14-3-3 protein binding blocks the dimerization interface of caspase-2
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31961068
DOI
10.1111/febs.15215
Knihovny.cz E-resources
- Keywords
- 14-3-3 protein, H/D exchange, caspase-2, crystallography, protein-protein interaction,
- MeSH
- Phosphorylation MeSH
- Caspase 2 chemistry genetics metabolism MeSH
- Protein Conformation * MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular * MeSH
- Protein Multimerization * MeSH
- Mutation MeSH
- Protein Isoforms genetics metabolism MeSH
- Protein Precursors chemistry genetics metabolism MeSH
- 14-3-3 Proteins chemistry genetics metabolism MeSH
- Recombinant Proteins chemistry metabolism MeSH
- Protein Binding MeSH
- Binding Sites genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Caspase 2 MeSH
- Protein Isoforms MeSH
- Protein Precursors MeSH
- 14-3-3 Proteins MeSH
- Recombinant Proteins MeSH
Among all species, caspase-2 (C2) is the most evolutionarily conserved caspase required for effective initiation of apoptosis following death stimuli. C2 is activated through dimerization and autoproteolytic cleavage and inhibited through phosphorylation at Ser139 and Ser164 , within the linker between the caspase recruitment and p19 domains of the zymogen, followed by association with the adaptor protein 14-3-3, which maintains C2 in its immature form procaspase (proC2). However, the mechanism of 14-3-3-dependent inhibition of C2 activation remains unclear. Here, we report the structural characterization of the complex between proC2 and 14-3-3 by hydrogen/deuterium mass spectrometry and protein crystallography to determine the molecular basis for 14-3-3-mediated inhibition of C2 activation. Our data reveal that the 14-3-3 dimer interacts with proC2 not only through ligand-binding grooves but also through other regions outside the central channel, thus explaining the isoform-dependent specificity of 14-3-3 protein binding to proC2 and the substantially higher binding affinity of 14-3-3 protein to proC2 than to the doubly phosphorylated peptide. The formation of the complex between 14-3-3 protein and proC2 does not induce any large conformational change in proC2. Furthermore, 14-3-3 protein interacts with and masks both the nuclear localization sequence and the C-terminal region of the p12 domain of proC2 through transient interactions in which both the p19 and p12 domains of proC2 are not firmly docked onto the surface of 14-3-3. This masked region of p12 domain is involved in C2 dimerization. Therefore, 14-3-3 protein likely inhibits proC2 activation by blocking its dimerization surface. DATABASES: Structural data are available in the Protein Data Bank under the accession numbers 6SAD and 6S9K.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Division BIOCEV Institute of Microbiology of the Czech Academy of Sciences Vestec Czech Republic
See more in PubMed
Thornberry NA, Rosen A & Nicholson DW (1997) Control of apoptosis by proteases. Adv Pharmacol 41, 155-177.
Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC et al. (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12, 1304-1314.
Miles MA, Kitevska-Ilioski T & Hawkins CJ (2017) Old and novel functions of caspase-2. Int Rev Cell Mol Biol 332, 155-212.
Thornberry NA (1997) The caspase family of cysteine proteases. Br Med Bull 53, 478-490.
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M & Kumar S (2014) An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 5, e1383.
Shimohama S, Tanino H & Fujimoto S (1999) Changes in caspase expression in Alzheimer's disease: comparison with development and aging. Biochem Biophys Res Commun 256, 381-384.
Hermel E, Hart AJ, Gunduz I, Acton H, Kim C, Wurth M, Uddin S, Smith C, Fischer Lindahl K & Aldrich CJ (2004) Polymorphism and conservation of the genes encoding Qa1 molecules. Immunogenetics 56, 639-649.
Zhao X, Kotilinek LA, Smith B, Hlynialuk C, Zahs K, Ramsden M, Cleary J & Ashe KH (2016) Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 22, 1268-1276.
Smith BR, Nelson KM, Kemper LJ, Leinonen-Wright K, Petersen A, Keene CD & Ashe KH (2019) A soluble tau fragment generated by caspase-2 is associated with dementia in Lewy body disease. Acta Neuropathol Commun 7, 124.
Liu P, Smith BR, Huang ES, Mahesh A, Vonsattel JPG, Petersen AJ, Gomez-Pastor R & Ashe KH (2019) A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington's disease patients. Acta Neuropathol Commun 7, 111.
Wilson CH, Dorstyn L & Kumar S (2016) Fat, sex and caspase-2. Cell Death Dis 7, e2125.
Kumar S, Kinoshita M & Noda M (1997) Characterization of a mammalian cell death gene Nedd2. Leukemia 11 (Suppl 3), 385-386.
Baliga BC, Read SH & Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11, 1234-1241.
Schweizer A, Briand C & Grutter MG (2003) Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem 278, 42441-42447.
Zhivotovsky B, Samali A, Gahm A & Orrenius S (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6, 644-651.
Ando K, Parsons MJ, Shah RB, Charendoff CI, Paris SL, Liu PH, Fassio SR, Rohrman BA, Thompson R, Oberst A et al. (2017) NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol 216, 1795-1810.
Nutt LK, Gogvadze V, Uthaisang W, Mirnikjoo B, McConkey DJ & Orrenius S (2005) Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biol Ther 4, 459-467.
Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, Gibbons JA, Andersen JL, Freel CD et al. (2009) Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Dev Cell 16, 856-866.
Kalabova D, Smidova A, Petrvalska O, Alblova M, Kosek D, Man P, Obsil T & Obsilova V (2017) Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochem Biophys Res Comm 493, 940-945.
Smidova A, Alblova M, Kalabova D, Psenakova K, Rosulek M, Herman P, Obsil T & Obsilova V (2018) 14-3-3 protein masks the nuclear localization sequence of caspase-2. FEBS J 285, 4196-4213.
Truong AB, Masters SC, Yang H & Fu H (2002) Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins 49, 321-325.
Obsilova V, Herman P, Vecer J, Sulc M, Teisinger J & Obsil T (2004) 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem 279, 4531-4540.
Petrvalska O, Kosek D, Kukacka Z, Tosner Z, Man P, Vecer J, Herman P, Obsilova V & Obsil T (2016) Structural Insight into the 14-3-3 protein-dependent inhibition of protein kinase ASK1 (apoptosis signal-regulating kinase 1). J Biol Chem 291, 20753-20765.
Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V & Obsil T (2015) Structural characterization of phosducin and its complex with the 14-3-3 protein. J Biol Chem 290, 16246-16260.
Sluchanko NN & Bustos DM (2019) Intrinsic disorder associated with 14-3-3 proteins and their partners. Prog Mol Biol Transl Sci 166, 19-61.
Tang Y, Wells JA & Arkin MR (2011) Structural and enzymatic insights into caspase-2 protein substrate recognition and catalysis. J Biol Chem 286, 34147-34154.
Kopecka M, Kosek D, Kukacka Z, Rezabkova L, Man P, Novak P, Obsil T & Obsilova V (2014) Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J Biol Chem 289, 13948-13961.
Rezabkova L, Boura E, Herman P, Vecer J, Bourova L, Sulc M, Svoboda P, Obsilova V & Obsil T (2010) 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3). J Struct Biol 170, 451-461.
Macakova E, Kopecka M, Kukacka Z, Veisova D, Novak P, Man P, Obsil T & Obsilova V (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim Biophys Acta 1830, 4491-4499.
Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V & Obsil T (2017) Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc Natl Acad Sci USA 114, E9811-E9820.
Molzan M & Ottmann C (2012) Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3zeta dimer. J Mol Biol 423, 486-495.
Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ & Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4, 153-166.
Alblova M, Smidova A, Kalabova D, Lentini Santo D, Obsil T & Obsilova V (2019) Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiol Res 68, 147-160.
Ballone A, Centorrino F, Wolter M & Ottmann C (2018) Structural characterization of 14-3-3zeta in complex with the human Son of sevenless homolog 1 (SOS1). J Struct Biol 202, 210-215.
Centorrino F, Ballone A, Wolter M & Ottmann C (2018) Biophysical and structural insight into the USP8/14-3-3 interaction. FEBS Lett 592, 1211-1220.
Sluchanko NN, Beelen S, Kulikova AA, Weeks SD, Antson AA, Gusev NB & Strelkov SV (2017) Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure 25, 305-316.
Obsil T, Ghirlando R, Klein DC, Ganguly S & Dyda F (2001) Crystal structure of the 14-3-3zeta: serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257-267.
Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N, Weyand M, Vandermeeren C, Duby G, Boutry M, Wittinghofer A et al. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell 25, 427-440.
Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S et al. (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476, 332-335.
Sluchanko NN (2018) Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives. J Mol Biol 430, 20-26.
Bouchier-Hayes L (2010) The role of caspase-2 in stress-induced apoptosis. J Cell Mol Med 14, 1212-1224.
Rezabkova L, Man P, Novak P, Herman P, Vecer J, Obsilova V & Obsil T (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J Biol Chem 286, 43527-43536.
Kacirova M, Novacek J, Man P, Obsilova V & Obsil T (2017) Structural basis for the 14-3-3 protein-dependent inhibition of phosducin function. Biophys J 112, 1339-1349.
Karlberg T, Hornyak P, Pinto AF, Milanova S, Ebrahimi M, Lindberg M, Pullen N, Nordstrom A, Loverli E, Caraballo R et al. (2018) 14-3-3 proteins activate Pseudomonas exotoxins-S and -T by chaperoning a hydrophobic surface. Nat Commun 9, 3785.
Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A, Kulhanek K, Wong K, Roose JP, Subramaniam S & Kuriyan J (2019) Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 366, 109-115.
Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H & Eck MJ (2019) Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature 575, 545-550.
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ & Cantley LC (1997) The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91, 961-971.
Yaffe MB (2002) How do 14-3-3 proteins work? - gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53-57.
Niesen FH, Berglund H & Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2, 2212-2221.
Ballone A, Centorrino F, Wolter M & Ottmann C (2018) Protein X-ray crystallography of the 14-3-3zeta/SOS1 complex. Data Brief 19, 1683-1687.
Psenakova K, Petrvalska O, Kylarova S, Lentini Santo D, Kalabova D, Herman P, Obsilova V & Obsil T (2018) 14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim Biophys Acta 1862, 1612-1625.
Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78, 1606-1619.
Kabsch W (2010) Xds. Acta Crystallogr D 66, 125-132.
Sparta KM, Krug M, Heinemann U, Mueller U & Weiss MS (2016) XDSAPP2.0. J Appl Crystallogr 49, 1085-1092.
Vagin A & Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30, 1022-1025.
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213-221.
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH & Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25.
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Structural insights into the functional roles of 14-3-3 proteins
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains