Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P30 NS076408
NINDS NIH HHS - United States
P41 EB027061
NIBIB NIH HHS - United States
KL2 TR000113
NCATS NIH HHS - United States
UL1 TR002494
NCATS NIH HHS - United States
UL1 TR000114
NCATS NIH HHS - United States
KL2 TR002492
NCATS NIH HHS - United States
S10 OD017974
NIH HHS - United States
P41 EB015894
NIBIB NIH HHS - United States
PubMed
32272373
PubMed Central
PMC7139162
DOI
10.1016/j.nicl.2020.102234
PII: S2213-1582(20)30071-1
Knihovny.cz E-resources
- Keywords
- Adiabatic pulses, DTI, Multiple sclerosis, Rotating frame relaxation MRI, T1w/T2w ratio,
- MeSH
- White Matter diagnostic imaging pathology MeSH
- Adult MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain pathology MeSH
- Neuroimaging methods MeSH
- Cross-Sectional Studies MeSH
- Multiple Sclerosis, Relapsing-Remitting diagnostic imaging pathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Even though MRI visualization of white matter lesions is pivotal for the diagnosis and management of multiple sclerosis (MS), the issue of detecting diffuse brain tissue damage beyond the apparent T2-hyperintense lesions continues to spark considerable interest. Motivated by the notion that rotating frame MRI methods are sensitive to slow motional regimes critical for tissue characterization, here we utilized novel imaging protocols of rotating frame MRI on a clinical 3 Tesla platform, including adiabatic longitudinal, T1ρ, and transverse, T2ρ, relaxation methods, and Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank 4 (RAFF4), in 10 relapsing-remitting multiple sclerosis patients and 10 sex- and age-matched healthy controls. T1ρ, T2ρ and RAFF4 relaxograms extracted from the whole white matter exhibited a significant shift towards longer relaxation time constants in MS patients as compared to controls. T1ρ and RAFF4 detected alterations even when considering only regions of normally appearing white matter (NAWM), while other MRI metrics such as T1w/T2w ratio and diffusion tensor imaging measures failed to find group differences. In addition, RAFF4, T2ρ and, to a lesser extent, T1ρ showed differences in subcortical grey matter structures, mainly hippocampus, whereas no functional changes in this region were detected in resting-state functional MRI metrics. We conclude that rotating frame MRI techniques are exceptionally sensitive methods for the detection of subtle abnormalities not only in NAWM, but also in deep grey matter in MS, where they surpass even highly sensitive measures of functional changes, which are often suggested to precede detectable structural alterations. Such abnormalities are consistent with a wide spectrum of different, but interconnected pathological features of MS, including the loss of neuronal cells and their axons, decreased levels of myelin even in NAWM, and altered iron content.
Department of Applied Physics University of Eastern Finland Kuopio Finland
Department of Neurology School of Medicine University of Minnesota Minneapolis MN USA
Department of Pediatrics University of Minnesota Minneapolis MN USA
See more in PubMed
Andersson J.L.R., Skare S., Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870–888. PubMed
Andersson J.L.R., Stamatios N S. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078. PubMed PMC
Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 2002;15(3):239–245. PubMed
Battaglini M., Jenkinson M., Stefano Nde. Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum. Brain Mapp. 2012;33(9):2062–2071. PubMed PMC
Beer A., Biberacher V., Schmidt P., Righart R., Buck D., Berthele A., Kirschke J., Zimmer C., Hemmer B., Mühlau M. Tissue damage within normal appearing white matter in early multiple sclerosis: assessment by the ratio of T1-and T2-Weighted MR image intensity. J. Neurol. 2016;263(8):1495–1502. PubMed
Burgetova A., Seidl Z., Krasensky J., Horakova D., Vaneckova M. Multiple sclerosis and the accumulation of iron in the basal ganglia: quantitative assessment of brain iron using MRI T2 relaxometry. Eur. Neurol. 2010;63(3):136–143. PubMed
Cercignani M., Bozzali M., Iannucci G., Comi G., Filippi M. Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2001;70(3):311–317. PubMed PMC
Cercignani M., Wheeler‐Kingshott C.G. From Micro- to Macro-Structures in multiple sclerosis: what is the added value of diffusion imaging. NMR Biomed. 2019;32:e3888. PubMed
Chen X., Zhang J., Kong D., Chen W., Zheng J. Abnormal intrinsic functional hubs in Relapsing- Remitting Multiple sclerosis: evidence from a voxel-wise degree centrality analysis. Neuropsychiatry. 2018;8(2):448–459.
Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996;29(3):162–173. PubMed
Crespy L., Zaaraoui W., Lemaire M., Rico A., Faivre A., Reuter F., Malikova I., Confort-Gouny S., Cozzone P.J., Pelletier J. Prevalence of grey matter pathology in early multiple sclerosis assessed by magnetization transfer ratio imaging. PLoS One. 2011;6(9):e24969. PubMed PMC
Dortch RD., Harkins KD., Juttukonda MR., Gore JC., Does MD. Characterizing inter-compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy. Magn. Reson. Med. 2013;70(5):1450–1459. PubMed PMC
Faivre A., Robinet E., Guye M., Rousseau C., Maarouf A., Troter Ale, Zaaraoui W. Depletion of brain functional connectivity enhancement leads to disability progression in multiple sclerosis: a longitudinal resting-state FMRI study. Multiple Sclerosis J. 2016;22(13):1695–1708. PubMed
Filippi M., Rocca M.A., Martino G., Horsfield M.A., Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 1998;43(6):809–814. PubMed
Filippi M., Rocca MA., Ciccarelli O., Stefano Nde, Evangelou N., Kappos L., Rovira A., Sastre-Garriga J., Tintorè M., Frederiksen JL. MRI criteria for the diagnosis of multiple sclerosis: magnims consensus guidelines. Lancet Neurol. 2016;15(3):292–303. PubMed PMC
Garwood M., DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary nmr. J. Magn. Reson. 2001;153(2):155–177. PubMed
Giannetti P., Politis M., Su P., Turkheimer F.E., Malik O., Keihaninejad S., Wu K., Waldman A., Reynolds R., Nicholas R. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain. 2014;138(1):110–119. PubMed PMC
Glasser MF., Sotiropoulos SN., Anthony Wilson J., Coalson TS., Fischl B., Andersson JL., Xu J., Jbabdi S., Webster M., Polimeni JR. The minimal preprocessing pipelines for the human connectome project. Neuroimage. 2013;80:105–124. PubMed PMC
Glasser MF., Essen DC.V. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-Weighted MRI. J. Neurosci. 2011;31(32):11597–11616. PubMed PMC
Gracien R.-.M., Reitz SC., Hof S.M., Fleischer V., Zimmermann H., Droby A., Steinmetz H., Zipp F., Deichmann R., Klein JC. Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex. Eur. Radiol. 2016;26(8):2578–2586. PubMed
Green AJ., Gelfand JM., Cree BA., Bevan C., John Boscardin W., Mei F., Inman J., Arnow S., Devereux M., Abounasr A. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet. 2017;390(10111):2481–2489. PubMed
Hakkarainen H., Sierra A., Mangia S., Garwood M., Michaeli S., Gröhn O., Liimatainen T. MRI relaxation in the presence of fictitious fields correlates with myelin content in normal rat brain. Magn. Reson. Med. 2016;75(1):161–168. PubMed PMC
Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–841. PubMed
Jenkinson M., Beckmann CF., Behrens T.E.J., Woolrich MW., Smith SM. Fsl. Neuroimage. 2012;62(2):782–790. PubMed
Kutzelnigg A., Lucchinetti CF., Stadelmann C., Brück W., Rauschka H., Bergmann M., Schmidbauer M., Parisi JE., Lassmann H. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(11):2705–2712. PubMed
Langkammer C., Krebs N., Goessler W., Scheurer E., Ebner F., Yen K., Fazekas F., Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology. 2010;257(2):455–462. PubMed
Levitt MH., Freeman R., Frenkiel T. Broadband heteronuclear decoupling. J. Magn. Reson. 1982;47(2):328–330. 1969.
Liimatainen T., Laakso H., Idiyatullin D., Mangia S., Michaeli S. Capturing exchange using periodic radiofrequency irradiation. J. Magn. Reson. 2018;296(November):79–84. PubMed PMC
Liimatainen T., Sierra A., Hanson T., Sorce D.J., Ylä-Herttuala S., Garwood M., Michaeli S., Gröhn O. Glioma cell density in a rat gene therapy model gauged by water relaxation rate along a fictitious magnetic field. Magn. Reson. Med. 2012;67(1):269–277. PubMed PMC
Liimatainen T., Sorce DJ., O’Connell R., Garwood M., Michaeli S. MRI contrast from relaxation along a fictitious field (RAFF) Magn. Reson. Med. 2010;64(4):983–994. PubMed PMC
Lukes S.A., Crooks L.E., Aminoff M.J., Kaufman L., Panitch H.S., Mills C., Norman D. Nuclear magnetic resonance imaging in multiple sclerosis. Ann. Neurol. 1983;13(6):592–601. PubMed
Mangia S., Carpenter AF., Tyan AE., Eberly LE., Garwood M., Michaeli S. Magnetization transfer and adiabatic T1ρ MRI reveal abnormalities in normal-appearing white matter of subjects with multiple sclerosis. Multiple Scler. J. 2014;20(8):1066–1073. PubMed PMC
Mangia S., Liimatainen T., Garwood M., Michaeli S. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T. Magn. Reson. Imaging. 2009;27(8):1074–1087. PubMed PMC
Mangia S., Svatkova A., Mascali D., Nissi M.J., Burton P.C., Bednarik P., Auerbach E.J., Giove F., Eberly L.E., Howell M.J. Multi-Modal brain MRI in subjects with PD and IRBD. Front. Neurosci. 2017;11:709. PubMed PMC
McCreary CR., Bjarnason TA., Skihar V., Ross Mitchell J., Wee Yong V., Dunn JF. Multiexponential T2 and magnetization transfer mri of demyelination and remyelination in murine spinal cord. Neuroimage. 2009;45(4):1173–1182. PubMed PMC
Michaeli S., Burns TC., Kudishevich E., Harel N., Hanson T., Sorce DJ., Garwood M., Low WC. Detection of neuronal loss using T1ρ MRI assessment of 1H2O spin dynamics in the aphakia mouse. J. Neurosci. Methods. 2009;177(1):160–167. PubMed PMC
Michaeli S., Oez G., Sorce D.J., Garwood M., Ugurbil K., Majestic S., Tuite P. Assessment of brain iron and neuronal integrity in patients with parkinson’s disease using novel MRI contrasts. Mov. Disord. 2007;22(3):334–340. PubMed
Michaeli S., Sorce DJ., Idiyatullin D., Ugurbil K., Garwood M. Transverse relaxation in the rotating frame induced by chemical exchange. J. Magn. Reson. 2004;169(2):293–299. PubMed
Michaeli S., Sorce DJ., Jr CS.S, Ugurbil K., Garwood M. T1ρ MRI contrast in the human brain: modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse. J. Magn. Reson. 2006;181(1):135–147. PubMed
Mitsumori F., Watanabe H., Takaya N. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7 t. Magn. Res. Med. 2009;62(5):1326–1330. PubMed
Moll NM., Rietsch AM., Thomas S., Ransohoff AJ., Lee J.‐.C., Fox R., Chang A., Ransohoff RM., Fisher E. Multiple sclerosis normal‐appearing white matter: pathology – Imaging correlations. Ann. Neurol. 2011;70(5):764–773. PubMed PMC
Mottershead J.P., Schmierer K., Clemence M., Thornton J.S., Scaravilli F., Barker G.J., Tofts P.S., Newcombe J., Cuzner M.L., Ordidge R.J. High field MRI correlates of myelin content and axonal density in multiple sclerosis. J. Neurol. 2003;250(11):1293–1301. PubMed
Nestrasil I., Michaeli S., Liimatainen T., Rydeen C.E., Kotz C.M., Nixon J.P., Hanson T., Tuite PJ. T 1ρ and T 2ρ MRI in the evaluation of Parkinson’s disease. J. Neurol. 2010;257(6):964–968. PubMed PMC
Polman CH., Reingold SC., Banwell B., Clanet M., Cohen JA., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L. Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria. Ann. Neurol. 2011;69(2):292–302. PubMed PMC
Rae-Grant A., Day GS., Marrie R.A., Rabinstein A., AC Cree B., Gronseth GS., Haboubi M., Halper J., Hosey JP., Jones DE. Practice guideline recommendations summary: disease-Modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology. 2018;90(17):777–788. PubMed
Reuter M., Diana Rosas H., Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53(4):1181–1196. PubMed PMC
Rocca MA., Valsasina P., Meani A., Falini A., Comi G., Filippi M. Impaired functional integration in multiple sclerosis: a graph theory study. Brain Struct. Funct. 2016;221(1):115–131. PubMed
Ropele S., Fazekas F. Magnetization transfer MR imaging in multiple sclerosis. Neuroimaging Clin. 2009;19(1):27–36. PubMed
Salimi-Khorshidi G., Douaud G., Beckmann C.F., Glasser MF., Griffanti L., Smith SM. “Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.”. Neuroimage. 2014;90:449–468. PubMed PMC
Sarchielli P., Presciutti O., Tarducci R., Gobbi G., Alberti A., Pelliccioli G.P., Chiarini P., Gallai V. Localized 1 h magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J. Neurol. 2002;249(7):902–910. PubMed
Satzer D., DiBartolomeo C., Ritchie M.M., Storino C., Liimatainen T., Hakkarainen H., Idiyatullin D., Mangia S., Michaeli S., Parr AM. Assessment of dysmyelination with RAFFn MRI: application to murine MPS I. PLoS One. 2015;10(2) PubMed PMC
Schmierer K., Scaravilli F., Altmann D.R., Barker GJ., Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann. Neurol. 2004;56(3):407–415. PubMed
Schmithorst VJ., Wilke M., Dardzinski BJ., Holland SK. Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor mr imaging study. Radiology. 2002;222(1):212–218. PubMed PMC
Sierra A., Michaeli S., Niskanen J.-.P., Valonen P.K., Gröhn H.I., Ylä-Herttuala S., Garwood M., Gröhn OH. Water spin dynamics during apoptotic cell death in glioma gene therapy probed by T1ρ and T2ρ. Magn. Reson. Med. 2008;59(6):1311–1319. PubMed PMC
Silver M.S., Joseph R.I., H.oult D.I. Highly selective Π2 and π pulse generation. J. Magn. Reson. 1984;59(2):347–351. (1969)
Smith SM., Beckmann CF., Andersson J., Auerbach EJ., Bijsterbosch J., Douaud G., Duff E., Feinberg DA., Griffanti L., Harms MP. Resting-State FMRI in the human connectome project. Neuroimage. 2013;80:144–168. PubMed PMC
Stephenson E., Nathoo N., Mahjoub Y., Dunn J.F., Wee Yong V. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 2014;10(8):459. PubMed
Tartaglia M.C., Narayanan S., De Stefano N., Arnaoutelis R., Antel S.B., Francis S.J., Santos A.C., Lapierre Y., Arnold D.L. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J. Neurol. 2002;249(10):1382–1390. PubMed
Torkildsen Ø., Myhr K.-.M., Bø L. Disease-Modifying treatments for multiple sclerosis – a review of approved medications. Eur. J. Neurol. 2016;23(S1):18–27. PubMed PMC
Traboulsee A., Dehmeshki J., Peters KR., Griffin C.M., Brex P.A., Silver N., Ciccarrelli O., Chard D.T., Barker G.J., Thompson A.J. Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Multiple Scler. J. 2003;9(6):566–573. PubMed
Uddin MdN, Figley T.D., Ann Marrie R., Figley CR. “Can T1w/T2w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-Based T1w/T2w ratios, GRASE-Based T1w/T2w ratios and multi-echo GRASE-Based myelin water fractions.”. NMR Biomed. 2018;31(3):e3868. PubMed
Wattjes MP., Rovira À., Miller D., Yousry TA., Sormani MP., Stefano Nde, Tintoré M., Auger C., Tur C., Filippi M. Evidence-based guidelines: magnims consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat. Rev. Neurol. 2015;11(10):597. PubMed
Werring D.J., Brassat D., Droogan A.G., Clark C.A., Symms M.R., Barker G.J., MacManus D.G., Thompson A.J., Miller D.H. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain. 2000;123(Pt 8):1667–1676. PubMed
Wiggermann V., Torres E.H., Vavasour I.M., Wayne Moore G.R., Laule C., MacKay AL., B. Li DK., Traboulsee A., Rauscher A. Magnetic resonance frequency shifts during acute ms lesion formation. Neurology. 2013;81(3):211–218. PubMed PMC
Wuerfel J., Bellmann-Strobl J., Brunecker P., Aktas O., McFarland H., Villringer A., Zipp F. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain: A Journal of Neurology. 2004;127(Pt 1):111–119. PubMed
Yarnykh VL. Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement. Magn. Reson. Med. 2012;68(1):166–178. PubMed PMC
Yarnykh VL., Bowen JD., Samsonov A., Repovic P., Mayadev A., Qian P., Gangadharan B., Keogh BP., Maravilla KR., Henson LK.J. Fast whole-brain three-dimensional macromolecular proton fraction mapping in multiple sclerosis. Radiology. 2014;274(1):210–220. PubMed PMC
Young I.R., Hall A.S., Pallis C.A., Legg N.J., Bydder G.M., Steiner R.E. Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet. 1981;2(8255):1063–1066. PubMed
Sleep quality and the integrity of ascending reticular activating system - A multimodal MRI study
Distance from main arteries influences microstructural and functional brain tissue characteristics
Utility of quantitative MRI metrics in brain ageing research