• This record comes from PubMed

Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells

. 2019 Aug 22 ; 24 (17) : . [epub] 20190822

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IDEX Paris-Saclay, "IDI 2017" project ANR-11-IDEX-0003-02 Agence Nationale de la Recherche
17-00973S Grantová Agentura České Republiky
ELIBIO CZ.02.1.01/0.0/0.0/15_003/0000447 European Regional Development Fund
MSM100101901 Czech Academy of Sciences/Akademie Věd České Republiky
LQ1606 Ministerstvo Školství, Mládeže a Tělovýchovy (CZ)

Links

PubMed 31443533
PubMed Central PMC6749324
DOI 10.3390/molecules24173058
PII: molecules24173058
Knihovny.cz E-resources

The development of nanomedicines for the treatment of neurodegenerative disorders demands innovative nanoarchitectures for combined loading of multiple neuroprotective compounds. We report dual-drug loaded monoolein-based liquid crystalline architectures designed for the encapsulation of a therapeutic protein and a small molecule antioxidant. Catalase (CAT) is chosen as a metalloprotein, which provides enzymatic defense against oxidative stress caused by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Curcumin (CU), solubilized in fish oil, is co-encapsulated as a chosen drug with multiple therapeutic activities, which may favor neuro-regeneration. The prepared self-assembled biomolecular nanoarchitectures are characterized by biological synchrotron small-angle X-ray scattering (BioSAXS) at multiple compositions of the lipid/co-lipid/water phase diagram. Constant fractions of curcumin (an antioxidant) and a PEGylated agent (TPEG1000) are included with regard to the lipid fraction. Stable cubosome architectures are obtained for several ratios of the lipid ingredients monoolein (MO) and fish oil (FO). The impact of catalase on the structural organization of the cubosome nanocarriers is revealed by the variations of the cubic lattice parameters deduced by BioSAXS. The outcome of the cellular uptake of the dual drug-loaded nanocarriers is assessed by performing a bioassay of catalase peroxidatic activity in lysates of nanoparticle-treated differentiated SH-SY5Y human cells. The obtained results reveal the neuroprotective potential of the in vitro studied cubosomes in terms of enhanced peroxidatic activity of the catalase enzyme, which enables the inhibition of H2O2 accumulation in degenerating neuronal cells.

See more in PubMed

Sarkar S., Tran N., Rashid M.H., Le T.C., Yarovsky I., Conn C.E., Drummond C.J. Toward cell membrane biomimetic lipidic cubic phases: A high-throughput exploration of lipid compositional space. ACS Appl. Bio Mater. 2019;2:182–195. doi: 10.1021/acsabm.8b00539. PubMed DOI

Angelova A., Angelov B., Mutafchieva R., Lesieur S. Biocompatible mesoporous and soft nanoarchitectures. J. Inorg. Organomet. Polym. 2015;25:214–232. doi: 10.1007/s10904-014-0143-8. DOI

Larsson K. Cubic lipid-water phases: Structures and biomembrane aspects. J. Phys. Chem. 1989;93:7304–7314. doi: 10.1021/j100358a010. DOI

Seddon J.M., Templer R.H. Polymorphism of Lipid—Water Systems. In: Lipowsky R., Sackmann E., editors. Handbook of Biological Physics. Volume 1. Elsevier Science B.V.; North Holland, The Netherlands: 1995. pp. 99–149.

Kulkarni C.V. Lipid crystallization: From self-assembly to hierarchical and biological ordering. Nanoscale. 2012;4:5779–5791. doi: 10.1039/c2nr31465g. PubMed DOI

Kulkarni C.V., Yaghmur A., Steinhart M., Kriechbaum M., Michael Rappolt M. Effects of high pressure on internally self-assembled lipid nanoparticles: A synchrotron small-angle X-ray scattering (SAXS) study. Langmuir. 2016;32:11907. doi: 10.1021/acs.langmuir.6b03300. PubMed DOI

Lawrence M.J. Surfactant systems: Their use in drug delivery. Chem. Soc. Rev. 1994;23:417–424. doi: 10.1039/cs9942300417. DOI

Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc. Chem. Res. 2011;44:147–156. doi: 10.1021/ar100120v. PubMed DOI

Angelova A., Garamus V.M., Angelov B., Tian Z., Li Y., Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci. 2017;249:331–345. doi: 10.1016/j.cis.2017.04.006. PubMed DOI

Milak S., Zimmer A. Glycerol monooleate liquid crystalline phases used in drug delivery systems. Int. J. Pharm. 2015;478:569–587. doi: 10.1016/j.ijpharm.2014.11.072. PubMed DOI

Angelov B., Angelova A., Filippov S.K., Drechsler M., Stepanek P., Lesieur S. Multicompartment lipid cubic nanoparticles with high protein upload: Millisecond dynamics of formation. ACS Nano. 2014;8:5216–5226. doi: 10.1021/nn5012946. PubMed DOI

Garti N., Libster D., Aserin A. Lipid polymorphism in lyotropic liquid crystals for triggered release of bioactives. Food Funct. 2012;3:700–713. doi: 10.1039/c2fo00005a. PubMed DOI

Barriga H.M.G., Holme M.N., Stevens M.M. Cubosomes: The next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 2018;57:2–23. doi: 10.1002/anie.201804067. PubMed DOI PMC

Han S., Shen J.Q., Gan Y., Geng H.M., Zhang X.X., Zhu C.L., Gan L. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol. Sin. 2010;31:990–998. doi: 10.1038/aps.2010.98. PubMed DOI PMC

Avachat A.M., Parpani S.S. Formulation and development of bicontinuous nanostructured liquid crystalline particles of efavirenz. Colloids Surf. B: Biointerfaces. 2015;126:87–97. doi: 10.1016/j.colsurfb.2014.12.014. PubMed DOI

Aleandri S., Bandera D., Mezzenga R., Landau E.M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir. 2015;31:12770–12776. doi: 10.1021/acs.langmuir.5b03469. PubMed DOI

Baskaran R., Madheswaran T., Sundaramoorthy P., Kim H.M., Yoo B.K. Entrapment of curcumin into monoolein-based liquid crystalline nanoparticle dispersion for enhancement of stability and anticancer activity. Int. J. Nanomed. 2014;9:3119–3130. PubMed PMC

Fong W.K., Negrini R., Vallooran J.J., Mezzenga R., Boyd B.J. Responsive self-assembled nanostructured lipid systems for drug delivery and diagnostics. J. Colloid Interface Sci. 2016;484:320–339. doi: 10.1016/j.jcis.2016.08.077. PubMed DOI

Rakotoarisoa M., Angelov B., Garamus V.M., Angelova A. Curcumin- and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega. 2019;4:3061–3073. doi: 10.1021/acsomega.8b03101. DOI

Nielsen L.H., Rades T., Boyd B., Boisen A. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin. Eur. J. Pharm. Biopharm. 2017;118:13–20. doi: 10.1016/j.ejpb.2016.12.008. PubMed DOI

Rizwan S.B., Assmus D., Boehnke A., Hanley T., Boyd B.J., Rades T., Hook S. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur. J. Pharm. Biopharm. 2011;79:15–22. doi: 10.1016/j.ejpb.2010.12.034. PubMed DOI

Angelov B., Garamus V.M., Drechsler M., Angelova A. Structural analysis of nanoparticulate carriers for encapsulation of macromolecular drugs. J. Mol. Liq. 2017;235:83–89. doi: 10.1016/j.molliq.2016.11.064. DOI

Conn C.E., Drummond C.J. Nanostructured bicontinuous cubic lipid self-assembly materials as matrices for protein encapsulation. Soft Matter. 2013;9:3449. doi: 10.1039/c3sm27743g. DOI

Rizwan S.B., Hanley T., Boyd B.J., Rades T., Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: Characterisation, swelling and release kinetics. J. Pharm. Sci. 2009;98:4191–4204. doi: 10.1002/jps.21724. PubMed DOI

Angelova A., Ollivon M., Campitelli A., Bourgaux C. Lipid cubic phases as stable nanochannel network structures for protein biochip development: X-ray diffraction study. Langmuir. 2003;19:6928–6935. doi: 10.1021/la0345284. DOI

Van’t Hag L., Shen H.H., Lin T.W., Gras S.L., Drummond C.J., Conn C.E. Effect of lipid-based nanostructure on protein encapsulation within the membrane bilayer mimetic lipidic cubic phase using transmembrane and lipo-proteins from the beta-barrel assembly machinery. Langmuir. 2016;32:12442–12452. doi: 10.1021/acs.langmuir.6b01800. PubMed DOI

Van’t Hag L., De Campo L., Garvey C.J., Feast G.C., Leung A.E., Yepuri N.R., Knott R., Greaves T.L., Tran N., Gras S.L., et al. Using SANS with contrast-matched lipid bicontinuous cubic phases to determine the location of encapsulated peptides, proteins, and other biomolecules. J. Phys. Chem. Lett. 2016;7:2862–2866. doi: 10.1021/acs.jpclett.6b01173. PubMed DOI

Darmanin C., Sarkar S., Castelli L., Conn C.E. Effect of lipidic cubic phase structure on functionality of the dopamine 2l receptor: Implications for in meso crystallization. Cryst. Growth Des. 2016;16:5014–5022. doi: 10.1021/acs.cgd.6b00576. DOI

Kulkarni C.V., Wachter W., Iglesias-Salto G., Engelskirchen S., Ahualli S. Monoolein: A magic lipid? Phys. Chem. Chem. Phys. 2011;13:3004–3021. doi: 10.1039/C0CP01539C. PubMed DOI

Angelov B., Angelova A., Garamus V.M., Lebas G., Lesieur S., Ollivon M., Funari S.S., Willumeit R., Couvreur P. Small-angle neutron and X-ray scattering from amphiphilic stimuli-responsive diamond-type bicontinuous cubic phase. J. Am. Chem. Soc. 2007;129:13474–13479. doi: 10.1021/ja072725+. PubMed DOI

Valldeperas M., Wisniewska M., Ram-On M., Kesselman E., Danino D., Nylander T., Barauskas J. Sponge phases and nanoparticle dispersions in aqueous mixtures of mono- and diglycerides. Langmuir. 2016;32:8650–8659. doi: 10.1021/acs.langmuir.6b01356. PubMed DOI

Angelova A., Angelov B., Garamus V.M., Drechsler M. A vesicle-to-sponge transition via the proliferation of membrane-linking pores in w-3 polyunsaturated fatty acid-containing lipid assemblies. J. Mol. Liq. 2019;279:518–523. doi: 10.1016/j.molliq.2019.01.124. DOI

Yaghmur A., Ghazal A., Ghazal R., Dimaki M., Svendsen W.E. A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Phys. Chem. Chem. Phys. 2019;21:13005–13013. doi: 10.1039/C9CP02393C. PubMed DOI

Angelov B., Angelova A., Garamus V.M., Drechsler M., Willumeit R., Mutafchieva R., Štěpánek P., Lesieur S. Earliest stage of the tetrahedral nanochannel formation in cubosome particles from unilamellar nanovesicles. Langmuir. 2012;28:16647–16655. doi: 10.1021/la302721n. PubMed DOI

Gontsarik M., Mohammadtaheri M., Yaghmur A., Salentinig S. pH-Triggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies. Biomater. Sci. 2018;6:803–812. doi: 10.1039/C7BM00929A. PubMed DOI

Yepuri N.R., Clulow A.J., Prentice R.N., Gilbert E.P., Hawley A., Rizwan S.B., Boyd B.J., Darwish T.A. Deuterated phytantriol—A versatile compound for probing material distribution in liquid crystalline lipid phases using neutron scattering. J. Colloid Interface Sci. 2019;534:399–407. doi: 10.1016/j.jcis.2018.09.022. PubMed DOI

Angelova A., Angelov B. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regen. Res. 2017;12:886–889. doi: 10.4103/1673-5374.208546. PubMed DOI PMC

Huang L., Hu J., Huang S., Wang B., Siaw-Debrah F., Nyanzu M., Zhang Y., Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog. Neurobiol. 2017;157:29–48. doi: 10.1016/j.pneurobio.2017.07.003. PubMed DOI

Angelova A., Drechsler M., Garamus V.M., Angelov B. Liquid crystalline nanostructures as pegylated reservoirs of omega-3 polyunsaturated fatty acids: Structural insights toward delivery formulations against neurodegenerative disorders. ACS Omega. 2018;3:3235–3247. doi: 10.1021/acsomega.7b01935. PubMed DOI PMC

Guerzoni L.P.B., Nicolas V., Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res. 2017;34:492–505. doi: 10.1007/s11095-016-2080-4. PubMed DOI

Rakotoarisoa M., Angelova A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines. 2018;5:126. doi: 10.3390/medicines5040126. PubMed DOI PMC

Mueller S., Riedel H.D., Stremmel W. Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood. 1997;90:4973–4978. PubMed

Glorieux C., Calderon P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017;26:1095–1108. doi: 10.1515/hsz-2017-0131. PubMed DOI

Tehrani H.S., Moosavi-Movahedi A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018;140:5–12. doi: 10.1016/j.pbiomolbio.2018.03.001. PubMed DOI

Giordano C.R., Roberts R., Krentz K.A., Bissig D., Talreja D., Kumar A., Terlecky S.R., Berkowitz B.A. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2015;56:3095–3102. doi: 10.1167/iovs.14-16194. PubMed DOI PMC

Nishikawa M., Hashida M., Takakura Y. Catalase delivery for inhibiting ROS- mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev. 2009;61:319–326. doi: 10.1016/j.addr.2009.01.001. PubMed DOI

Vetrano A.M., Heck D.E., Mariano T.M., Mishin V., Laskin D.L., Laskin J.D. Characterization of the oxidase activity in mammalian catalase. J. Biol. Chem. 2005;280:35372–35381. doi: 10.1074/jbc.M503991200. PubMed DOI

Kremer M.L. Peroxidatic activity of catalase. Biochim. Biophys. Acta. 1970;198:199–209. doi: 10.1016/0005-2744(70)90052-5. PubMed DOI

Laser H. Peroxidatic activity of catalase. Biochem. J. 1955;61:122–127. doi: 10.1042/bj0610122. PubMed DOI PMC

Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–1911. doi: 10.1126/science.1106653. PubMed DOI

Goth L., Rass P., Pay A. Catalase enzyme mutations and their association with diseases. Mol. Diagn. 2004;8:141–149. doi: 10.1007/BF03260057. PubMed DOI

Glorieux C., Zamocky M., Sandoval J.M., Verrax J., Calderon P.B. Regulation of catalase expression in healthy and cancerous cells. Free Radic. Biol. Med. 2015;87:84–97. doi: 10.1016/j.freeradbiomed.2015.06.017. PubMed DOI

Kodydkova J., Vavrova L., Kocik M., Zak A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol. 2014;60:153–167. PubMed

Winternitz M.C., Meloy C.R. On the occurrence of catalase in human tissues and its variations in diseases. J. Exp. Med. 1908;10:759–781. doi: 10.1084/jem.10.6.759. PubMed DOI PMC

Izawa S., Inoue Y., Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: Analysis of acatalasaemic Saccharomyces cerevisiae. Biochem. J. 1996;320:61–67. doi: 10.1042/bj3200061. PubMed DOI PMC

Rashtbari S., Dehghan G., Yekta R., Jouyban A., Iranshahi M. Effects of resveratrol on the structure and catalytic function of bovine liver catalase (BLC): Spectroscopic and theoretical studies. Adv. Pharm. Bull. 2017;7:349–357. doi: 10.15171/apb.2017.042. PubMed DOI PMC

Krych J., Gebicka L. Catalase is inhibited by flavonoids. Int. J. Biol. Macromol. 2013;58:148–153. doi: 10.1016/j.ijbiomac.2013.03.070. PubMed DOI

Koohshekan B., Divsalar A., Saiedifar M., Saboury A.A., Ghalandari B., Gholamian A., Seyedarabi A. Protective effects of aspirin on the function of bovine liver catalase: A spectroscopy and molecular docking study. J. Mol. Liq. 2016;218:8–15. doi: 10.1016/j.molliq.2016.02.022. DOI

Najjar M.F., Ghadari R., Yousefi R., Safari N., Sheikhhasani V., Sheibani N., Moosavi-Movahedi A.A. Studies to reveal the nature of interactions between catalase and curcumin using computational methods and optical techniques. Int. J. Biol. Macromol. 2017;95:550–556. doi: 10.1016/j.ijbiomac.2016.11.050. PubMed DOI PMC

Najjar M.F., Taghavi F., Ghadari R., Sheibani N., Moosavi-Movahedi A.A. Destructive effect of non-enzymatic glycation on catalase and remediation via curcumin. Arch. Biochem. Biophys. 2017;630:81–90. doi: 10.1016/j.abb.2017.06.018. PubMed DOI

Grigoras A.G. Catalase immobilization—A review. Biochem. Eng. J. 2017;117:1–20. doi: 10.1016/j.bej.2016.10.021. DOI

Kozower B.D., Christopher-Solomidou M., Sweitzer T.D., Muro S., Buerk D.G., Solomides C.C., Albelda S.M., Patterson G.A., Muzykantov V.R. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduce acute lung transplantation injury. Nat. Biotechnol. 2003;21:392–398. doi: 10.1038/nbt806. PubMed DOI

Turrens J.F., Crapo J.D., Freeman B.A. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J. Clin. Invest. 1984;73:87–95. doi: 10.1172/JCI111210. PubMed DOI PMC

Singhal A., Morris V.B., Labhasetwar V., Ghorpade A. Nanoparticle-mediated catalase delivery protects human neurons from oxidative stress. Cell Death Dis. 2013;4:e903. doi: 10.1038/cddis.2013.362. PubMed DOI PMC

Czechowska E., Ranoszek-Soliwoda K., Tomaszewska E., Pudlarz A., Celichowski G., Gralak-Zwolenik D., Szemraj J., Grobelny J. Comparison of the antioxidant activity of catalase immobilized on gold nanoparticles via specific and non-specific adsorption. Colloids Surf. B: Biointerfaces. 2018;171:707–714. doi: 10.1016/j.colsurfb.2018.07.036. PubMed DOI

Abdel-Mageed H.M., Fahmy A.S., Shaker D.S., Mohamed S.A. Development of novel delivery system for nanoencapsulation of catalase: Formulation, characterization, and in vivo evaluation using oxidative skin injury model. Artif. Cells Nanomed. Biotechnol. 2018;46:362–371. doi: 10.1080/21691401.2018.1425213. PubMed DOI

Wang Y., Zhang H. Comprehensive studies on the nature of interaction between catalase and SiO2 nanoparticle. Mater. Res. Bull. 2014;60:51–56. doi: 10.1016/j.materresbull.2014.08.024. DOI

Bizien T., Durand D., Roblina P., Thureau A., Vachette P., Pérez J. A brief survey of state-of-the-art BioSAXS. Protein Pept. Lett. 2016;23:217–231. doi: 10.2174/0929866523666160106153655. PubMed DOI

Tuukkanen A.T., Spilotros A., Svergun D.I. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ. 2017;4:518–528. doi: 10.1107/S2052252517008740. PubMed DOI PMC

Liu D., Angelova A., Liu J., Garamus V.M., Angelov B., Zhang X., Li Y., Feger G., Li N., Zou A. Self-assembly of mitochondria-specific peptide amphiphiles amplifying lung cancer cell death through targeting the VDAC1-hexokinase-II complex. J. Mater. Chem. B. 2019;7:4706–4716. doi: 10.1039/C9TB00629J. PubMed DOI

Kaplan D.R., Matsumoto K., Lucarelli E., Thiele C.J. Induction of Trkb by retinoic acid mediates biologic responsiveness to Bdnf and differentiation of human neuroblastoma cells. Neuron. 1993;11:321–331. doi: 10.1016/0896-6273(93)90187-V. PubMed DOI

Encinas M., Iglesias M., Liu Y.H., Wang H.Y., Muhaisen A., Cena V., Gallego C., Comella J.X. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem. 2000;75:991–1003. doi: 10.1046/j.1471-4159.2000.0750991.x. PubMed DOI

David G., Pérez J. Combined sampler robot and high-performance liquid chromatography: A fully automated system for biological small-angle X-ray scattering experiments at the synchrotron SOLEIL SWING beamline. J. Appl. Crystallogr. 2009;42:892–900. doi: 10.1107/S0021889809029288. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...