Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review
Grant support
U54 NS115198
NINDS NIH HHS - United States
PubMed
32266963
PubMed Central
PMC7574589
DOI
10.1002/jimd.12241
Knihovny.cz E-resources
- Keywords
- AT deficiency, MPI-CDG, guidelines, hepatic fibrosis, hyperinsulinaemic hypoglycaemia, mannose phosphate isomerase, protein-losing enteropathy,
- MeSH
- Consensus MeSH
- Humans MeSH
- Disease Management MeSH
- Mannose-6-Phosphate Isomerase deficiency genetics MeSH
- Practice Guidelines as Topic MeSH
- Congenital Disorders of Glycosylation diagnosis enzymology therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Mannose-6-Phosphate Isomerase MeSH
Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.
Department of Biochemistry Assistance Publique Hôpitaux de Paris Bichat Hospital Paris France
Department of Clinical Genomics Mayo Clinic Rochester Minnesota USA
Department of Development and Regeneration KU Leuven Leuven Belgium
Department of Metabolic Diseases JUMC Krakow and NSSU University Hospital Krakow Poland
Department of Paediatrics and Metabolic Center University Hospitals Leuven Leuven Belgium
Department of Paediatrics Otto von Guericke University Magdeburg Germany
See more in PubMed
Pedersen PS, Tygstrup I. Congenital hepatic fibrosis combined with protein-losing enteropathy and recurrent thrombosis. Acta Paediatr Scand. 1980;69(4):571–574. PubMed
Pelletier VA, Galeano N, Brochu P, Morin CL, Weber AM, Roy CC. Secretory diarrhea with protein-losing enteropathy, enterocolitis cystica superficialis, intestinal lymphangiectasia, and congenital hepatic fibrosis: a new syndrome. J Pediatr. 1986;108(1):61–65. PubMed
Niehues R, Hasilik M, Alton G, et al. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest. 1998;101(7):1414–1420. PubMed PMC
Schollen E, Dorland L, de Koning TJ, et al. Genomic organization of the human phosphomannose isomerase (MPI) gene and mutation analysis in patients with congenital disorders of glycosylation type Ib (CDG-Ib). Hum Mutat. 2000;16(3):247–252. PubMed
Kjaergaard S, Westphal V, Davis J, Peterson S, Freeze H, Skovby F. Variable outcome and the effect of mannose in congenital disorder of glycosylation type Ib (CDG-Ib). J Inherit Metab Dis. 2000;23:77–85. PubMed
Vuillaumier-Barrot S Diagnostic moléc ulaire des anomalies congénitales de la glycosylation. Ann Biol Clin (Paris). 2005; 63(2):135–143. PubMed
Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504):222–224. PubMed
Harms HK, Zimmer KP, Kurnik K, Bertele-Harms RM, Weidinger S, Reiter K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr. 2002;91(10):1065–1072. PubMed
Herman RH. Mannose metabolism. I Am J Clin Nutr. 1971;24(4):488–498. PubMed
Panneerselvam K, Freeze HH. Mannose enters mammalian cells using a specific transporter that is insensitive to glucose. J Biol Chem. 1996;271(16):9417–9421. PubMed
Fujita N, Tamura A, Higashidani A, Tonozuka T, Freeze HH, Nishikawa A. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells. FEBS J. 2008;275(4):788–798. PubMed
Ichikawa M, Scott DA, Losfeld ME, Freeze HH. The metabolic origins of mannose in glycoproteins. J Biol Chem. 2014;289(10):6751–6761. PubMed PMC
de Lonlay P, Seta N. The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta. 2009;1792(9):841–843. PubMed
Alton G, Hasilik M, Niehues R, et al. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998;8(3):285–295. PubMed
Rush JS, Panneerselvam K, Waechter CJ, Freeze HH. Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with congenital disorders of glycosylation (CDG). Glycobiology. 2000;10(8):829–835. PubMed
Chu J, Mir A, Gao N, et al. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. Dis Model Mech. 2013;6(1):95–105. PubMed PMC
Schroeder AS, Kappler M, Bonfert M, Borggraefe I, Schoen C, Reiter K. Seizures and stupor during intravenous mannose therapy in a patient with CDG syndrome type 1b (MPI-CDG). J Inherit Metab Dis. 2010;33(suppl 3):S497–S502. PubMed
de la Fuente M, Penas PF, Sols A. Mechanism of mannose toxicity. Biochem Biophys Res Commun. 1986;140(1):51–55. PubMed
Freinkel N, Lewis NJ, Akazawa S, Roth SI, Gorman L. The honeybee syndrome—implications of the teratogenicity of mannose in rat-embryo culture. N Engl J Med. 1984;310(4):223–230. PubMed
Sols A, Cadenas E, Alvarado F. Enzymatic basis of mannose toxicity in honey bees. Science. 1960;131(3396):297–298. PubMed
DeRossi C, Bode L, Eklund EA, et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem. 2006;281(9):5916–5927. PubMed
Sharma V, Nayak J, DeRossi C, et al. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice. FASEB J. 2014a;28(4):1854–1869. PubMed PMC
Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun. 2014b;453(2):220–228. PubMed PMC
Altassan R, Peanne R, Jaeken J, et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. J Inherit Metab Dis. 2019;42(1):5–28. PubMed
Scottish Intercollegiate Guidelines Network. SIGN 50: A Guideline Developer’s Handbook. Edinburgh: Scottish Intercollegiate Guidelines Network; 2011.
Helander A, Jaeken J, Matthijs G, Eggertsen G. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption. Clin Chim Acta. 2014;431:15–18. PubMed
Deeb A, Al Amoodi A. A novel homozygous mutation in the mannose phosphate isomerase gene causing congenital disorder of glycation and hyperinsulinemic hypoglycemia in an infant. Clin Case Rep. 2018;6(3):479–483. PubMed PMC
Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr. 2004;38(3):282–287. PubMed
Jaeken J, Matthijs G, Saudubray JM, et al. Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet. 1998;62(6):1535–1539. PubMed PMC
Marques-da-Silva D, Dos Reis FV, Monticelli M, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis. 2017;40(2):195–207. PubMed
Witters P, Cassiman D, Morava E. Nutritional therapies in congenital disorders of glycosylation (CDG). Nutrients. 2017;9(11):E1222 10.3390/nu9111222. PubMed DOI PMC
de Lonlay P, Cuer M, Vuillaumier-Barrot S, et al. Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: a new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose. J Pediatr. 1999;135(3):379–383. PubMed
Janssen MC, de Kleine RH, van den Berg AP, et al. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics. 2014;134(1):e279–e283. PubMed
Liem YS, Bode L, Freeze HH, Leebeek FW, Zandbergen AA, Paul Wilson J. Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat Clin Pract Gastroenterol Hepatol. 2008;5(4):220–224. PubMed
van Diggelen OP, Maat-Kievit J, de Klerk JBC, et al. Two more Dutch cases of CDG syndrome 1b: phosphomannose isomerase deficiency. J Inherit Metab Dis. 1998;21(Suppl 2):97.
Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol Genet Metab. 2001;73(1):77–85. PubMed
Babovic-Vuksanovic D, Patterson MC, Schwenk WF, et al. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr. 1999;135(6):775–781. PubMed
Penel-Capelle D, Dobbelaere D, Jaeken J, Klein A, Cartigny M, Weill J. Congenital disorder of glycosylation Ib (CDG-Ib) without gastrointestinal symptoms. J Inherit Metab Dis. 2003;26(1):83–85. PubMed
Adamowicz M, Matthijs G, van Schaftingen E, et al. New case of phosphomannose isomerase deficiency (CDG 1b). J Inherit Metab Dis. 2000;23(Suppl I):184.
de Koning TJ, Dorland L, van Diggelen OP, et al. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun. 1998;245(1):38–42. PubMed
de Koning TJ, Nikkels PG, Dorland L, et al. Congenital hepatic fibrosis in 3 siblings with phosphomannose isomerase deficiency. Virchows Arch. 2000;437(1):101–105. PubMed
de Lonlay P, Seta N, Barrot S, et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet. 2001;38(1):14–19. PubMed PMC
Hendriksz CJ, McClean P, Henderson MJ, et al. Successful treatment of carbohydrate deficient glycoprotein syndrome type 1b with oral mannose. Arch Dis Child. 2001;85(4):339–340. PubMed PMC
Iancu TC, Mahajnah M, Manov I, Cherurg S, Knopf C, Mandel H. The liver in congenital disorders of glycosylation: ultrastructural features. Ultrastruct Pathol. 2007;31(3):189–197. PubMed
Kelly DF, Boneh A, Pitsch S, et al. Carbohydrate-deficient glycoprotein syndrome 1b: a new answer to an old diagnostic dilemma. J Paediatr Child Health. 2001;37(5):510–512. PubMed
Mention K, Lacaille F, Valayannopoulos V, et al. Development of liver disease despite mannose treatment in two patients with CDG-Ib. Mol Genet Metab. 2008;93(1):40–43. PubMed
Schwarzenberg SJ. Congenital hepatic fibrosis-is it really a matter of “a spoonful of sugar?”. Hepatology. 1999;30(2):582–583. PubMed
Zentilin Boyer M, de Lonlay P, Seta N, et al. Failure to thrive and intestinal diseases in congenital disorders of glycosylation. Arch Pediatr. 2003;10(7):590–595. PubMed
de la Morena-Barrio ME, Wypasek E, Owczarek D, et al. MPI-CDG with transient hypoglycosylation and antithrombin deficiency. Haematologica. 2019;104(2):e79–e82. PubMed PMC
Martin Hernandez E, Vega Pajares AI, Perez Gonzalez B, et al. Congenital disorder of glycosylation type 1b. Experience with mannose treatment. An Pediatr (Barc). 2008;69(4):358–365. PubMed
Oren A, Houwen RH. Phosphomannoseisomerase deficiency as the cause of protein-losing enteropathy and congenital liver fibrosis. J Pediatr Gastroenterol Nutr. 1999;29(2):231–232. PubMed
Herfarth H, Hofstadter F, Feuerbach S, Jurgen Schlitt H, Scholmerich J, Rogler G. A case of recurrent gastrointestinal bleeding and protein-losing gastroenteropathy. Nat Clin Pract Gastroenterol Hepatol. 2007;4(5):288–293. PubMed
Bode L, Eklund EA, Murch S, Freeze HH. Heparan sulphate depletion amplifies TNF-alpha-induced protein leakage in an in vitro model of protein-losing enteropathy. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G1015–G1023. PubMed
Bode L, Freeze HH. Applied glycoproteomics–approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta. 2006;1760(4):547–559. PubMed
Bode L, Murch S, Freeze HH. Heparan sulfate plays a central role in a dynamic in vitro model of protein-losing enteropathy. J Biol Chem. 2006;281(12):7809–7815. PubMed
Ackermann AM, Freeze HH, Ficicioglu C, Kaestner KH, Stanley CA. Hypoglycemia due to lower threshold of glucosestimulated insulin secretion in phosphoglucomutase 1 deficiency. Annual Meeting of the Pediatric Academic Societies: (2015). April 25-28, 2015; San Diego, CA.
Wong SY, Beamer LJ, Gadomski T, et al. Defining the phenotype and assessing severity in phosphoglucomutase-1 deficiency. J Pediatr. 2016;175(130–6):e8. PubMed
Zeevaert R, Scalais E, Muino Mosquera L, et al. PGM1 deficiency diagnosed during an endocrine work-up of low IGF-1 mediated growth failure. Acta Clin Belg. 2016;71(6):435–437. PubMed
Bohles H, Sewell AA, Gebhardt B, Reinecke-Luthge A, Kloppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia–leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis. 2001;24(8):858–862. PubMed
Jain V, Menon RK. Disorders of carbohydrate metabolism In: Gleason CJS, ed. Avery’s Diseases of the Newborn. 9th ed. hiladelphia, PA: Elsevier; 2018:1320–1329.
Cabezas OR, Flanagan SE, Stanescu H, et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. JASN. 2017;28(8):2529–2539. PubMed PMC
Miller BS, Khosravi MJ, Patterson MC, Conover CA. IGF system in children with congenital disorders of glycosylation. Clin Endocrinol (Oxf). 2009;70(6):892–897. PubMed
Thornton PS, Stanley CA, De Leon DD, et al. Recommendations from the pediatric endocrine society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr. 2015;167(2):238–245. PubMed
Yorifuji T, Horikawa R, Hasegawa T, et al. Clinical practice guidelines for congenital hyperinsulinism. Clin Pediatr Endocrinol. 2017;26(3):127–152. PubMed PMC
Tamminga RY, Lefeber DJ, Kamps WA, van Spronsen FJ. Recurrent thrombo-embolism in a child with a congenital disorder of glycosylation (CDG) type Ib and treatment with mannose. Pediatr Hematol Oncol. 2008;25(8):762–768. PubMed
Van Geet C, Jaeken J. A unique pattern of coagulation abnormalities in carbohydrate-deficient glycoprotein syndrome. Pediatr Res. 1993;33(5):540–541. PubMed
Young G, Driscoll MC. Coagulation abnormalities in the carbohydrate-deficient glycoprotein syndrome: case report and review of the literature. Am J Hematol. 1999;60(1):66–69. PubMed
Van Geet C, Jaeken J, Freson K, et al. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications. J Inherit Metab Dis. 2001;24(4):477–492. PubMed
Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–352. PubMed
Monagle P, Chan AKC, Goldenberg NA, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 suppl):e737S–e801S. PubMed PMC
Meaudre E, Meyrieux V, Suprano I, Camboulives J, Paut O. Anesthesia considerations in carbohydrate-deficient glycoprotein syndrome type I. Paediatr Anaesth. 2005;15(10):905–906. PubMed
Freeze HH. New diagnosis and treatment of congenital hepatic fibrosis. J Pediatr Gastroenterol Nutr. 1999;29(1):104–106. PubMed
Hertz-Pannier L, Dechaux M, Sinico M, et al. Congenital disorders of glycosylation type I: a rare but new cause of hyperechoic kidneys in infants and children due to early microcystic changes. Pediatr Radiol. 2006;36(2):108–114. PubMed
Barone R, Fiumara A, Jaeken J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol. 2014;34(3):357–366. PubMed
Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144(2–3):245–247. PubMed
Aoki H, Shiomi M, Ikeda T, et al. Decreased sialylation of IgA1 O-glycans associated with pneumococcal hemolytic uremic syndrome. Pediatr Int. 2013;55(6):e143–e145. PubMed
Zuhlsdorf A, Park JH, Wada Y, et al. Transferrin variants: pitfalls in the diagnostics of congenital disorders of glycosylation. Clin Biochem. 2015;48(1–2):11–13. PubMed
Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: phosphomannose isomerase deficiency. Eur J Hum Genet. 2014;22(9):e1–e3. 10.1038/ejhg.2014.29. PubMed DOI PMC
Helander A, Bergstrom J, Freeze HH. Testing for congenital disorders of glycosylation by HPLC measurement of serum transferrin glycoforms. Clin Chem. 2004;50(5):954–958. PubMed
Parente F, Ah Mew N, Jaeken J, Gilfix BM. A new capillary zone electrophoresis method for the screening of congenital disorders of glycosylation (CDG). Clin Chim Acta. 2010;411(1–2):64–66. PubMed
Quintana E, Montero R, Casado M, et al. Comparison between high performance liquid chromatography and capillary zone electrophoresis for the diagnosis of congenital disorders of glycosylation. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(24):2513–2518. PubMed
Schollen E, Martens K, Geuzens E, Matthijs G. DHPLC analysis as a platform for molecular diagnosis of congenital disorders of glycosylation (CDG). Eur J Hum Genet. 2002;10(10):643–648. PubMed
Helander A, Wielders J, Anton R, et al. Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clin Chim Acta. 2016;459:19–24. PubMed
Seta N, Barnier A, Hochedez F, Besnard MA, Durand G. Diagnostic value of Western blotting in carbohydrate-deficient glycoprotein syndrome. Clin Chim Acta. 1996;254(2):131–140. PubMed
Mills K, Mills P, Jackson M, et al. Diagnosis of congenital disorders of glycosylation type-I using protein chip technology. Proteomics. 2006;6(7):2295–2304. PubMed
van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res. 2015;166(6):639–649.e1. PubMed
He P, Ng BG, Losfeld ME, Zhu W, Freeze HH. Identification of intercellular cell adhesion molecule 1 (ICAM-1) as a hypoglycosylation marker in congenital disorders of glycosylation cells. J Biol Chem. 2012;287(22):18210–18217. PubMed PMC
He P, Srikrishna G, Freeze HH. N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response. Glycobiology. 2014;24(4):392–398. PubMed PMC
Jackson M, Clayton P, Grunewald S, et al. Elevation of plasma aspartylglucosaminidase is a useful marker for the congenital disorders of glycosylation type I (CDG I). J Inherit Metab Dis. 2005;28(6):1197–1198. PubMed
Zhang W, James PM, Ng BG, et al. A novel N-yetrasaccharide in patients with congenital disorders of glycosylation, including asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem. 2016;62(1):208–217. PubMed PMC
Li Y, Ogata Y, Freeze HH, Scott CR, Turecek F, Gelb MH. Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal Chem. 2003;75(1):42–48. PubMed
Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995;377(3):318–320. PubMed
Cleasby A, Wonacott A, Skarzynski T, et al. The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat Struct Biol. 1996;3(5):470–479. PubMed
Haeuptle MA, Hennet T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat. 2009;30(12):1628–1641. PubMed
Vuillaumier-Barrot S, Isidor B, Dupre T, Le Bizec C, David A, Seta N. Expanding the Spectrum of PMM2-CDG phenotype. JIMD Rep. 2012;5:123–125. PubMed PMC
Brasil S, Pascoal C, Francisco R, et al. CDG therapies: from bench to bedside. Int J Mol Sci. 2018;19(5). 10.3390/ijms19051304 PubMed DOI PMC
de Koning TJ, Dorland L, van Berge Henegouwen GP. Phosphomannose isomerase deficiency as a cause of congenital hepatic fibrosis and protein-losing enteropathy. J Hepatol. 1999;31(3):557–560. PubMed
Etchison JR, Freeze HH. Enzymatic assay of D-mannose in serum. Clin Chem. 1997;43(3):533–538. PubMed