Ultrasound-based risk model for preoperative prediction of lymph-node metastases in women with endometrial cancer: model-development study
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
130256
Flemish Governmental
C16/15/059
KU Leuven Internal Funds
154112
Radiumhemmets Forskningsfonder
562101
Swedish state
563101
Swedish state
PubMed
31840873
DOI
10.1002/uog.21950
Knihovny.cz E-zdroje
- Klíčová slova
- decision support model, diagnostic imaging, endometrial neoplasm, lymphatic metastasis, neoplasm staging, ultrasonography,
- MeSH
- dospělí MeSH
- endometroidní karcinom diagnostické zobrazování sekundární MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- lymfatické metastázy MeSH
- lymfatické uzliny MeSH
- nádory endometria diagnostické zobrazování patologie MeSH
- prospektivní studie MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- staging nádorů MeSH
- ultrasonografie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: To develop a preoperative risk model, using endometrial biopsy results and clinical and ultrasound variables, to predict the individual risk of lymph-node metastases in women with endometrial cancer. METHODS: A mixed-effects logistic regression model for prediction of lymph-node metastases was developed in 1501 prospectively included women with endometrial cancer undergoing transvaginal ultrasound examination before surgery, from 16 European centers. Missing data, including missing lymph-node status, were imputed. Discrimination, calibration and clinical utility of the model were evaluated using leave-center-out cross validation. The predictive performance of the model was compared with that of risk classification from endometrial biopsy alone (high-risk defined as endometrioid cancer Grade 3/non-endometrioid cancer) or combined endometrial biopsy and ultrasound (high-risk defined as endometrioid cancer Grade 3/non-endometrioid cancer/deep myometrial invasion/cervical stromal invasion/extrauterine spread). RESULTS: Lymphadenectomy was performed in 691 women, of whom 127 had lymph-node metastases. The model for prediction of lymph-node metastases included the predictors age, duration of abnormal bleeding, endometrial biopsy result, tumor extension and tumor size according to ultrasound and undefined tumor with an unmeasurable endometrium. The model's area under the curve was 0.73 (95% CI, 0.68-0.78), the calibration slope was 1.06 (95% CI, 0.79-1.34) and the calibration intercept was 0.06 (95% CI, -0.15 to 0.27). Using a risk threshold for lymph-node metastases of 5% compared with 20%, the model had, respectively, a sensitivity of 98% vs 48% and specificity of 11% vs 80%. The model had higher sensitivity and specificity than did classification as high-risk, according to endometrial biopsy alone (50% vs 35% and 80% vs 77%, respectively) or combined endometrial biopsy and ultrasound (80% vs 75% and 53% vs 52%, respectively). The model's clinical utility was higher than that of endometrial biopsy alone or combined endometrial biopsy and ultrasound at any given risk threshold. CONCLUSIONS: Based on endometrial biopsy results and clinical and ultrasound characteristics, the individual risk of lymph-node metastases in women with endometrial cancer can be estimated reliably before surgery. The model is superior to risk classification by endometrial biopsy alone or in combination with ultrasound. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
3rd Faculty of Medicine Charles University Prague Czech Republic
Center of Obstetrics and Gynecology Vilnius University Hospital Santaros Klinikos Vilnius Lithuania
Clinic of Obstetrics and Gynecology University of Milan Bicocca San Gerardo Hospital Monza Italy
Department of Clinical Science and Education Karolinska Institutet Stockholm Sweden
Department of Development and Regeneration KU Leuven Leuven Belgium
Department of Gynecological Oncology Catholic University of the Sacred Heart Rome Italy
Department of Gynecological Oncology European Institute of Oncology Milan Italy
Department of Obstetrics and Gynecology Clinica Universidad de Navarra Pamplona Spain
Department of Obstetrics and Gynecology National Cancer Institute Milan Italy
Department of Obstetrics and Gynecology Skåne University Hospital Lund University Malmö Sweden
Department of Obstetrics and Gynecology Sodersjukhuset Stockholm Sweden
Department of Obstetrics and Gynecology University Hospital Leuven Leuven Belgium
Department of Obstetrics and Gynecology Ziekenhuis Oost Limburg Genk Belgium
Department of Pelvic Cancer Karolinska University Hospital Stockholm Sweden
Department of Public Health and Primary Care KU Leuven Leuven Belgium
Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
Institute for the Care of Mother and Child Prague Czech Republic
Nuffield Department of Primary Care Health Sciences University of Oxford Oxford UK
Zobrazit více v PubMed
Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet 2009; 15: 103-104.
Benedetti Panici P, Basile S, Maneschi F, Alberto Lissoni A, Signorelli M, Scambia G, Angioli R, Tateo S, Mangili G, Katsaros D, Garozzo G, Campagnutta E, Donadello N, Greggi S, Melpignano M, Raspagliesi F, Ragni N, Cormio G, Grassi R, Franchi M, Giannarelli D, Fossati R, Torri V, Amaroso M, Croce C, Mangioni C. Systematic pelvic lymphadenectomy vs no lymphadenectomy in early-stage endometrial carcinoma: randomized clinical trial. J Natl Cancer Inst 2008; 100: 1707-1716.
Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 2009; 373: 125-136.
Mariani A, Webb MJ, Keeney GL, Haddock MG, Calori G, Podratz KC. Low-risk corpus cancer: is lymphadenectomy or radiotherapy necessary? Am J Obstet Gynecol 2000; 182: 1506-1519.
Colombo N, Creutzberg C, Amant F, Bosse T, Gonzalez-Martin A, Ledermann J, Marth C, Nout R, Querleu D, Mirza M.R, Sessa C. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: diagnosis, treatment and follow-up. Ann Oncol 2016; 27: 16-41.
Beesley VL, Rowlands IJ, Hayes SC, Janda M, O'Rourke P, Marquart L, Quinn M.A, Spurdle A.B, Obermair A, Brand A, Oehler M.K, Leung Y, McQuire L, Webb P.M. Incidence, risk factors and estimates of a woman's risk of developing secondary lower limb lymphedema and lymphedema-specific supportive care needs in women treated for endometrial cancer. Gynecol Oncol 2015; 136: 87-93.
Zikan M, Fischerova D, Pinkavova I, Slama J, Weinberger V, Dusek L, Cibula D. A prospective study examining the incidence of asymptomatic and symptomatic lymphoceles following lymphadenectomy in patients with gynecological cancer. Gynecol Oncol 2015; 137: 291-298.
Rossi EC, Kowalski LD, Scalici J, Cantrell L, Schuler K, Hanna RK, Method M, Ade M, Ivanova A, Boggess J.F. A comparison of sentinel lymph-node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study. Lancet Oncol 2017; 18: 384-392.
Bodurtha Smith AJ, Fader AN, Tanner EJ. Sentinel lymph-node assessment in endometrial cancer: a systematic review and meta-analysis. Am J Obstet Gynecol 2017; 216: 459-476.
Kang S, Kang WD, Chung HH, Jeong DH, Seo SS, Lee JM, Lee J.K, Kim J.W, Kim S.M, Park S.Y, Kim K.T. Preoperative identification of a low-risk group for lymph node metastasis in endometrial cancer: a Korean gynecologic oncology group study. J Clin Oncol 2012; 30: 1329-1334.
Lee JY, Jung DC, Park SH, Lim MC, Seo SS, Park SY, Kang S. Preoperative prediction model of lymph-node metastasis in endometrial cancer. Int J Gynecol Cancer 2010; 20: 1350-1355.
Todo Y, Sakuragi N, Nishida R, Yamada T, Ebina Y, Yamamoto R, Fujimoto S. Combined use of magnetic resonance imaging, CA 125 assay, histologic type, and histologic grade in the prediction of lymph-node metastasis in endometrial carcinoma. Am J Obstet Gynecol 2003; 188: 1265-1272.
Lee J, Kong TW, Paek J, Chang SJ, Ryu HS. Predicting Model of Lymph-node Metastasis Using Preoperative Tumor Grade, Transvaginal Ultrasound, and Serum CA-125 Level in Patients With Endometrial Cancer. Int J Gynecol Cancer 2016; 26: 1630-1635.
Epstein E, Blomqvist L. Imaging in endometrial cancer. Best Pract Res Clin Obstet Gynaecol 2014; 28: 721-739.
Epstein E, Fischerova D, Valentin L, Testa AC, Franchi D, Sladkevicius P, Filip F, Lindqvist P.G, Mascilini F, Fruscio R, Haak L.A, Opolskiene G, Pascual M.A, Alcazar J.L, Chiappa V, Guerriero S, Carlson J, Van Holsbeke C, Leone F.P.G, De Moor B, Bourne T, van Calster B, Installe A, Timmerman D, Verbakel J, Van den Bosch T. Ultrasound characteristics of endometrial cancer as defined by International Endometrial Tumor Analysis (IETA) consensus nomenclature: prospective multicenter study. Ultrasound Obstet Gynecol 2018; 51: 818-828.
Leone FP, Timmerman D, Bourne T, Valentin L, Epstein E, Goldstein SR, Marret H, Parsons A.K, Gull B, Istre O, Sepulveda W, Ferrazzi E, Van den Bosch T. Terms, definitions and measurements to describe the sonographic features of the endometrium and intrauterine lesions: a consensus opinion from the International Endometrial Tumor Analysis (IETA) group. Ultrasound Obstet Gynecol 2010; 35: 103-112.
Installe AJ, Van den Bosch T, De Moor B, Timmerman D. Clinical data miner: an electronic case report form system with integrated data preprocessing and machine-learning libraries supporting clinical diagnostic model research. JMIR Med Inform 2014; 2: 28.
Heinze G, Dunkler D. Five myths about variable selection. Transpl Int 2017; 30: 6-10.
Wynants L, Timmerman D, Bourne T, Van Huffel S, Van Calster B. Screening for data clustering in multicenter studies: the residual intraclass correlation. BMC Med Res Methodol 2013; 13: 128.
Wynants L, Bouwmeester W, Moons KG, Moerbeek M, Timmerman D, Van Huffel S, Van Calster B, Vergouwe Y. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. J Clin Epidemiol 2015; 68: 1406-1414.
Sullivan TR, Salter AB, Ryan P, Lee KJ. Bias and Precision of the “Multiple Imputation, Then Deletion” Method for Dealing With Missing Outcome Data. Am J Epidemiol 2015; 182 :528-534.
Buuren Sv, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw 2011: 45: 1-68.
Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med 2007; 26: 5512-5528.
Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med. 1990; 9: 1303-1325.
Steyerberg EW. Validation in prediction research: the waste by data splitting. J Clin Epidemiol 2018; 103: 131-133.
Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016; 352: i6.
Fitzgerald M, Saville BR, Lewis RJ. Decision curve analysis. JAMA 2015; 313: 409-410.
Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E, Vickers AJ, Roobol MJ, Steyerberg EW. Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur Urol 2018; 74: 796-804.
Vickers AJ, van Calster B, Steyerberg EW. A simple, step-by-step guide to interpreting decision curve analysis. Diagn Progn Res 2019; 3: 18.
Snell KI, Hua H, Debray TP, Ensor J, Look MP, Moons KG, Riley RD. Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model. J Clin Epidemiol 2016; 69: 40-50.
Wynants L, Riley RD, Timmerman D, Van Calster B. Random-effects meta-analysis of the clinical utility of tests and prediction models. Stat Med 2018; 37: 2034-2052.
Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015; 350: g7594
Wynants L, van Smeden M, McLernon DJ, Timmerman D, Steyerberg EW, Van Calster B, Topic Group “Evaluating diagnostic tests and prediction models” of the STRATOS initiative. Three myths about risk thresholds for prediction models. BMC Med 2019; 17: 192.
Koskas M, Fournier M, Vanderstraeten A, Walker F, Timmerman D, Vergote I, Amant F. Evaluation of models to predict lymph-node metastasis in endometrial cancer: A multicentre study. Eur J Cancer 2016; 61: 52-60.
Todo Y, Okamoto K, Hayashi M, Minobe S, Nomura E, Hareyama H, Takeda M, Ebina Y, Watari H, Sakuragi N. A validation study of a scoring system to estimate the risk of lymph-node metastasis for patients with endometrial cancer for tailoring the indication of lymphadenectomy. Gynecol Oncol 2007; 104: 623-628.
Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, Carpenter JR. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: b2393.
Visser NCM, Reijnen C, Massuger L, Nagtegaal ID, Bulten J, Pijnenborg JMA. Accuracy of Endometrial Sampling in Endometrial Carcinoma: A Systematic Review and Meta-Analysis. Obstet Gynecol 2017; 130: 803-813.
Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98: 691-698.