Brassinosteroids Induce Strong, Dose-Dependent Inhibition of Etiolated Pea Seedling Growth Correlated with Ethylene Production
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31835421
PubMed Central
PMC7017382
DOI
10.3390/biom9120849
PII: biom9120849
Knihovny.cz E-resources
- Keywords
- 1-aminocyclopropane-1-carboxylic acid, Pisum sativum (var. arvense) sort. arvica, bioassay, brassinosteroid, ethylene, growth inhibition,
- MeSH
- Amino Acids, Cyclic metabolism MeSH
- Biological Assay methods MeSH
- Brassinosteroids pharmacology MeSH
- Ethylenes metabolism MeSH
- Pisum sativum drug effects growth & development metabolism MeSH
- Growth Inhibitors pharmacology MeSH
- Indoleacetic Acids pharmacology MeSH
- Plant Growth Regulators pharmacokinetics pharmacology MeSH
- Seedlings drug effects growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-aminocyclopropane-1-carboxylic acid MeSH Browser
- Amino Acids, Cyclic MeSH
- Brassinosteroids MeSH
- ethylene MeSH Browser
- Ethylenes MeSH
- Growth Inhibitors MeSH
- Indoleacetic Acids MeSH
- Plant Growth Regulators MeSH
We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.
See more in PubMed
Choudhary S.P., Yu J.Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.S. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17:594–605. doi: 10.1016/j.tplants.2012.05.012. PubMed DOI
Oklestkova J., Rárová L., Kvasnica M., Strnad M. Brassinosteroids: Synthesis and biological activities. Phytochem. Rev. 2015;14:1053–1072. doi: 10.1007/s11101-015-9446-9. DOI
Divi U.K., Rahman T., Krishna P. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotechnol. J. 2016;14:419–432. doi: 10.1111/pbi.12396. PubMed DOI PMC
Khripach V.A., Zhabinskii V.N., Groot A.E. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2000;86:441–447. doi: 10.1006/anbo.2000.1227. DOI
Abeles F.B., Morgan P.W., Salveit M.E., Jr. Ethylene in Plant Biology. 2nd ed. Academic Press; San Diego, CA, USA: 1992. pp. 120–182.
Schaller G.E., Kieber J.J. Ethylene. Arabidopsis Book. 2002;1:e0071. doi: 10.1199/tab.0071. PubMed DOI PMC
Knight L.I., Crocker W. Toxicity of smoke. Bot. Gaz. 1913;55:337–371. doi: 10.1086/331066. DOI
Guzmán P., Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The. Plant Cell Jun. 1990;2:513–523. PubMed PMC
Wang K.L.C., Li H., Ecker J.R. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:131–151. doi: 10.1105/tpc.001768. PubMed DOI PMC
Tsang D.L., Edmond C., Harrington J.L., Nühse T.S. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Phys. 2011;156:596–604. doi: 10.1104/pp.111.175372. PubMed DOI PMC
Arteca R.N., Bachman J.M. Light inhibition of brassinosteroid induced ethylene production. J. Plant Phys. 1987;129:13–18. doi: 10.1016/S0176-1617(87)80097-4. DOI
Arteca R.N., Tsai D.S., Schlagnhaufer C., Mandava M.D. The effects of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol. Plant. 1983;59:539–544. doi: 10.1111/j.1399-3054.1983.tb06277.x. DOI
Wei L.J., Deng X.G., Zhu T., Zheng T., Li P.X., Wu J.Q. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015;6:982. doi: 10.3389/fpls.2015.00982. PubMed DOI PMC
Hansen H., Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 2000;124:1437–1448. doi: 10.1104/pp.124.3.1437. PubMed DOI PMC
Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., Li C., Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLos Genet. 2018;14:e1007144. doi: 10.1371/journal.pgen.1007144. PubMed DOI PMC
Tanaka K., Nakamura Y., Asami T., Yoshida S., Matsuo T., Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant. Growth Regul. 2003;22:259–271. doi: 10.1007/s00344-003-0119-3. DOI
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A role for cytokinins in de-etiolation in Arabidopsis. Plant Physiol. 1994;104:339–347. doi: 10.1104/pp.104.2.339. PubMed DOI PMC
Cowling R.J., Harberd N.P. Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J. Exp. Bot. 1999;50:1351–1357. doi: 10.1093/jxb/50.337.1351. DOI
Grossman K. Mode of action of auxin herbicides: A new ending to a long, drawn out story. Trends Plant. Sci. 2000;5:506–508. doi: 10.1016/S1360-1385(00)01791-X. PubMed DOI
Arteca R.N., Arteca J.M. Effect of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J. Exp. Bot. 2008;59:3019–3026. doi: 10.1093/jxb/ern159. PubMed DOI PMC
Yi H.C., Joo S., Nam K.H., Lee J.S., Kang B.G., Kim W.T. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) Plant Mol. Bio. 1999;41:443–454. doi: 10.1023/A:1006372612574. PubMed DOI
Joo S., Seo S.Y., Kim S.M., Hong D.K., Young K.Y., Kim W.T. Brassinosteroid induction of AtACS4 encoding an auxin responsive 1-aminocyclopropane-1-carboxylate synthase 4 in Arabidopsis seedlings. Physiol. Plant. 2006;126:592–604. doi: 10.1111/j.1399-3054.2005.00602.x. DOI
Wang B., Zhang J., Xia X., Zhang W. Ameliorative effect of brassinosteroid and ethylene on germination of cucumber seeds in presence of sodium chloride. Plant Growth Regul. 2011;65:407–413. doi: 10.1007/s10725-011-9595-9. DOI
Suttle J.C. Involvement of ethylene in the action of the cotton defoliant thidiazuron. Plant Physiol. 1985;78:272–276. doi: 10.1104/pp.78.2.272. PubMed DOI PMC
Hutchinson M.J., Murr D., Krishnaraj S., Senaratna T., Saxena P.K. Does ethylene play a role in thidiazuron-regulated somatic embryogenesis of geranium (Pelargonium x Hortorum Bailey) hypocotyl cultures? Vitro Cell Dev. Biol. Plant. 1996;33:136–141. doi: 10.1007/s11627-997-0012-z. DOI
Lorteau M., Ferguson B.J., Guinel C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol. Plant. 2001;112:421–428. doi: 10.1034/j.1399-3054.2001.1120316.x. PubMed DOI
Rushing J.W. Cytokinins affect respiration, ethylene production, and chlorophyll retention of packaged broccoli florets. Hort. Sci. 1990;25:88–90. doi: 10.21273/HORTSCI.25.1.88. DOI
Rijnders J.G.H.M., Yang Y.-Y., Kamiya Y., Takahashi N., Barendse G.W.M.C., Blom W.P.M., Voesenek L.A.C.J. Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. Planta. 1997;203:20–25. doi: 10.1007/s004250050160. DOI
Archard P., Vriezen V.H., Van Der Straeten D., Harberd N.P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell. 2003;15:2816–2825. doi: 10.1105/tpc.015685. PubMed DOI PMC
Vriezen W.H., Achard P., Harberd N.P., Van Der Straeten D. Ethylene-mediated enhancement of apical hook formation in etiolated Arabidopsis thaliana seedlings is gibberellin dependent. Plant J. 2004;37:505–516. doi: 10.1046/j.1365-313X.2003.01975.x. PubMed DOI
Ferguson B.J., Foo E., Ross J.J., Reid J.B. Relationship between gibberellin, ethylene and nodulation in pea. New Phytol. 2011;189:829–842. doi: 10.1111/j.1469-8137.2010.03542.x. PubMed DOI
Hansen M., Chae H.S., Kieber J.J. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 2009;57:606–614. doi: 10.1111/j.1365-313X.2008.03711.x. PubMed DOI PMC
Lim S.H., Chang S.C., Lee J.S., Kim S.-K., Kim S.Y. Brassinosteroids affect ethylene production in the primary roots of maize (Zea mays L.) J. Plant Biol. 2002;45:148–153. doi: 10.1007/BF03030307. DOI
Lee H.Y., Chen Y.-C., Kieber J.J., Yoon G.M. Regulation of the turnover of ACC by phytohormones and heterodimerization in Arabidopsis. Plant J. 2017;91:491–504. doi: 10.1111/tpj.13585. PubMed DOI
Ramirez J.A., Galagovsky L.R. Synthesis and biological activity of fluorinated brassinosteroids. In: Matsumoto T., editor. Phytochemistry Research. Nova Biomedical Books; New York, NY, USA: 2008. pp. 163–192.
Wada K., Marumo S., Abe H., Morishita T., Nakamura K., Uchiyama M., Mori K. A rice lamina inclination test - A micro-quantitative bioassay for brassinosteroids. Agr. Biol. Chem. 1984;48:719–726.
Tossi V.E., Acebedo S.L., Cassia R.O., Lamattina L., Galagovsky L.R., Ramírez J.A. A bioassay for brassinosteroid activity based on the in vitro fluorimetric detection of nitric oxide production. Steroids. 2015;102:46–52. doi: 10.1016/j.steroids.2015.07.003. PubMed DOI
Thompson M.J., Mandava N.B., Meudt W.J., Lusby W., Spaulding D.W. Synthesis and biological activity of brassinolide and its 22β,23β-isomer: Novel plant growth-promoting steroids. Steroids. 1981;38:567–580. doi: 10.1016/0039-128X(81)90055-6. PubMed DOI
Kořínková P. Bachelor Thesis. Palacký University Olomouc; Olomouc, Czech Republic: 2013. Testing the Effect of Brassinosteroids on Etiolated Pea Plants.
Lamaire L., Deleu C., Le Deunff E. Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces. J. Exp. Bot. 2013;64:2725–2737. doi: 10.1093/jxb/ert124. PubMed DOI