Brassinosteroids Induce Strong, Dose-Dependent Inhibition of Etiolated Pea Seedling Growth Correlated with Ethylene Production

. 2019 Dec 09 ; 9 (12) : . [epub] 20191209

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31835421

We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.

Zobrazit více v PubMed

Choudhary S.P., Yu J.Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17:594–605. doi: 10.1016/j.tplants.2012.05.012. PubMed DOI

Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI

Divi U.K., Rahman T., Krishna P. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnol. J. 2016;14:419–432. doi: 10.1111/pbi.12396. PubMed DOI PMC

Khripach V.A., Zhabinskii V.N., Groot A.E. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. DOI

Abeles F.B., Morgan P.W., Salveit M.E., Jr. Ethylene in Plant Biology. 2nd ed. Academic Press; San Diego, CA, USA: 1992. pp. 120–182.

Schaller G.E., Kieber J.J. Ethylene. Arabidopsis Book. 2002;1:e0071. doi: 10.1199/tab.0071. PubMed DOI PMC

Knight L.I., Crocker W. Toxicity of smoke. Bot. Gaz. 1913;55:337–371. doi: 10.1086/331066. DOI

Guzmán P., Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The. Plant Cell Jun. 1990;2:513–523. PubMed PMC

Wang K.L.C., Li H., Ecker J.R. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:131–151. doi: 10.1105/tpc.001768. PubMed DOI PMC

Tsang D.L., Edmond C., Harrington J.L., Nühse T.S. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Phys. 2011;156:596–604. doi: 10.1104/pp.111.175372. PubMed DOI PMC

Arteca R.N., Bachman J.M. Light inhibition of brassinosteroid induced ethylene production. J. Plant Phys. 1987;129:13–18. doi: 10.1016/S0176-1617(87)80097-4. DOI

Arteca R.N., Tsai D.S., Schlagnhaufer C., Mandava M.D. The effects of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol. Plant. 1983;59:539–544. doi: 10.1111/j.1399-3054.1983.tb06277.x. DOI

Wei L.J., Deng X.G., Zhu T., Zheng T., Li P.X., Wu J.Q. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015;6:982. doi: 10.3389/fpls.2015.00982. PubMed DOI PMC

Hansen H., Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 2000;124:1437–1448. doi: 10.1104/pp.124.3.1437. PubMed DOI PMC

Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLos Genet. 2018;14:e1007144. doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC

Tanaka K., Nakamura Y., Asami T., Yoshida S., Matsuo T., Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant. Growth Regul. 2003;22:259–271. doi: 10.1007/s00344-003-0119-3. DOI

Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol. 1994;104:339–347. doi: 10.1104/pp.104.2.339. PubMed DOI PMC

Cowling R.J., Harberd N.P. Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J. Exp. Bot. 1999;50:1351–1357. doi: 10.1093/jxb/50.337.1351. DOI

Grossman K. Mode of action of auxin herbicides: A new ending to a long, drawn out story. Trends Plant. Sci. 2000;5:506–508. doi: 10.1016/S1360-1385(00)01791-X. PubMed DOI

Arteca R.N., Arteca J.M. Effect of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J. Exp. Bot. 2008;59:3019–3026. doi: 10.1093/jxb/ern159. PubMed DOI PMC

Yi H.C., Joo S., Nam K.H., Lee J.S., Kang B.G., Kim W.T. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) Plant Mol. Bio. 1999;41:443–454. doi: 10.1023/A:1006372612574. PubMed DOI

Joo S., Seo S.Y., Kim S.M., Hong D.K., Young K.Y., Kim W.T. Brassinosteroid induction of AtACS4 encoding an auxin responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiol. Plant. 2006;126:592–604. doi: 10.1111/j.1399-3054.2005.00602.x. DOI

Wang B., Zhang J., Xia X., Zhang W. Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in presence of sodium chloride. Plant Growth Regul. 2011;65:407–413. doi: 10.1007/s10725-011-9595-9. DOI

Suttle J.C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985;78:272–276. doi: 10.1104/pp.78.2.272. PubMed DOI PMC

Hutchinson M.J., Murr D., Krishnaraj S., Senaratna T., Saxena P.K. Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium x Hortorum Bailey) hypocotyl cultures? Vitro Cell Dev. Biol. Plant. 1996;33:136–141. doi: 10.1007/s11627-997-0012-z. DOI

Lorteau M., Ferguson B.J., Guinel C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol. Plant. 2001;112:421–428. doi: 10.1034/j.1399-3054.2001.1120316.x. PubMed DOI

Rushing J.W. Cytokinins affect respiration, ethylene production, and chlorophyll retention of packaged broccoli florets. Hort. Sci. 1990;25:88–90. doi: 10.21273/HORTSCI.25.1.88. DOI

Rijnders J.G.H.M., Yang Y.-Y., Kamiya Y., Takahashi N., Barendse G.W.M.C., Blom W.P.M., Voesenek L.A.C.J. Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta. 1997;203:20–25. doi: 10.1007/s004250050160. DOI

Archard P., Vriezen V.H., Van Der Straeten D., Harberd N.P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 2003;15:2816–2825. doi: 10.1105/tpc.015685. PubMed DOI PMC

Vriezen W.H., Achard P., Harberd N.P., Van Der Straeten D. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J. 2004;37:505–516. doi: 10.1046/j.1365-313X.2003.01975.x. PubMed DOI

Ferguson B.J., Foo E., Ross J.J., Reid J.B. Relationship between gibberellin, ethylene and nodulation in pea. New Phytol. 2011;189:829–842. doi: 10.1111/j.1469-8137.2010.03542.x. PubMed DOI

Hansen M., Chae H.S., Kieber J.J. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57:606–614. doi: 10.1111/j.1365-313X.2008.03711.x. PubMed DOI PMC

Lim S.H., Chang S.C., Lee J.S., Kim S.-K., Kim S.Y. Brassinosteroids affect ethylene production in the primary roots of maize (Zea mays L.) J. Plant Biol. 2002;45:148–153. doi: 10.1007/BF03030307. DOI

Lee H.Y., Chen Y.-C., Kieber J.J., Yoon G.M. Regulation of the turnover of ACC by phytohormones and heterodimerization in Arabidopsis. Plant J. 2017;91:491–504. doi: 10.1111/tpj.13585. PubMed DOI

Ramirez J.A., Galagovsky L.R. Synthesis and biological activity of fluorinated brassinosteroids. In: Matsumoto T., editor. Phytochemistry Research. Nova Biomedical Books; New York, NY, USA: 2008. pp. 163–192.

Wada K., Marumo S., Abe H., Morishita T., Nakamura K., Uchiyama M., Mori K. A rice lamina inclination test - A micro-quantitative bioassay for brassinosteroids. Agr. Biol. Chem. 1984;48:719–726.

Tossi V.E., Acebedo S.L., Cassia R.O., Lamattina L., Galagovsky L.R., Ramírez J.A. A bioassay for brassinosteroid activity based on the in vitro fluorimetric detection of nitric oxide production. Steroids. 2015;102:46–52. doi: 10.1016/j.steroids.2015.07.003. PubMed DOI

Thompson M.J., Mandava N.B., Meudt W.J., Lusby W., Spaulding D.W. Synthesis and biological activity of brassinolide and its 22β,23β-isomer: Novel plant growth-promoting steroids. Steroids. 1981;38:567–580. doi: 10.1016/0039-128X(81)90055-6. PubMed DOI

Kořínková P. Bachelor Thesis. Palacký University Olomouc; Olomouc, Czech Republic: 2013. Testing the Effect of Brassinosteroids on Etiolated Pea Plants.

Lamaire L., Deleu C., Le Deunff E. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. J. Exp. Bot. 2013;64:2725–2737. doi: 10.1093/jxb/ert124. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace