Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM045201
NIGMS NIH HHS - United States
R01 DK107712
NIDDK NIH HHS - United States
U54 DK110858
NIDDK NIH HHS - United States
T32 DK007115
NIDDK NIH HHS - United States
P30 ES002109
NIEHS NIH HHS - United States
PubMed
31941883
PubMed Central
PMC6962211
DOI
10.1038/s41467-019-14004-5
PII: 10.1038/s41467-019-14004-5
Knihovny.cz E-zdroje
- MeSH
- beta-buňky metabolismus MeSH
- homeostáza MeSH
- inzulin metabolismus MeSH
- inzulinom genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní genetika metabolismus MeSH
- porucha glukózové tolerance genetika MeSH
- proinsulin genetika metabolismus MeSH
- proteiny obsahující železo a síru metabolismus MeSH
- regulační protein železa 2 genetika metabolismus MeSH
- RNA transferová Lys genetika metabolismus MeSH
- signální dráha UPR genetika MeSH
- tRNA-methyltransferasy genetika metabolismus MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CDKAL1 protein, mouse MeSH Prohlížeč
- inzulin MeSH
- Ireb2 protein, mouse MeSH Prohlížeč
- proinsulin MeSH
- proteiny obsahující železo a síru MeSH
- regulační protein železa 2 MeSH
- RNA transferová Lys MeSH
- tRNA-methyltransferasy MeSH
- železo MeSH
Regulation of cellular iron homeostasis is crucial as both iron excess and deficiency cause hematological and neurodegenerative diseases. Here we show that mice lacking iron-regulatory protein 2 (Irp2), a regulator of cellular iron homeostasis, develop diabetes. Irp2 post-transcriptionally regulates the iron-uptake protein transferrin receptor 1 (TfR1) and the iron-storage protein ferritin, and dysregulation of these proteins due to Irp2 loss causes functional iron deficiency in β cells. This impairs Fe-S cluster biosynthesis, reducing the function of Cdkal1, an Fe-S cluster enzyme that catalyzes methylthiolation of t6A37 in tRNALysUUU to ms2t6A37. As a consequence, lysine codons in proinsulin are misread and proinsulin processing is impaired, reducing insulin content and secretion. Iron normalizes ms2t6A37 and proinsulin lysine incorporation, restoring insulin content and secretion in Irp2-/- β cells. These studies reveal a previously unidentified link between insulin processing and cellular iron deficiency that may have relevance to type 2 diabetes in humans.
Agilent Technologies 1 Yishun Ave 7 Singapore Singapore 768923
Celgene Corporation 1616 Eastlake Ave East Seattle WA 98102 USA
Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
Department of Medicine Division of Hematology University of Utah Salt Lake City UT 84112 USA
Department of Microbiology National University of Singapore Singapore Singapore 119077
Department of Oncological Sciences University of Utah Salt Lake City UT 84112 USA
German Center for Diabetes Research Ingolstädter Landstraße 1 85764 Neuherberg Germany
Landstuhl Regional Medical Center 66849 Landstuhl Germany
Molecular Medicine Program University of Utah Salt Lake City UT 84112 USA
Zobrazit více v PubMed
Rajpathak SN, et al. The role of iron in type 2 diabetes in humans. Biochim. Biophys. Acta. 2009;1790:671–681. doi: 10.1016/j.bbagen.2008.04.005. PubMed DOI
Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–341. doi: 10.1016/j.cmet.2013.02.007. PubMed DOI PMC
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu. Rev. Nutr. 2016;36:241–273. doi: 10.1146/annurev-nutr-071715-050939. PubMed DOI
Hansen JB, et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic beta cell fate in response to cytokines. Cell Metab. 2012;16:449–461. doi: 10.1016/j.cmet.2012.09.001. PubMed DOI
Cooksey RC, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145:5305–5312. doi: 10.1210/en.2004-0392. PubMed DOI
Ristow M, et al. Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass. J. Clin. Invest. 2003;112:527–534. doi: 10.1172/JCI18107. PubMed DOI PMC
Braymer JJ, Lill R. Iron-sulfur cluster biogenesis and trafficking in mitochondria. J. Biol. Chem. 2017;292:12754–12763. doi: 10.1074/jbc.R117.787101. PubMed DOI PMC
Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol. 2014;24:303–312. doi: 10.1016/j.tcb.2013.11.005. PubMed DOI
Rouault TA. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 2015;16:45–55. doi: 10.1038/nrm3909. PubMed DOI
Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2006;2:406–414. doi: 10.1038/nchembio807. PubMed DOI
Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron metabolism. Cell. 2010;142:24–38. doi: 10.1016/j.cell.2010.06.028. PubMed DOI
Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta. 2012;1823:1468–1483. doi: 10.1016/j.bbamcr.2012.05.010. PubMed DOI PMC
Vashisht AA, et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326:718–721. doi: 10.1126/science.1176333. PubMed DOI PMC
Salahudeen AA, et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science. 2009;326:722–726. doi: 10.1126/science.1176326. PubMed DOI PMC
Cooperman SS, et al. Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood. 2005;106:1084–1091. doi: 10.1182/blood-2004-12-4703. PubMed DOI PMC
Galy B, et al. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2) Blood. 2005;106:2580–2589. doi: 10.1182/blood-2005-04-1365. PubMed DOI
Zumbrennen-Bullough KB, et al. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments. PLoS One. 2014;9:e98072. doi: 10.1371/journal.pone.0098072. PubMed DOI PMC
Jeong SY, et al. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS One. 2011;6:e25404. doi: 10.1371/journal.pone.0025404. PubMed DOI PMC
Arragain S, et al. Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N6-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 2010;285:28425–28433. doi: 10.1074/jbc.M110.106831. PubMed DOI PMC
Wei FY, et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 2011;121:3598–3608. doi: 10.1172/JCI58056. PubMed DOI PMC
Steinthorsdottir V, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007;39:770–775. doi: 10.1038/ng2043. PubMed DOI
Diabetes Genetics Initiative of Broad Institute of, H. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336. doi: 10.1126/science.1142358. PubMed DOI
Scott LJ, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–1345. doi: 10.1126/science.1142382. PubMed DOI PMC
Zeggini E, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–1341. doi: 10.1126/science.1142364. PubMed DOI PMC
Galy B, et al. Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab. 2010;12:194–201. doi: 10.1016/j.cmet.2010.06.007. PubMed DOI
Arunagiri A, et al. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann. N. Y Acad. Sci. 2018;1418:5–19. doi: 10.1111/nyas.13531. PubMed DOI PMC
Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 2012;81:767–793. doi: 10.1146/annurev-biochem-072909-095555. PubMed DOI PMC
Papa FR. Endoplasmic reticulum stress, pancreatic beta-cell degeneration, and diabetes. Cold Spring Harb. Perspect. Med. 2012;2:a007666. doi: 10.1101/cshperspect.a007666. PubMed DOI PMC
Brambillasca S, et al. CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1) is a tail- anchored protein in the endoplasmic reticulum (ER) of insulinoma cells. J. Biol. Chem. 2012;287:41808–41819. doi: 10.1074/jbc.M112.376558. PubMed DOI PMC
Lill R, Srinivasan V, Muhlenhoff U. The role of mitochondria in cytosolic-nuclear iron-sulfur protein biogenesis and in cellular iron regulation. Curr. Opin. Microbiol. 2014;22C:111–119. doi: 10.1016/j.mib.2014.09.015. PubMed DOI
Koshimizu H, Kim T, Cawley NX, Loh YP. Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul. Pept. 2010;160:153–159. doi: 10.1016/j.regpep.2009.12.007. PubMed DOI PMC
Groenewoud MJ, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia. 2008;51:1659–1663. doi: 10.1007/s00125-008-1083-z. PubMed DOI
Stancakova A, et al. Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J. Clin. Endocrinol. Metab. 2008;93:1924–1930. doi: 10.1210/jc.2007-2218. PubMed DOI
Kirchhoff K, et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008;51:597–601. doi: 10.1007/s00125-008-0926-y. PubMed DOI
Pascoe L, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes. 2007;56:3101–3104. doi: 10.2337/db07-0634. PubMed DOI
Oslowski CM, Urano F. The binary switch that controls the life and death decisions of ER stressed beta cells. Curr. Opin. Cell Biol. 2011;23:207–215. doi: 10.1016/j.ceb.2010.11.005. PubMed DOI PMC
Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008;9:193–205. doi: 10.1038/nrm2327. PubMed DOI
Ohara-Imaizumi M, et al. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS One. 2010;5:e15553. doi: 10.1371/journal.pone.0015553. PubMed DOI PMC
Gabrielsen JS, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J. Clin. Invest. 2012;122:3529–3540. doi: 10.1172/JCI44421. PubMed DOI PMC
Gao Y, et al. Adipocyte iron regulates leptin and food intake. J. Clin. Invest. 2015;125:3681–3691. doi: 10.1172/JCI81860. PubMed DOI PMC
Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia. 2016;59:659–667. doi: 10.1007/s00125-015-3862-7. PubMed DOI PMC
Cantley J. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm. Genome. 2014;25:442–454. doi: 10.1007/s00335-014-9538-7. PubMed DOI
Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic beta cells and adipocytes. Best. Pract. Res. Clin. Endocrinol. Metab. 2014;28:43–58. doi: 10.1016/j.beem.2013.11.003. PubMed DOI PMC
Take K, et al. CDK5 regulatory subunit-associated protein 1-like 1 negatively regulates adipocyte differentiation through activation of Wnt signaling pathway. Sci. Rep. 2017;7:7326. doi: 10.1038/s41598-017-06469-5. PubMed DOI PMC
Palmer CJ, et al. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol. Metab. 2017;6:1212–1225. doi: 10.1016/j.molmet.2017.07.013. PubMed DOI PMC
Takesue Y, et al. Regulation of growth hormone biosynthesis by Cdk5 regulatory subunit associated protein 1-like 1 (CDKAL1) in pituitary adenomas. Endocr. J. 2019;66:807–816. doi: 10.1507/endocrj.EJ18-0536. PubMed DOI
Zhou Y, et al. Iron regulatory protein 2 deficiency may correlate with insulin resistance. Biochem. Biophys. Res. Commun. 2019;510:191–197. doi: 10.1016/j.bbrc.2019.01.022. PubMed DOI
Larrick JW, Hyman ES. Acquired iron-deficiency anemia caused by an antibody against the transferrin receptor. N. Engl. J. Med. 1984;311:214–218. doi: 10.1056/NEJM198407263110402. PubMed DOI
Hyman ES. Acquired iron-deficiency anaemia due to impaired iron transport. Lancet. 1983;1:91–95. doi: 10.1016/S0140-6736(83)91741-5. PubMed DOI
Rhodes CJ, et al. Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: clinical prevalence, outcomes, and mechanistic insights. J. Am. Coll. Cardiol. 2011;58:300–309. doi: 10.1016/j.jacc.2011.02.057. PubMed DOI
Ruiter G, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2011;37:1386–1391. doi: 10.1183/09031936.00100510. PubMed DOI
van Empel VP, Lee J, Williams TJ, Kaye DM. Iron deficiency in patients with idiopathic pulmonary arterial hypertension. Heart Lung Circ. 2014;23:287–292. doi: 10.1016/j.hlc.2013.08.007. PubMed DOI
von Haehling S, Jankowska EA, van Veldhuisen DJ, Ponikowski P, Anker SD. Iron deficiency and cardiovascular disease. Nat. Rev. Cardiol. 2015;12:659–669. doi: 10.1038/nrcardio.2015.109. PubMed DOI
Visanji NP, et al. Iron deficiency in parkinsonism: region-specific iron dysregulation in Parkinson’s disease and multiple system atrophy. J. Parkinsons Dis. 2013;3:523–537. doi: 10.3233/JPD-130197. PubMed DOI
Cotroneo E, et al. Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat. Circ. Res. 2015;116:1680–1690. doi: 10.1161/CIRCRESAHA.116.305265. PubMed DOI
Matak P, et al. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc. Natl Acad. Sci. USA. 2016;113:3428–3435. doi: 10.1073/pnas.1519473113. PubMed DOI PMC
Cooper MS, Stark Z, Lunke S, Zhao T, Amor DJ. IREB2-associated neurodegeneration. Brain. 2019;142:e40. doi: 10.1093/brain/awz183. PubMed DOI
Costain G, et al. Absence of iron-responsive element-binding protein 2 causes a novel neurodegenerative syndrome. Brain. 2019;142:1195–1202. doi: 10.1093/brain/awz072. PubMed DOI PMC
Galy B, Ferring-Appel D, Kaden S, Grone HJ, Hentze MW. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008;7:79–85. doi: 10.1016/j.cmet.2007.10.006. PubMed DOI
Neschen S, et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl- CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab. 2005;2:55–65. doi: 10.1016/j.cmet.2005.06.006. PubMed DOI
Neschen S, et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator- activated receptor-alpha-dependent manner. Diabetes. 2007;56:1034–1041. doi: 10.2337/db06-1206. PubMed DOI
Hohmeier HE, et al. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel- dependent and -independent glucose-stimulated insulin secretion. Diabetes. 2000;49:424–430. doi: 10.2337/diabetes.49.3.424. PubMed DOI
Zimmer M, et al. Small-molecule inhibitors of HIF-2a translation link its 5’UTR iron-responsive element to oxygen sensing. Mol. Cell. 2008;32:838–848. doi: 10.1016/j.molcel.2008.12.004. PubMed DOI PMC
Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Guo B, Yu Y, Leibold EA. Iron regulates cytoplasmic levels of a novel iron-responsive element- binding protein without aconitase activity. J. Biol. Chem. 1994;269:24252–24260. PubMed
Leibold EA, Munro HN. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5’ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc. Natl Acad. Sci. USA. 1988;85:2171–2175. doi: 10.1073/pnas.85.7.2171. PubMed DOI PMC
Beaumont C, Torti SV, Torti FM, Massover WH. Novel properties of L-type polypeptide subunits in mouse ferritin molecules. J. Biol. Chem. 1996;271:7923–7926. doi: 10.1074/jbc.271.14.7923. PubMed DOI
Vendeix FA, et al. Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through keto-enol tautomerism. J. Mol. Biol. 2012;416:467–485. doi: 10.1016/j.jmb.2011.12.048. PubMed DOI PMC