• This record comes from PubMed

Consensus guideline for the diagnosis and management of mannose phosphate isomerase-congenital disorder of glycosylation

. 2020 Jul ; 43 (4) : 671-693. [epub] 20200421

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Review

Grant support
U54 NS115198 NINDS NIH HHS - United States

Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.

Centro de Genética Médica Jacinto de Magalhães Centro de Referência Doenças Hereditárias do Metabolismo Centro Hospitalar Universitário do Porto Unit for Multidisciplinary Research in Biomedicine ICBAS UP Porto Portugal

Centro de Referência Doenças Hereditárias do Metabolismo Centro Hospitalar Universitário do Porto Porto Portugal

Department of Biochemistry Assistance Publique Hôpitaux de Paris Bichat Hospital Paris France

Department of Clinical Genomics and Laboratory of Medical Pathology Mayo Clinic Rochester Minnesota USA

Department of Clinical Genomics Mayo Clinic Rochester Minnesota USA

Department of Development and Regeneration KU Leuven Leuven Belgium

Department of Metabolic Diseases JUMC Krakow and NSSU University Hospital Krakow Poland

Department of Paediatrics and Metabolic Center University Hospitals Leuven Leuven Belgium

Department of Paediatrics Otto von Guericke University Magdeburg Germany

Department of Pediatrics and Adolescent Medicine 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Pediatrics Congenital Metabolic Unit University Clinical Hospital of Santiago University of Santiago de Compostela IDIS CIBERER MetabERN Santiago de Compostela Spain

Group of Metabolism Biocruces Bizkaia Health Research Institute Linked Clinical Group of Rare Diseases CIBER Barakaldo Spain

Hemophilia Care Centre Hematology Unit Hôpital Necker Assistance Publique Hôpitaux de Paris Paris France

INSERM U1149 Centre de Recherche sur l'Inflammation and Université Paris 7 Denis Diderot Paris France

INSERM UMR1193 Mécanismes Cellulaires et Moléculaires de l'Adaptation au Stress et Cancérogenèse Université Paris Saclay Châtenay Malabry France

Medical Genetic Department King Faisal Specialist Hospital and Research Center Alfaisal University Riyadh Saudi Arabia

Metabolomics Expertise Center CCB VIB Leuven Belgium

Reference Center of Inherited Metabolic Diseases Necker Hospital APHP University Paris Descartes Filière G2M MetabERN Paris France

Reference Center of Liver Diseases Necker Hospital Assistance Publique Hôpitaux de Paris University Paris Descartes Paris France

Service d'Hématologie Biologique Hôpital Necker Assistance Publique Hôpitaux de Paris Université Paris Saclay Paris France

See more in PubMed

Pedersen PS, Tygstrup I. Congenital hepatic fibrosis combined with protein-losing enteropathy and recurrent thrombosis. Acta Paediatr Scand. 1980;69(4):571–574. PubMed

Pelletier VA, Galeano N, Brochu P, Morin CL, Weber AM, Roy CC. Secretory diarrhea with protein-losing enteropathy, enterocolitis cystica superficialis, intestinal lymphangiectasia, and congenital hepatic fibrosis: a new syndrome. J Pediatr. 1986;108(1):61–65. PubMed

Niehues R, Hasilik M, Alton G, et al. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J Clin Invest. 1998;101(7):1414–1420. PubMed PMC

Schollen E, Dorland L, de Koning TJ, et al. Genomic organization of the human phosphomannose isomerase (MPI) gene and mutation analysis in patients with congenital disorders of glycosylation type Ib (CDG-Ib). Hum Mutat. 2000;16(3):247–252. PubMed

Kjaergaard S, Westphal V, Davis J, Peterson S, Freeze H, Skovby F. Variable outcome and the effect of mannose in congenital disorder of glycosylation type Ib (CDG-Ib). J Inherit Metab Dis. 2000;23:77–85. PubMed

Vuillaumier-Barrot S Diagnostic moléc ulaire des anomalies congénitales de la glycosylation. Ann Biol Clin (Paris). 2005; 63(2):135–143. PubMed

Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213(4504):222–224. PubMed

Harms HK, Zimmer KP, Kurnik K, Bertele-Harms RM, Weidinger S, Reiter K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr. 2002;91(10):1065–1072. PubMed

Herman RH. Mannose metabolism. I Am J Clin Nutr. 1971;24(4):488–498. PubMed

Panneerselvam K, Freeze HH. Mannose enters mammalian cells using a specific transporter that is insensitive to glucose. J Biol Chem. 1996;271(16):9417–9421. PubMed

Fujita N, Tamura A, Higashidani A, Tonozuka T, Freeze HH, Nishikawa A. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells. FEBS J. 2008;275(4):788–798. PubMed

Ichikawa M, Scott DA, Losfeld ME, Freeze HH. The metabolic origins of mannose in glycoproteins. J Biol Chem. 2014;289(10):6751–6761. PubMed PMC

de Lonlay P, Seta N. The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta. 2009;1792(9):841–843. PubMed

Alton G, Hasilik M, Niehues R, et al. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology. 1998;8(3):285–295. PubMed

Rush JS, Panneerselvam K, Waechter CJ, Freeze HH. Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with congenital disorders of glycosylation (CDG). Glycobiology. 2000;10(8):829–835. PubMed

Chu J, Mir A, Gao N, et al. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation. Dis Model Mech. 2013;6(1):95–105. PubMed PMC

Schroeder AS, Kappler M, Bonfert M, Borggraefe I, Schoen C, Reiter K. Seizures and stupor during intravenous mannose therapy in a patient with CDG syndrome type 1b (MPI-CDG). J Inherit Metab Dis. 2010;33(suppl 3):S497–S502. PubMed

de la Fuente M, Penas PF, Sols A. Mechanism of mannose toxicity. Biochem Biophys Res Commun. 1986;140(1):51–55. PubMed

Freinkel N, Lewis NJ, Akazawa S, Roth SI, Gorman L. The honeybee syndrome—implications of the teratogenicity of mannose in rat-embryo culture. N Engl J Med. 1984;310(4):223–230. PubMed

Sols A, Cadenas E, Alvarado F. Enzymatic basis of mannose toxicity in honey bees. Science. 1960;131(3396):297–298. PubMed

DeRossi C, Bode L, Eklund EA, et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem. 2006;281(9):5916–5927. PubMed

Sharma V, Nayak J, DeRossi C, et al. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice. FASEB J. 2014a;28(4):1854–1869. PubMed PMC

Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun. 2014b;453(2):220–228. PubMed PMC

Altassan R, Peanne R, Jaeken J, et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. J Inherit Metab Dis. 2019;42(1):5–28. PubMed

Scottish Intercollegiate Guidelines Network. SIGN 50: A Guideline Developer’s Handbook. Edinburgh: Scottish Intercollegiate Guidelines Network; 2011.

Helander A, Jaeken J, Matthijs G, Eggertsen G. Asymptomatic phosphomannose isomerase deficiency (MPI-CDG) initially mistaken for excessive alcohol consumption. Clin Chim Acta. 2014;431:15–18. PubMed

Deeb A, Al Amoodi A. A novel homozygous mutation in the mannose phosphate isomerase gene causing congenital disorder of glycation and hyperinsulinemic hypoglycemia in an infant. Clin Case Rep. 2018;6(3):479–483. PubMed PMC

Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic. J Pediatr Gastroenterol Nutr. 2004;38(3):282–287. PubMed

Jaeken J, Matthijs G, Saudubray JM, et al. Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation. Am J Hum Genet. 1998;62(6):1535–1539. PubMed PMC

Marques-da-Silva D, Dos Reis FV, Monticelli M, et al. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis. 2017;40(2):195–207. PubMed

Witters P, Cassiman D, Morava E. Nutritional therapies in congenital disorders of glycosylation (CDG). Nutrients. 2017;9(11):E1222 10.3390/nu9111222. PubMed DOI PMC

de Lonlay P, Cuer M, Vuillaumier-Barrot S, et al. Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: a new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose. J Pediatr. 1999;135(3):379–383. PubMed

Janssen MC, de Kleine RH, van den Berg AP, et al. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics. 2014;134(1):e279–e283. PubMed

Liem YS, Bode L, Freeze HH, Leebeek FW, Zandbergen AA, Paul Wilson J. Using heparin therapy to reverse protein-losing enteropathy in a patient with CDG-Ib. Nat Clin Pract Gastroenterol Hepatol. 2008;5(4):220–224. PubMed

van Diggelen OP, Maat-Kievit J, de Klerk JBC, et al. Two more Dutch cases of CDG syndrome 1b: phosphomannose isomerase deficiency. J Inherit Metab Dis. 1998;21(Suppl 2):97.

Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol Genet Metab. 2001;73(1):77–85. PubMed

Babovic-Vuksanovic D, Patterson MC, Schwenk WF, et al. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr. 1999;135(6):775–781. PubMed

Penel-Capelle D, Dobbelaere D, Jaeken J, Klein A, Cartigny M, Weill J. Congenital disorder of glycosylation Ib (CDG-Ib) without gastrointestinal symptoms. J Inherit Metab Dis. 2003;26(1):83–85. PubMed

Adamowicz M, Matthijs G, van Schaftingen E, et al. New case of phosphomannose isomerase deficiency (CDG 1b). J Inherit Metab Dis. 2000;23(Suppl I):184.

de Koning TJ, Dorland L, van Diggelen OP, et al. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency. Biochem Biophys Res Commun. 1998;245(1):38–42. PubMed

de Koning TJ, Nikkels PG, Dorland L, et al. Congenital hepatic fibrosis in 3 siblings with phosphomannose isomerase deficiency. Virchows Arch. 2000;437(1):101–105. PubMed

de Lonlay P, Seta N, Barrot S, et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet. 2001;38(1):14–19. PubMed PMC

Hendriksz CJ, McClean P, Henderson MJ, et al. Successful treatment of carbohydrate deficient glycoprotein syndrome type 1b with oral mannose. Arch Dis Child. 2001;85(4):339–340. PubMed PMC

Iancu TC, Mahajnah M, Manov I, Cherurg S, Knopf C, Mandel H. The liver in congenital disorders of glycosylation: ultrastructural features. Ultrastruct Pathol. 2007;31(3):189–197. PubMed

Kelly DF, Boneh A, Pitsch S, et al. Carbohydrate-deficient glycoprotein syndrome 1b: a new answer to an old diagnostic dilemma. J Paediatr Child Health. 2001;37(5):510–512. PubMed

Mention K, Lacaille F, Valayannopoulos V, et al. Development of liver disease despite mannose treatment in two patients with CDG-Ib. Mol Genet Metab. 2008;93(1):40–43. PubMed

Schwarzenberg SJ. Congenital hepatic fibrosis-is it really a matter of “a spoonful of sugar?”. Hepatology. 1999;30(2):582–583. PubMed

Zentilin Boyer M, de Lonlay P, Seta N, et al. Failure to thrive and intestinal diseases in congenital disorders of glycosylation. Arch Pediatr. 2003;10(7):590–595. PubMed

de la Morena-Barrio ME, Wypasek E, Owczarek D, et al. MPI-CDG with transient hypoglycosylation and antithrombin deficiency. Haematologica. 2019;104(2):e79–e82. PubMed PMC

Martin Hernandez E, Vega Pajares AI, Perez Gonzalez B, et al. Congenital disorder of glycosylation type 1b. Experience with mannose treatment. An Pediatr (Barc). 2008;69(4):358–365. PubMed

Oren A, Houwen RH. Phosphomannoseisomerase deficiency as the cause of protein-losing enteropathy and congenital liver fibrosis. J Pediatr Gastroenterol Nutr. 1999;29(2):231–232. PubMed

Herfarth H, Hofstadter F, Feuerbach S, Jurgen Schlitt H, Scholmerich J, Rogler G. A case of recurrent gastrointestinal bleeding and protein-losing gastroenteropathy. Nat Clin Pract Gastroenterol Hepatol. 2007;4(5):288–293. PubMed

Bode L, Eklund EA, Murch S, Freeze HH. Heparan sulphate depletion amplifies TNF-alpha-induced protein leakage in an in vitro model of protein-losing enteropathy. Am J Physiol Gastrointest Liver Physiol. 2005;288(5):G1015–G1023. PubMed

Bode L, Freeze HH. Applied glycoproteomics–approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta. 2006;1760(4):547–559. PubMed

Bode L, Murch S, Freeze HH. Heparan sulfate plays a central role in a dynamic in vitro model of protein-losing enteropathy. J Biol Chem. 2006;281(12):7809–7815. PubMed

Ackermann AM, Freeze HH, Ficicioglu C, Kaestner KH, Stanley CA. Hypoglycemia due to lower threshold of glucosestimulated insulin secretion in phosphoglucomutase 1 deficiency. Annual Meeting of the Pediatric Academic Societies: (2015). April 25-28, 2015; San Diego, CA.

Wong SY, Beamer LJ, Gadomski T, et al. Defining the phenotype and assessing severity in phosphoglucomutase-1 deficiency. J Pediatr. 2016;175(130–6):e8. PubMed

Zeevaert R, Scalais E, Muino Mosquera L, et al. PGM1 deficiency diagnosed during an endocrine work-up of low IGF-1 mediated growth failure. Acta Clin Belg. 2016;71(6):435–437. PubMed

Bohles H, Sewell AA, Gebhardt B, Reinecke-Luthge A, Kloppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia–leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis. 2001;24(8):858–862. PubMed

Jain V, Menon RK. Disorders of carbohydrate metabolism In: Gleason CJS, ed. Avery’s Diseases of the Newborn. 9th ed. hiladelphia, PA: Elsevier; 2018:1320–1329.

Cabezas OR, Flanagan SE, Stanescu H, et al. Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter mutation in phosphomannomutase 2. JASN. 2017;28(8):2529–2539. PubMed PMC

Miller BS, Khosravi MJ, Patterson MC, Conover CA. IGF system in children with congenital disorders of glycosylation. Clin Endocrinol (Oxf). 2009;70(6):892–897. PubMed

Thornton PS, Stanley CA, De Leon DD, et al. Recommendations from the pediatric endocrine society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J Pediatr. 2015;167(2):238–245. PubMed

Yorifuji T, Horikawa R, Hasegawa T, et al. Clinical practice guidelines for congenital hyperinsulinism. Clin Pediatr Endocrinol. 2017;26(3):127–152. PubMed PMC

Tamminga RY, Lefeber DJ, Kamps WA, van Spronsen FJ. Recurrent thrombo-embolism in a child with a congenital disorder of glycosylation (CDG) type Ib and treatment with mannose. Pediatr Hematol Oncol. 2008;25(8):762–768. PubMed

Van Geet C, Jaeken J. A unique pattern of coagulation abnormalities in carbohydrate-deficient glycoprotein syndrome. Pediatr Res. 1993;33(5):540–541. PubMed

Young G, Driscoll MC. Coagulation abnormalities in the carbohydrate-deficient glycoprotein syndrome: case report and review of the literature. Am J Hematol. 1999;60(1):66–69. PubMed

Van Geet C, Jaeken J, Freson K, et al. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications. J Inherit Metab Dis. 2001;24(4):477–492. PubMed

Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149(2):315–352. PubMed

Monagle P, Chan AKC, Goldenberg NA, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 suppl):e737S–e801S. PubMed PMC

Meaudre E, Meyrieux V, Suprano I, Camboulives J, Paut O. Anesthesia considerations in carbohydrate-deficient glycoprotein syndrome type I. Paediatr Anaesth. 2005;15(10):905–906. PubMed

Freeze HH. New diagnosis and treatment of congenital hepatic fibrosis. J Pediatr Gastroenterol Nutr. 1999;29(1):104–106. PubMed

Hertz-Pannier L, Dechaux M, Sinico M, et al. Congenital disorders of glycosylation type I: a rare but new cause of hyperechoic kidneys in infants and children due to early microcystic changes. Pediatr Radiol. 2006;36(2):108–114. PubMed

Barone R, Fiumara A, Jaeken J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin Neurol. 2014;34(3):357–366. PubMed

Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144(2–3):245–247. PubMed

Aoki H, Shiomi M, Ikeda T, et al. Decreased sialylation of IgA1 O-glycans associated with pneumococcal hemolytic uremic syndrome. Pediatr Int. 2013;55(6):e143–e145. PubMed

Zuhlsdorf A, Park JH, Wada Y, et al. Transferrin variants: pitfalls in the diagnostics of congenital disorders of glycosylation. Clin Biochem. 2015;48(1–2):11–13. PubMed

Jaeken J, Lefeber D, Matthijs G. Clinical utility gene card for: phosphomannose isomerase deficiency. Eur J Hum Genet. 2014;22(9):e1–e3. 10.1038/ejhg.2014.29. PubMed DOI PMC

Helander A, Bergstrom J, Freeze HH. Testing for congenital disorders of glycosylation by HPLC measurement of serum transferrin glycoforms. Clin Chem. 2004;50(5):954–958. PubMed

Parente F, Ah Mew N, Jaeken J, Gilfix BM. A new capillary zone electrophoresis method for the screening of congenital disorders of glycosylation (CDG). Clin Chim Acta. 2010;411(1–2):64–66. PubMed

Quintana E, Montero R, Casado M, et al. Comparison between high performance liquid chromatography and capillary zone electrophoresis for the diagnosis of congenital disorders of glycosylation. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(24):2513–2518. PubMed

Schollen E, Martens K, Geuzens E, Matthijs G. DHPLC analysis as a platform for molecular diagnosis of congenital disorders of glycosylation (CDG). Eur J Hum Genet. 2002;10(10):643–648. PubMed

Helander A, Wielders J, Anton R, et al. Standardisation and use of the alcohol biomarker carbohydrate-deficient transferrin (CDT). Clin Chim Acta. 2016;459:19–24. PubMed

Seta N, Barnier A, Hochedez F, Besnard MA, Durand G. Diagnostic value of Western blotting in carbohydrate-deficient glycoprotein syndrome. Clin Chim Acta. 1996;254(2):131–140. PubMed

Mills K, Mills P, Jackson M, et al. Diagnosis of congenital disorders of glycosylation type-I using protein chip technology. Proteomics. 2006;6(7):2295–2304. PubMed

van Scherpenzeel M, Steenbergen G, Morava E, Wevers RA, Lefeber DJ. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation. Transl Res. 2015;166(6):639–649.e1. PubMed

He P, Ng BG, Losfeld ME, Zhu W, Freeze HH. Identification of intercellular cell adhesion molecule 1 (ICAM-1) as a hypoglycosylation marker in congenital disorders of glycosylation cells. J Biol Chem. 2012;287(22):18210–18217. PubMed PMC

He P, Srikrishna G, Freeze HH. N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response. Glycobiology. 2014;24(4):392–398. PubMed PMC

Jackson M, Clayton P, Grunewald S, et al. Elevation of plasma aspartylglucosaminidase is a useful marker for the congenital disorders of glycosylation type I (CDG I). J Inherit Metab Dis. 2005;28(6):1197–1198. PubMed

Zhang W, James PM, Ng BG, et al. A novel N-yetrasaccharide in patients with congenital disorders of glycosylation, including asparagine-linked glycosylation protein 1, phosphomannomutase 2, and mannose phosphate isomerase deficiencies. Clin Chem. 2016;62(1):208–217. PubMed PMC

Li Y, Ogata Y, Freeze HH, Scott CR, Turecek F, Gelb MH. Affinity capture and elution/electrospray ionization mass spectrometry assay of phosphomannomutase and phosphomannose isomerase for the multiplex analysis of congenital disorders of glycosylation types Ia and Ib. Anal Chem. 2003;75(1):42–48. PubMed

Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 1995;377(3):318–320. PubMed

Cleasby A, Wonacott A, Skarzynski T, et al. The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat Struct Biol. 1996;3(5):470–479. PubMed

Haeuptle MA, Hennet T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat. 2009;30(12):1628–1641. PubMed

Vuillaumier-Barrot S, Isidor B, Dupre T, Le Bizec C, David A, Seta N. Expanding the Spectrum of PMM2-CDG phenotype. JIMD Rep. 2012;5:123–125. PubMed PMC

Brasil S, Pascoal C, Francisco R, et al. CDG therapies: from bench to bedside. Int J Mol Sci. 2018;19(5). 10.3390/ijms19051304 PubMed DOI PMC

de Koning TJ, Dorland L, van Berge Henegouwen GP. Phosphomannose isomerase deficiency as a cause of congenital hepatic fibrosis and protein-losing enteropathy. J Hepatol. 1999;31(3):557–560. PubMed

Etchison JR, Freeze HH. Enzymatic assay of D-mannose in serum. Clin Chem. 1997;43(3):533–538. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...