Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32208452
PubMed Central
PMC7092997
DOI
10.1371/journal.pone.0230537
PII: PONE-D-19-34121
Knihovny.cz E-zdroje
- MeSH
- apyrasa analýza genetika metabolismus MeSH
- fylogeneze MeSH
- hmyzí proteiny analýza genetika metabolismus MeSH
- hyaluronoglukosaminidasa analýza genetika metabolismus MeSH
- ještěři MeSH
- myši MeSH
- Psychodidae genetika metabolismus MeSH
- receptory pachové analýza genetika metabolismus MeSH
- slinné žlázy metabolismus MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apyrasa MeSH
- hmyzí proteiny MeSH
- hyaluronoglukosaminidasa MeSH
- odorant-binding protein MeSH Prohlížeč
- receptory pachové MeSH
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods' proteins. In the sialome, all proteins typical for sand fly saliva were identified-antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5'nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Lewis DJ. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull Br Museum (Natural Hist.) 1982;45: 121–209.
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27: 123–47. 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Senghor MW, Faye MN, Faye B, Diarra K, Elguero E, Gaye O, et al. Ecology of phlebotomine sand flies in the rural community of Mont Rolland (Thiès region, Senegal): area of transmission of canine leishmaniasis. PLoS One. 2011;6: e14773 10.1371/journal.pone.0014773 PubMed DOI PMC
Siripattanapipong S, Leelayoova S, Ninsaeng U, Mungthin M. Detection of DNA of Leishmania siamensis in Sergentomyia (Neophlebotomus) iyengari (Diptera: Psychodidae) and Molecular Identification of Blood Meals of Sand Flies in an Affected Area, Southern Thailand. J Med Entomol. 2018;55: 1277–1283. 10.1093/jme/tjy069 PubMed DOI
Ashford RW. Sandflies (Diptera: Phlebotomidae) from Ethiopia: taxonomic and biological notes. J Med Entomol. 1974;11: 605–16. PubMed
Lane R. Sandflies (Phlebotominae) Medical insects and arachnids. First edit London: Chapman & Hall; 1993. pp. 78–119. 10.1007/978-94-011-1554-4 DOI
Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite. 2016;23: 55 10.1051/parasite/2016062 PubMed DOI PMC
Geevarghese G, Arankalle VA, Jadi R, Kanojia PC, Joshi M V, Mishra AC. Detection of chandipura virus from sand flies in the genus Sergentomyia (Diptera: Phlebotomidae) at Karimnagar District, Andhra Pradesh, India. J Med Entomol. 2005;42: 495–6. 10.1093/jmedent/42.3.495 PubMed DOI
Charrel RN, Izri A, Temmam S, de Lamballerie X, Parola P. Toscana virus RNA in Sergentomyia minuta files. Emerg Infect Dis. 2006;12: 1299–300. 10.3201/eid1208.060345 PubMed DOI PMC
Alkan C, Moin Vaziri V, Ayhan N, Badakhshan M, Bichaud L, Rahbarian N, et al. Isolation and sequencing of Dashli virus, a novel Sicilian-like virus in sandflies from Iran; genetic and phylogenetic evidence for the creation of one novel species within the Phlebovirus genus in the Phenuiviridae family. McDowell MA, editor. PLoS Negl Trop Dis. 2017;11: e0005978 10.1371/journal.pntd.0005978 PubMed DOI PMC
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis. 2017;11: e0005600 10.1371/journal.pntd.0005600 PubMed DOI PMC
Titus RG, Ribeiro JM. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988;239: 1306–8. 10.1126/science.3344436 PubMed DOI
Abdeladhim M, Kamhawi S, Valenzuela JG. What’s behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. Infect Genet Evol. 2014;28: 691–703. 10.1016/j.meegid.2014.07.028 PubMed DOI PMC
Volfova V, Volf P. The salivary hyaluronidase and apyrase of the sand fly Sergentomyia schwetzi (Diptera, Psychodidae). Insect Biochem Mol Biol. 2018;102: 67–74. 10.1016/j.ibmb.2018.09.010 PubMed DOI
Ribeiro JMC. Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Med Vet Entomol. 2000;14: 142–8. 10.1046/j.1365-2915.2000.00227.x PubMed DOI
Blanco A, Blanco G. Hemostasis Medical Biochemistry. Academic Press; 2017. pp. 781–789. 10.1016/B978-0-12-803550-4.00031-8 DOI
Didisheim P, Hattori K, Lewis JH. Hematologic and coagulation studies in various animal species. J Lab Clin Med. 1959;53: 866–75. PubMed
Lewis JH. Comparative Hemostasis in Vertebrates. Boston, MA: Springer US; 1996. 10.1007/978-1-4757-9768-8 DOI
Ribeiro JMC, Schneider M, Isaias T, Jurberg J, Galvão C, Guimarães JA. Role of salivary antihemostatic components in blood feeding by triatomine bugs (Heteroptera). J Med Entomol. 1998;35: 599–610. 10.1093/jmedent/35.4.599 PubMed DOI
Ribeiro JMC, Mans BJ, Arcà B. An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol. 2010;40: 767–84. 10.1016/j.ibmb.2010.08.002 PubMed DOI PMC
Mans BJ. Evolution of vertebrate hemostatic and inflammatory control mechanisms in blood-feeding arthropods. J Innate Immun. 2011;3: 41–51. 10.1159/000321599 PubMed DOI
Arcà B, Ribeiro JM. Saliva of hematophagous insects: a multifaceted toolkit. Curr Opin insect Sci. 2018;29: 102–109. 10.1016/j.cois.2018.07.012 PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1: S1–9. 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Volf P, Tesarova P, Nohynkova E. Salivary proteins and glycoproteins in phlebotomine sandflies of various species, sex and age. Med Vet Entomol. 2000;14: 251–256. 10.1046/j.1365-2915.2000.00240.x PubMed DOI
Ishemgulova A, Butenko A, Kortišová L, Boucinha C, Grybchuk-Ieremenko A, Morelli KA, et al. Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS One. 2017;12: e0174165 10.1371/journal.pone.0174165 PubMed DOI PMC
Flegontov P, Butenko A, Firsov S, Kraeva N, Eliáš M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6: 23704 10.1038/srep23704 PubMed DOI PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data [Internet]. 2010. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29: 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8: 1494–1512. 10.1038/nprot.2013.084 PubMed DOI PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10: R25 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012. pp. 3150–3152. 10.1093/bioinformatics/bts565 PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421 10.1186/1471-2105-10-421 PubMed DOI PMC
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42: 222–30. 10.1093/nar/gkt1223 PubMed DOI PMC
Bru C, Courcelle E, Carrère S, Beausse Y, Dalmar S, Kahn D. The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 2005;33: 212–5. 10.1093/nar/gki034 PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25: 25–29. 10.1038/75556 PubMed DOI PMC
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30: 1236–40. 10.1093/bioinformatics/btu031 PubMed DOI PMC
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34: 293–7. 10.1093/nar/gkl031 PubMed DOI PMC
Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 2018;46: 71–75. 10.1093/nar/gkx1176 PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8: 785–6. 10.1038/nmeth.1701 PubMed DOI
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300: 1005–16. 10.1006/jmbi.2000.3903 PubMed DOI
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein Identification and Analysis Tools on the ExPASy Server The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. 571–607. 10.1385/1-59259-890-0:571 DOI
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT-BG, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013;32: 1478–88. 10.1038/emboj.2013.79 PubMed DOI PMC
Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput. 2002;322: 310–22. 10.1142/9789812799623_0029 PubMed DOI
Julenius K. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology. 2007;17: 868–76. 10.1093/glycob/cwm050 PubMed DOI
Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25: 402–408. 10.1006/meth.2001.1262 PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. 2018. R Foundation for Statistical Computing, Vienna, Austria: Available: https://www.r-project.org
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–80. 10.1093/molbev/mst010 PubMed DOI PMC
Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010;10: 210 10.1186/1471-2148-10-210 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32: 268–74. 10.1093/molbev/msu300 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14: 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30: 1188–95. 10.1093/molbev/mst024 PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25: 1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13: 2513–26. 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13: 731–40. 10.1038/nmeth.3901 PubMed DOI
Marinotti O, de Brito M, Moreira CK. Apyrase and alpha-glucosidase in the salivary glands of Aedes albopictus. Comp Biochem Physiol B Biochem Mol Biol. 1996;113: 675–9. 10.1016/0305-0491(95)02035-7 PubMed DOI
Vlkova M, Sima M, Rohousova I, Kostalova T, Sumova P, Volfova V, et al. Comparative analysis of salivary gland transcriptomes of Phlebotomus orientalis sand flies from endemic and non-endemic foci of visceral leishmaniasis. PLoS Negl Trop Dis. 2014;8: e2709 10.1371/journal.pntd.0002709 PubMed DOI PMC
Frost GI, Stern R. A microtiter-based assay for hyaluronidase activity not requiring specialized reagents. Anal Biochem. 1997;251: 263–9. 10.1006/abio.1997.2262 PubMed DOI
Rohoušová I, Subrahmanyam S, Volfová V, Mu J, Volf P, Valenzuela JG, et al. Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis. 2012;6: e1660 10.1371/journal.pntd.0001660 PubMed DOI PMC
Abdeladhim M, V. Coutinho-Abreu I, Townsend S, Pasos-Pinto S, Sanchez L, Rasouli M, et al. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica. PLoS Negl Trop Dis. 2016;10: 1–35. 10.1371/journal.pntd.0004771 PubMed DOI PMC
Coutinho-Abreu I V., Valenzuela JG. Comparative Evolution of Sand Fly Salivary Protein Families and Implications for Biomarkers of Vector Exposure and Salivary Vaccine Candidates. Front Cell Infect Microbiol. 2018;8: 290 10.3389/fcimb.2018.00290 PubMed DOI PMC
Lerner EA, Iuga AO, Reddy VB. Maxadilan, a PAC1 receptor agonist from sand flies. Peptides. 2007;28: 1651–1654. 10.1016/j.peptides.2007.06.021 PubMed DOI PMC
Charlab R, Valenzuela JG, Rowton ED, Ribeiro JM. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci U S A. 1999;96: 15155–60. 10.1073/pnas.96.26.15155 PubMed DOI PMC
Ferreira VP, Fazito Vale V, Pangburn MK, Abdeladhim M, Mendes-Sousa AF, Coutinho-Abreu I V., et al. SALO, a novel classical pathway complement inhibitor from saliva of the sand fly Lutzomyia longipalpis. Sci Rep. 2016;6: 19300 10.1038/srep19300 PubMed DOI PMC
Kato H, Gomez EA, Fujita M, Ishimaru Y, Uezato H, Mimori T, et al. Ayadualin, a novel RGD peptide with dual antihemostatic activities from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Biochimie. 2015;112: 49–56. 10.1016/j.biochi.2015.02.011 PubMed DOI
Valenzuela JG, Garfield M, Rowton ED, Pham VM. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi. J Exp Biol. 2004;207: 3717–29. 10.1242/jeb.01185 PubMed DOI
de Moura TR, Oliveira F, Carneiro MW, Miranda JC, Clarêncio J, Barral-Netto M, et al. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection. PLoS Negl Trop Dis. 2013;7: e2242 10.1371/journal.pntd.0002242 PubMed DOI PMC
Kato H, Jochim RC, Gomez E a, Uezato H, Mimori T, Korenaga M, et al. Analysis of salivary gland transcripts of the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Infect Genet Evol. 2013;13: 56–66. 10.1016/j.meegid.2012.08.024 PubMed DOI PMC
Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18: 374–389. 10.1038/s41577-018-0004-8 PubMed DOI
Arlinghaus FT, Eble JA. C-type lectin-like proteins from snake venoms. Toxicon. 2012;60: 512–9. 10.1016/j.toxicon.2012.03.001 PubMed DOI
Aransay AM, Scoulica E, Tselentis Y, Ready PD. Phylogenetic relationships of phlebotomine sandflies inferred from small subunit nuclear ribosomal DNA. Insect Mol Biol. 2000;9: 157–168. 10.1046/j.1365-2583.2000.00168.x PubMed DOI
Grace-Lema DM, Yared S, Quitadamo A, Janiea DA, Wheeler WC, Balkew M, et al. A phylogeny of sand flies (Diptera: Psychodidae: Phlebotominae), using recent Ethiopian collections and a broad selection of publicly available DNA sequence data. Syst Entomol. 2015;40: 733–744. 10.1111/syen.12135 DOI
Kweku MA, Odoom S, Puplampu N, Desewu K, Nuako GK, Gyan B, et al. An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks. Glob Health Action. 2011;4 10.3402/gha.v4i0.5527 PubMed DOI PMC
Gebresilassie A, Yared S, Aklilu E, Kirstein OD, Moncaz A, Tekie H, et al. Host choice of Phlebotomus orientalis (Diptera: Psychodidae) in animal baited experiments: a field study in Tahtay Adiyabo district, northern Ethiopia. Parasit Vectors. 2015;8: 190 10.1186/s13071-015-0807-4 PubMed DOI PMC
Yared S, Gebresilassie A, Abbasi I, Aklilu E, Kirstein OD, Balkew M, et al. A molecular analysis of sand fly blood meals in a visceral leishmaniasis endemic region of northwestern Ethiopia reveals a complex host-vector system. Heliyon. 2019;5: e02132 10.1016/j.heliyon.2019.e02132 PubMed DOI PMC
Lewis DJ. Phlebotomine sandflies (Diptera: Psychodidae) from the Oriental Region. Syst Entomol. 1987;12: 163–180. 10.1111/j.1365-3113.1987.tb00194.x DOI
Lewis DJ. Depth of penetration of vertebrate skin by phlebotomine sandflies (Diptera: Psychodidae). Ann Trop Med Parasitol. 1987;81: 173–179. 10.1080/00034983.1987.11812109 PubMed DOI
Xu X, Oliveira F, Chang BW, Collin N, Gomes R, Teixeira C, et al. Structure and function of a “yellow” protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. J Biol Chem. 2011;286: 32383–93. 10.1074/jbc.M111.268904 PubMed DOI PMC
Sumova P, Sima M, Kalouskova B, Polanska N, Vanek O, Oliveira F, et al. Amine-binding properties of salivary yellow-related proteins in phlebotomine sand flies. Insect Biochem Mol Biol. 2019; 103245 10.1016/j.ibmb.2019.103245 PubMed DOI
Sima M, Novotny M, Pravda L, Sumova P, Rohousova I, Volf P. The Diversity of Yellow-Related Proteins in Sand Flies (Diptera: Psychodidae). PLoS One. 2016;11: e0166191 10.1371/journal.pone.0166191 PubMed DOI PMC
Dodds AW, Matsushita M. The phylogeny of the complement system and the origins of the classical pathway. Immunobiology. 2007;212: 233–243. 10.1016/j.imbio.2006.11.009 PubMed DOI
Doolittle RF. Coagulation in vertebrates with a focus on evolution and inflammation. J Innate Immun. 2011;3: 9–16. 10.1159/000321005 PubMed DOI
Coutinho-Abreu I V, Wadsworth M, Stayback G, Ramalho-Ortigao M, McDowell MA. Differential expression of salivary gland genes in the female sand fly Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol. 2010;47: 1146–1155. 10.1603/me10072 PubMed DOI
Martin-Martin I, Chagas AC, Guimaraes-Costa AB, Amo L, Oliveira F, Moore IN, et al. Immunity to LuloHya and Lundep, the salivary spreading factors from Lutzomyia longipalpis, protects against Leishmania major infection. PLoS Pathog. 2018;14: e1007006 10.1371/journal.ppat.1007006 PubMed DOI PMC
Isawa H, Yuda M, Orito Y, Chinzei Y. A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen. J Biol Chem. 2002;277: 27651–8. 10.1074/jbc.M203505200 PubMed DOI
Calvo E, Mans BJ, Andersen JF, Ribeiro JMC. Function and evolution of a mosquito salivary protein family. J Biol Chem. 2006;281: 1935–42. 10.1074/jbc.M510359200 PubMed DOI
Calvo E, Mans BJ, Ribeiro JMC, Andersen JF. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein. Proc Natl Acad Sci U S A. 2009;106: 3728–33. 10.1073/pnas.0813190106 PubMed DOI PMC
Mans BJ, Calvo E, Ribeiro JMC, Andersen JF. The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae. J Biol Chem. 2007;282: 36626–33. 10.1074/jbc.M706410200 PubMed DOI
Jablonka W, Kim IH, Alvarenga PH, Valenzuela JG, Ribeiro JMC, Andersen JF. Functional and structural similarities of D7 proteins in the independently-evolved salivary secretions of sand flies and mosquitoes. Sci Rep. 2019;9: 5340 10.1038/s41598-019-41848-0 PubMed DOI PMC
Sand fly blood meal volumes and their relation to female body weight under experimental conditions
Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania