Bertollo L.A.C., Ezaz T., Yano C.F., de Oliveira E.A., Hatanaka T., Cioffi M.B. Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation. Curr. Genomics. 2018;19:216–226. doi: 10.2174/1389202918666170711160528. PubMed DOI PMC
Keinath M.C., Timoshevskaya N., Timoshevskiy V.A., Voss R., Smith J.J. Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci. Rep. 2018;8:17882. doi: 10.1038/s41598-018-36209-2. PubMed DOI PMC
Marková M., Vyskot B. New horizons of genomic in situ hybridization. Cytogenet. Genome Res. 2010;126:368–375. doi: 10.1159/000275796. PubMed DOI
Chester M., Leitch A.R., Soltis P.S., Soltis D.E. Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation) Genes. 2010;1:166–192. doi: 10.3390/genes1020166. PubMed DOI PMC
Mariotti B., Manzano S., Kejnovský E., Vyskot B., Jamilena M. Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genomics. 2009;281:249–259. doi: 10.1007/s00438-008-0405-7. PubMed DOI
Palácios-Gimenez O.M., Dias G.B., De Lima L.G., Kuhn G.C.E.S., Ramos É., Martins C., Cabral-De-Mello D.C. High-throughput analysis of the satellitome revealed enormous diversity of satellite DNAs in the neo-Y chromosome of the cricket Eneoptera surinamensis. Sci. Rep. 2017;7:6422. doi: 10.1038/s41598-017-06822-8. PubMed DOI PMC
Bachtrog D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013;14:113124. doi: 10.1038/nrg3366. PubMed DOI PMC
Schoumans J., Nordgren A., Ruivenkamp C., Brondum-Nielsen K., The B.T., Annéren G., Holmberg E., Nordenskjold M., Anderlid B.M. Genome-wide screening using array-CGH does not reveal microdeletions/microduplications in children with Kabuki syndrome. Eur. J. Hum. Genet. 2005;13:260–263. doi: 10.1038/sj.ejhg.5201309. PubMed DOI
Liu H., Pang M., Yu X., Zhou Y., Tong J., Fu B. Sex-specific markers developed by next-generation sequencing confirmed an XX/XY sex determination system in bighead carp (Hypophthalmichehys nobilis) and silver carp (Hypophthalmichthys molitrix) DNA Res. 2018;25:257–264. doi: 10.1093/dnares/dsx054. PubMed DOI PMC
Morris J., Darolti I., Bloch N.I., Wright A.E., Mank J.E. Shared and species-specific patterns of nascent Y chromosome evolution in two guppy species. Genes. 2018;9:238. doi: 10.3390/genes9050238. PubMed DOI PMC
Kirubakaran T.G., Andersen Ø., De Rosa M.C., Andersstuen T., Hallan K., Kent M.P., Lien S. Characterization of a male specific region containing a candidate sex determining gene in Atlantic cod. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-018-36748-8. PubMed DOI PMC
Pan Q., Feron R., Yano A., Guyomard R., Jouanno E., Vigouroux E., Wen M., Busnel J.M., Bobe J., Concordet J.P., et al. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. bioRxiv. 2019 Preprint. PubMed PMC
Kamiya T., Kai W., Tasumi S., Oka A., Matsunaga T., Mizuno N., Fujita M., Suetake H., Suzuki S., Hosoya S., et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger Pufferfish, Takifugu rubripes (Fugu) PLoS Genet. 2012;8:e1002798. doi: 10.1371/journal.pgen.1002798. PubMed DOI PMC
Yoshida K., Makino T., Yamaguchi K., Shigenobu S., Hasebe M., Kawata M., Kume M., Mori S., Peichel C.L., Toyoda A., et al. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet. 2014;10:e1004223. doi: 10.1371/journal.pgen.1004223. PubMed DOI PMC
Natri H.M., Shikano T., Merilä J. Progressive recombination suppression and differentiation in recently evolved neo-sex chromosomes. Mol. Biol. Evol. 2013;30:1131–1144. doi: 10.1093/molbev/mst035. PubMed DOI PMC
Moraes R.L.R., Sember A., Bertollo L.A.C., Oliveira E.A., Ráb P., Hatanaka T., Marinho M.M.F., Liehr T., Al-Rikabi A.B.H., Feldberg E., et al. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae) Front. Genet. 2019 doi: 10.3389/fgene.2019.00678. in press. PubMed DOI PMC
Moreira-Filho O., Bertollo L.A.C., Galetti P.M., Jr. Distribution of sex chromosome mechanisms in Neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae) Caryologia. 1993;46:115–125. doi: 10.1080/00087114.1993.10797253. DOI
Charlesworth B., Wall J.D. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc. Biol. Sci. 1999;266:51–56. doi: 10.1098/rspb.1999.0603. DOI
Kitano J., Ross J.A., Mori S., Kume M., Jones F.C., Chan Y.F., Absher D.M., Grimwood J., Schmutz J., Myers R.M., et al. A role for a neo-sex chromosome in stickleback speciation. Nature. 2009;461:1079–1083. doi: 10.1038/nature08441. PubMed DOI PMC
Smith D.A.S., Gordon I.J., Traut W., Herren J., Collins S., Martins D.J., Saitoti K., Ireri P. A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. Proc. R. Soc. B. 2016;283:20160821. doi: 10.1098/rspb.2016.0821. PubMed DOI PMC
Yasukochi Y., Miura N., Nakano R., Sahara K., Ishikawa Y. Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays. PLoS ONE. 2011;6:e18843. doi: 10.1371/journal.pone.0018843. PubMed DOI PMC
Devlin R.H., Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI
Mank J.E., Avise J.C. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI
Cioffi M.B., Liehr T., Trifonov V., Molina W.F., Bertollo L.A.C. Independent sex chromosome evolution in lower vertebrates: A molecular cytogenetic overview in the erythrinidae fish family. Cytogenet. Genome Res. 2013;141:186–194. doi: 10.1159/000354039. PubMed DOI
Woram R.A., Gharbi K., Sakamoto T., Hoyheim B., Holm L.E., Naish K., McGowan C., Ferguson M.M., Phillips R.B., Stein J., et al. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res. 2003;13:272–280. doi: 10.1101/gr.578503. PubMed DOI PMC
Gammerdinger W.J., Kocher T.D. Unusual diversity of sex chromosomes in African cichlid fishes. Genes. 2018;9:480. doi: 10.3390/genes9100480. PubMed DOI PMC
Henning F., Trifonov V., Ferguson-Smith M.A., Almeida-Toledo L.F. Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei: Gymnotiformes) Cytogenet. Genome Res. 2008;121:391–400. doi: 10.1159/000124382. PubMed DOI
Cioffi M.B., Camacho J.P.M., Bertollo L.A.C. Repetitive DNAs and differentiation of sex chromosomes in neotropical fishes. Cytogenet. Genome Res. 2011;132:188–194. doi: 10.1159/000321571. PubMed DOI
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Enfield, CT, USA: 2015. pp. 21–26.
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet. Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI
Cioffi M.B., Martins C., Centofante L., Jacobina U., Bertollo L.A.C. Chromosomal variability among allopatric populations of Erythrinidae fish Hoplias malabaricus: Mapping of three classes of repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI
Kubát Z., Hobza R., Vyskot B., Kejnovský E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Fish Cytogenet. Tech. Ray-Fin Fishes Chondrichthyans. CCR Press; Boca Raton, FL, USA: 2015. Characterization of fish genomes by GISH and CGH; pp. 118–131.
Yang F., Trifonov V., Ng B.L., Kosyakova N., Carter N.P. Generation of paint probes by flow-sorted and microdissected chromosomes BT. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; Berlin/Heidelberg, Germany: 2009. pp. 35–52.