Suicidal Leishmania
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15-00054
Russian Science Foundation
CZ LL1601
European Research Council - International
CZ.02.1.01/0.0/ 0.0/16_019/0000759
European Regional Development Fund
UNCE 20472
Grantová Agentura, Univerzita Karlova
SGS/PrF/2020
Ostravská Univerzita v Ostravě
"Přístroje IET" (CZ.1.05/2.1.00/19.0388)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31991768
PubMed Central
PMC7168676
DOI
10.3390/pathogens9020079
PII: pathogens9020079
Knihovny.cz E-zdroje
- Klíčová slova
- BnSP-7, Leishmania mexicana, apoptosis, ecDHFR, suicidal system,
- Publikační typ
- časopisecké články MeSH
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a "suicidal" system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
Department of Parasitology Faculty of Science Charles University 128 44 Prague Czech Republic
Faculty of Sciences University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Bruschi F., Gradoni L. The Leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. p. 245.
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Dostálová A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC
Podinovskaia M., Descoteaux A. Leishmania and the macrophage: A multifaceted interaction. Future Microbiol. 2015;10:111–129. doi: 10.2217/fmb.14.103. PubMed DOI
WHO [(accessed on 24 January 2020)];Leishmaniasis: Stuation and Trends. Global Health Observatory (GHO) Data 2016. Available online: http://www.who.int/gho/neglected_diseases/leishmaniasis/en/
Oliveira L.F., Schubach A.O., Martins M.M., Passos S.L., Oliveira R.V., Marzochi M.C., Andrade C.A. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011;118:87–96. doi: 10.1016/j.actatropica.2011.02.007. PubMed DOI
Rezvan H., Moafi M. Veterinary Research Forum. Volume 6. Faculty of Veterinary Medicine, Urmia University; Urmia, Iran: 2015. An overview on Leishmania vaccines: A narrative review article; pp. 1–7. PubMed PMC
McCall L.I., Zhang W.W., Ranasinghe S., Matlashewski G. Leishmanization revisited: Immunization with a naturally attenuated cutaneous Leishmania donovani isolate from Sri Lanka protects against visceral leishmaniasis. Vaccine. 2013;31:1420–1425. doi: 10.1016/j.vaccine.2012.11.065. PubMed DOI
Khamesipour A., Dowlati Y., Asilian A., Hashemi-Fesharki R., Javadi A., Noazin S., Modabber F. Leishmanization: Use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine. 2005;23:3642–3648. doi: 10.1016/j.vaccine.2005.02.015. PubMed DOI
Handman E. Leishmaniasis: Current status of vaccine development. Clin. Microbiol. Rev. 2001;14:229–243. doi: 10.1128/CMR.14.2.229-243.2001. PubMed DOI PMC
Kedzierski L. Leishmaniasis vaccine: Where are we today? J. Glob. Infect. Dis. 2010;2:177–185. doi: 10.4103/0974-777X.62881. PubMed DOI PMC
Santi A.M.M., Lanza J.S., Tunes L.G., Fiuza J.A., Roy G., Orfano A.D.S., de Carvalho A.T., Frezard F., Barros A.L.B., Murta S.M.F., et al. Growth arrested live-attenuated Leishmania infantum KHARON1 null mutants display cytokinesis defect and protective immunity in mice. Sci. Rep. 2018;8:11627. doi: 10.1038/s41598-018-30076-7. PubMed DOI PMC
Dey R., Dagur P.K., Selvapandiyan A., McCoy J.P., Salotra P., Duncan R., Nakhasi H.L. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J. Immunol. 2013;190:2138–2149. doi: 10.4049/jimmunol.1202801. PubMed DOI PMC
Selvapandiyan A., Dey R., Nylen S., Duncan R., Sacks D., Nakhasi H.L. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J. Immunol. 2009;183:1813–1820. doi: 10.4049/jimmunol.0900276. PubMed DOI
Anand S., Madhubala R. Genetically engineered ascorbic acid-deficient live mutants of Leishmania donovani induce long lasting protective immunity against visceral leishmaniasis. Sci. Rep. 2015;5:10706. doi: 10.1038/srep10706. PubMed DOI PMC
Solana J.C., Ramirez L., Corvo L., de Oliveira C.I., Barral-Netto M., Requena J.M., Iborra S., Soto M. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl. Trop. Dis. 2017;11:e0005644. doi: 10.1371/journal.pntd.0005644. PubMed DOI PMC
Muyombwe A., Olivier M., Ouellette M., Papadopoulou B. Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene. Exp. Parasitol. 1997;85:35–42. doi: 10.1006/expr.1996.4115. PubMed DOI
Ghedin E., Charest H., Zhang W.W., Debrabant A., Dwyer D., Matlashewski G. Inducible expression of suicide genes in Leishmania donovani amastigotes. J. Biol. Chem. 1998;273:22997–23003. doi: 10.1074/jbc.273.36.22997. PubMed DOI
Davoudi N., Tate C.A., Warburton C., Murray A., Mahboudi F., McMaster W.R. Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine. 2005;23:1170–1177. doi: 10.1016/j.vaccine.2004.08.032. PubMed DOI
Kumari S., Samant M., Khare P., Misra P., Dutta S., Kolli B.K., Sharma S., Chang K.P., Dube A. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur. J. Immunol. 2009;39:178–191. doi: 10.1002/eji.200838389. PubMed DOI PMC
Ma Y., Weiss L.M., Huang H. Inducible suicide vector systems for Trypanosoma cruzi. Microbes Infect. 2015;17:440–450. doi: 10.1016/j.micinf.2015.04.003. PubMed DOI
Podesvova L., Huang H., Yurchenko V. Inducible protein stabilization system in Leishmania mexicana. Mol. Biochem. Parasitol. 2017;214:62–64. doi: 10.1016/j.molbiopara.2017.03.008. PubMed DOI
Nunes D.C., Figueira M.M., Lopes D.S., de Souza D.L., Izidoro L.F., Ferro E.A., Souza M.A., Rodrigues R.S., Rodrigues V.M., Yoneyama K.A. BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis. Parasitology. 2013;140:844–854. doi: 10.1017/S0031182013000012. PubMed DOI
Vermes I., Haanen C., Steffens-Nakken H., Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods. 1995;184:39–51. doi: 10.1016/0022-1759(95)00072-I. PubMed DOI
Schlamadinger D.E., Gable J.E., Kim J.E. Toxins and antimicrobial peptides: Interactions with membranes. Proc. SPIE Int. Soc. Opt. Eng. 2009;7397:73970J. PubMed PMC
Makarova K.S., Wolf Y.I., Karamycheva S., Zhang D., Aravind L., Koonin E.V. Antimicrobial peptides, polymorphic toxins, and self-nonself recognition systems in Archaea: An untapped armory for intermicrobial conflicts. MBio. 2019;10:e00715-19. doi: 10.1128/mBio.00715-19. PubMed DOI PMC
Lukša J., Ravoitytė B., Konovalovas A., Aitmanaitė L., Butenko A., Yurchenko V., Serva S., Servienė E. Different metabolic pathways are involved in response of Saccharomyces cerevisiae to L-A and M viruses. Toxins. 2017;9:e233. doi: 10.3390/toxins9080233. PubMed DOI PMC
Harms A., Brodersen D.E., Mitarai N., Gerdes K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol. Cell. 2018;70:768–784. doi: 10.1016/j.molcel.2018.01.003. PubMed DOI
Müller S., Cerdan R., Radulescu O. Drug discovery in infectious diseases. In: Selzer P.M., editor. Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery. Volume 7. Wiley-VCH; Weinheim, Germany: 2016. p. 549.
Hu Y., Aksoy S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol. 2005;35:105–115. doi: 10.1016/j.ibmb.2004.10.007. PubMed DOI
Fieck A., Hurwitz I., Kang A.S., Durvasula R. Trypanosoma cruzi: Synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp. Parasitol. 2010;125:342–347. doi: 10.1016/j.exppara.2010.02.016. PubMed DOI PMC
Pérez-Cordero J.J., Lozano J.M., Cortes J., Delgado G. Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides. 2011;32:683–690. doi: 10.1016/j.peptides.2011.01.011. PubMed DOI
Lynn M.A., Kindrachuk J., Marr A.K., Jenssen H., Pante N., Elliott M.R., Napper S., Hancock R.E., McMaster W.R. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: Role of leishmanolysin in parasite survival. PLoS Negl. Trop. Dis. 2011;5:e1141. doi: 10.1371/journal.pntd.0001141. PubMed DOI PMC
Epand R.M., Vogel H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999;1462:11–28. doi: 10.1016/S0005-2736(99)00198-4. PubMed DOI
Jenssen H., Hamill P., Hancock R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006;19:491–511. doi: 10.1128/CMR.00056-05. PubMed DOI PMC
Bantel H., Sinha B., Domschke W., Peters G., Schulze-Osthoff K., Janicke R.U. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 2001;155:637–648. doi: 10.1083/jcb.200105081. PubMed DOI PMC
Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996;274:1859–1866. doi: 10.1126/science.274.5294.1859. PubMed DOI
Lomonte B., Angulo Y., Sasa M., Gutierrez J.M. The phospholipase A2 homologues of snake venoms: Biological activities and their possible adaptive roles. Protein Pept. Lett. 2009;16:860–876. doi: 10.2174/092986609788923356. PubMed DOI
Gutiérrez J.M., Lomonte B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon. 1995;33:1405–1424. doi: 10.1016/0041-0101(95)00085-Z. PubMed DOI
Núñez C.E., Angulo Y., Lomonte B. Identification of the myotoxic site of the Lys49 phospholipase A(2) from Agkistrodon piscivorus piscivorus snake venom: Synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert membrane-damaging activities. Toxicon. 2001;39:1587–1594. doi: 10.1016/S0041-0101(01)00141-6. PubMed DOI
Grabner A.N., Alfonso J., Kayano A.M., Moreira-Dill L.S., Santos A.P.A.D., Caldeira C.A.S., Sobrinho J.C., Gomez A., Grabner F.P., Cardoso F.F., et al. BmajPLA2-II, a basic Lys49-phospholipase A2 homologue from Bothrops marajoensis snake venom with parasiticidal potential. Int. J. Biol. Macromol. 2017;102:571–581. doi: 10.1016/j.ijbiomac.2017.04.013. PubMed DOI
Passero L.F., Laurenti M.D., Tomokane T.Y., Corbett C.E., Toyama M.H. The effect of phospholipase A2 from Crotalus durissus collilineatus on Leishmania (Leishmania) amazonensis infection. Parasitol. Res. 2008;102:1025–1033. doi: 10.1007/s00436-007-0871-6. PubMed DOI
Alfonso J.J., Kayanoa A.M., Garay A.F.G., Simoes-Silva R., Sobrinho J.C., Vourliotis S., Soares A.M., Calderon L.A., Gomez M.C.V. Isolation, biochemical characterization and antiparasitic activity of BmatTX-IV, a basic Lys49-phospholipase A2 from the venom of Bothrops mattogrossensis from Paraguay. Curr. Top. Med. Chem. 2019;19:2041–2048. doi: 10.2174/1568026619666190723154756. PubMed DOI
Basmaciyan L., Berry L., Gros J., Azas N., Casanova M. Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites. Microb. Cell. 2018;5:404–417. doi: 10.15698/mic2018.09.646. PubMed DOI PMC
Weingärtner A., Kemmer G., Muller F.D., Zampieri R.A., dos Santos M.G., Schiller J., Pomorski T.G. Leishmania promastigotes lack phosphatidylserine but bind annexin V upon permeabilization or miltefosine treatment. PLoS ONE. 2012;7:e42070. doi: 10.1371/journal.pone.0042070. PubMed DOI PMC
Braten O., Livneh I., Ziv T., Admon A., Kehat I., Caspi L.H., Gonen H., Bercovich B., Godzik A., Jahandideh S., et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl. Acad. Sci. USA. 2016;113:E4639–E4647. doi: 10.1073/pnas.1608644113. PubMed DOI PMC
Bates P.A., Tetley L. Leishmania mexicana: Induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp. Parasitol. 1993;76:412–423. doi: 10.1006/expr.1993.1050. PubMed DOI
Bates P.A. Axenic culture of Leishmania amastigotes. Parasitol. Today. 1993;9:143–146. doi: 10.1016/0169-4758(93)90181-E. PubMed DOI
Ishemgulova A., Kraeva N., Hlavacova J., Zimmer S.L., Butenko A., Podesvova L., Lestinova T., Lukes J., Kostygov A., Votypka J., et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl. Trop. Dis. 2017;11:e0005782. doi: 10.1371/journal.pntd.0005782. PubMed DOI PMC
Kraeva N., Ishemgulova A., Lukeš J., Yurchenko V. Tetracycline-inducible gene expression system in Leishmania mexicana. Mol. Biochem. Parasitol. 2014;198:11–13. doi: 10.1016/j.molbiopara.2014.11.002. PubMed DOI
Kraeva N., Butenko A., Hlaváčová J., Kostygov A., Myškova J., Grybchuk D., Leštinová T., Votýpka J., Volf P., Opperdoes F., et al. Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11:e1005127. doi: 10.1371/journal.ppat.1005127. PubMed DOI PMC
Kraeva N., Leštinová T., Ishemgulova A., Majerová K., Butenko A., Vaselek S., Bespyatykh J., Charyyeva A., Spitzová T., Kostygov A.Y., et al. LmxM.22.0250-encoded dual specificity protein/lipid phosphatase impairs Leishmania mexicana virulence in vitro. Pathogens. 2019;8:241. doi: 10.3390/pathogens8040241. PubMed DOI PMC