• This record comes from PubMed

SoilTemp: A global database of near-surface temperature

. 2020 Nov ; 26 (11) : 6616-6629. [epub] 20200624

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
12P1819N Fonds Wetenschappelijk Onderzoek
WOG W001919N Fonds Wetenschappelijk Onderzoek
EVK2-CT-2000-0006 European Union FP-5 project GLORIA-Europe
Swiss MAVA Foundation project
Swiss Federal Office for the Environment (FOEN); Foundation Dr. Joachim de Giacomi
Research Commission and Staff of the Swiss National Park
W47014118 Flexible Pool project
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
University of Alcalá
Fondation Mariétan, Société académique de Genève
Swiss Federal Office of Education and Science
17-13998S Czech Science Foundation
17-07378S Czech Science Foundation
20-05840Y Czech Science Foundation
17-19376S Czech Science Foundation
RVO 67985939 Czech Academy of Sciences
PRG609 Estonian Research Council
European Regional Development Fund
DFG GraKo 2010 Response
QUEX-CAS-QP-RD-18/19 Qatar Petroleum
Ministry of Education and Science of Ukraine
Toward INMS
VEGA 2/0132/18 Slovak Scientific Grant Agency
Lund University
University of Helsinki
LTAUSA19137 Ministry of Education, Youth and Sport of the Czech Republic, program Inter-Excellence, subprogram Inter-Action
LTAUSA18007 Ministry of Education, Youth and Sport of the Czech Republic, program Inter-Excellence, subprogram Inter-Action
CF16-0896 Carlsberg Foundation
17523 Villum Foundation
FZT 118 German Research Foundation
641918 EU Horizon 2020
NE/L002558/1 Natural Environmental Research Council
NE/M016323/1 Natural Environmental Research Council
NE/M016323/1 UK Natural Environmental Research Council ShrubTundra
INTER-TRANSFER LTT17017 Ministry of Education, Youth and Sports of the Czech Republic
MONB00363 National Institute of Food and Agriculture
2017-70006-27272 National Institute of Food and Agriculture
Slovak Research and Development Agency
9480-14 National Geographic Society
WW-240R-17 National Geographic Society
262064 Research Council of Norway
ABI-1759965 National Science Foundation
EF-1802605 National Science Foundation
Leverhulme Trust Research Fellowship
41971124 National Natural Science Foundation of China
Mendel University
Ministry of Youth and Sports of the Czech Republic
Ministry of Research and Innovation
19-04-01234-a RFBR
ANR-19-CE32-0005-01 Agence Nationale de la Recherche (ANR)
172198 Swiss National Science Foundation - Switzerland
ERC-2562013-SyG-610028 European Research Council - International

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.

A Borza Botanical Garden and Department of Taxonomy and Ecology Faculty of Biology and Geology Babeș Bolyai University Cluj Napoca Romania

A Borza Botanical Garden Babes Bolyai University Cluj Napoca Romania

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Alfred Wegener Institute Helmholtz Center for Polar and Marine Research Potsdam Germany

ARAID Research and Development Zaragoza Spain

Asian School of Environment Nanyang Technological University Singapore Singapore

Australian Museum Sydney NSW Australia

Bioclimatology University of Goettingen Göttingen Germany

Biodiversity and Landscape TERRA Research Centre University of Liège Gembloux Agro Bio Tech Gembloux Belgium

Biological and Environmental Sciences Faculty of Natural Sciences University of Stirling Stirling UK

Centre for Sustainable Ecosystem Solutions School of Biological Sciences University of Wollongong Wollongong NSW Australia

Centre for Sustainable Ecosystem Solutions School of Earth Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia

Chair of Soil Science and Geomorphology Department of Geosciences University of Tuebingen Tuebingen Germany

CIRAD UMR Eco and Sols Dakar Senegal

Climate Change Unit Environmental Protection Agency of Aosta Valley Aosta Italy

Climate Impacts Research Centre Department of Ecology and Environmental Sciences Umeå University Abisko Sweden

CNR Institute for Mediterranean Agricultural and Forest Systems Ercolano Italy

County Administrative Board of Västra Götaland Gothenburg Sweden

Dartmouth College Hanover NH USA

Department of Biological and Environmental Sciences Qatar University Doha Qatar

Department of Biological Sciences and Bjerknes Centre for Climate Research University of Bergen Bergen Norway

Department of Biological Sciences and the Environmental Change Initiative University of Notre Dame Notre Dame IN USA

Department of Biological Sciences University of Notre Dame Notre Dame IN USA

Department of Biology and Ecology Center Utah State University Logan UT USA

Department of Biology Norwegian University of Science and Technology Trondheim Norway

Department of Bioscience and Arctic Research Centre Rønde Denmark

Department of Botany University of Granada Granada Spain

Department of Chemistry Life Sciences and Environmental Sustainability University of Parma Parma Italy

Department of Earth and Environmental Sciences Leuven Belgium

Department of Earth Sciences University of Gothenburg Gothenburg Sweden

Department of Ecology Environment and Plant Sciences and Bolin Centre for Climate Research Stockholm University Stockholm Sweden

Department of Environmental Science Policy and Management University of California Berkeley Berkeley CA USA

Department of Environmental Systems Science ETH Zurich Zurich Switzerland

Department of Forest Botany Dendrology and Geobiocoenology Mendel University Brno Czech Republic

Department of Forestry and NR H N B Garhwal University Srinagar Garhwal India

Department of Geo information in Environmental Management Mediterranean Agronomic Institute of Chania Chania Greece

Department of Geography and Earth Sciences Aberystwyth University Wales UK

Department of Geography Masaryk University Brno Czech Republic

Department of Geography York St John University York UK

Department of Geology Geography and Environment University of Alcalá Madrid Spain

Department of Geosciences and Geography University of Helsinki Helsinki Finland

Department of Land Resources and Environmental Sciences Montana State University Bozeman MT USA

Department of Life Sciences Imperial College London Ascot UK

Department of Natural History NTNU University Museum Norwegian University of Science and Technology Trondheim Norway

Department of Physical Geography and Ecosystem Science Lund University Lund Sweden

Department of Science and High Technology Insubria University Como Italy

Department of Theoretical and Applied Sciences Insubria University Varese Italy

Department of Wildlife Ecology and Conservation University of Florida Gainesville FL USA

Eco and Sols Univ Montpellier CIRAD INRAE IRD Institut Agro Montpellier France

Ecological Plant Geography Faculty of Geography University of Marburg Marburg Germany

Environment and Sustainability Institute University of Exeter Penryn UK

Environmental Science Center Qatar University Doha Qatar

EnvixLab Dipartimento di Bioscienze e Territorio Università degli Studi del Molise Termoli Italy

Experimental Plant Ecology Institute of Botany and Landscape Ecology University of Greifswald Greifswald Germany

Facultad de Ciencias Exactas y Naturales Universidad Nacional de Cuyo Cuyo Argentina

Faculty of Arts and Sciences Department of Molecular Biology and Genetics Ordu University Ordu Turkey

Faculty of Biology University of Duisburg Essen Essen Germany

Faculty of Ecology and Environmental Sciences Technical University in Zvolen Zvolen Slovakia

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague 6 Suchdol Czech Republic

Faculty of Forestry Technical University in Zvolen Zvolen Slovakia

Faculty of Science Department of Botany University of South Bohemia České Budějovice Czech Republic

Finnish Meteorological Institute Helsinki Finland

Forest and Nature Lab Department of Environment Ghent University Melle Gontrode Belgium

Geography Department Humboldt Universität zu Berlin Berlin Germany

Georgian Institute of Public Affairs Tbilisi Georgia

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

GLORIA Coordination Institute for Interdisciplinary Mountain Research Austrian Academy of Sciences Vienna Austria

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Graduate School of Life and Environmental Sciences Osaka Prefecture University Osaka Japan

Grupo de Ecología de Invasiones INIBIOMA CONICET Universidad Nacional del Comahue Bariloche Argentina

Grupo de Ecología de Poblaciones de Insectos IFAB Bariloche Argentina

Institute of Biological Research Cluj Napoca National Institute of Research and Development for Biological Sciences Bucharest Romania

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

Institute of Biology Leipzig University Leipzig Germany

Institute of Botany and Landscape Ecology University Greifswald Greifswald Germany

Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic

Institute of Earth Surface Dynamics Faculty of Geosciences and Environment University of Lausanne Lausanne Switzerland

Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Institute of Landscape Ecology Slovak Academy of Sciences Bratislava Slovakia

Instituto Argentino de Nivologiá Glaciologiá y Ciencias Ambientales CONICET CCT Mendoza Mendoza Argentina

Instituto de Ecología y Biodiversidad Santiago Chile

Isotope Bioscience Laboratory ISOFYS Ghent University Gent Belgium

Jolube Consultor Botánico Jaca Spain

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains Ministry of Education School of Geographical Sciences Northeast Normal University Changchun China

Laboratorio de Invasiones Biológicas Facultad de Ciencias Forestales Universidad de Concepción Concepción Chile

Landscape Ecology Institute of Terrestrial Ecosystems Department of Environmental Systems Science ETH Zürich Zürich Switzerland

Majella Seed Bank Majella National Park Lama dei Peligni Italy

Mountains of the Moon University Fort Portal Uganda

National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia

Plant Ecology Albrecht von Haller Institute for Plant Sciences University of Goettingen Goettingen Germany

Plant Ecology Group Department of Evolution and Ecology University of Tübingen Tübingen Germany

Regional Centre for Integrated Environmental Monitoring Odesa National 1 I Mechnikov University Odesa Ukraine

Remote Sensing Laboratories Department of Geography University of Zurich Zurich Switzerland

Research Group PLECO University of Antwerp Wilrijk Belgium

Research Institute for Nature and Forest Brussels Belgium

Research Unit Community Ecology Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

School of Ecology and Environment Studies Nalanda University Rajgir India

School of Education and Social Sciences Adventist University of Chile Chile

School of GeoSciences University of Edinburgh Edinburgh UK

School of Life Sciences Arizona State University Tempe AZ USA

School of Natural Resources and Environment University of Florida Gainesville FL USA

Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany

Siberian Federal University Krasnoyarsk Russia

Swedish Species Information Centre Swedish University of Agricultural Sciences Uppsala Sweden

Swiss Federal Research Institute WSL Birmensdorf Switzerland

Swiss National Park Chastè Planta Wildenberg Zernez Switzerland

TERRA Teaching and Research Center Faculty of Gembloux Agro Bio Tech University of Liege Gembloux Belgium

UK Centre for Ecology and Hydrology Midlothian UK

Unit of Land Change Science Swiss Federal Research Institute WSL Birmensdorf Switzerland

Universidad Nacional de San Antonio Abad del Cusco Cusco Peru

UR 'Ecologie et Dynamique des Systèmes Anthropisées' Univ de Picardie Jules Verne Amiens France

Woodrow Wilson School of Public and International Affairs Princeton University Princeton NJ USA

WSL Institute for Snow and Avalanche Research SLF Davos Switzerland

Zhejiang Tiantong Forest Ecosystem National Observation and Research Station School of Ecological and Environmental Sciences East China Normal University Shanghai China

See more in PubMed

Aalto, J., Riihimäki, H., Meineri, E., Hylander, K., & Luoto, M. (2017). Revealing topoclimatic heterogeneity using meteorological station data. International Journal of Climatology, 37, 544-556. https://doi.org/10.1002/joc.5020

Aalto, J., Scherrer, D., Lenoir, J., Guisan, A., & Luoto, M. (2018). Biogeophysical controls on soil-atmosphere thermal differences: Implications on warming Arctic ecosystems. Environmental Research Letters, 13, 074003. https://doi.org/10.1088/1748-9326/aac83e

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5, 1958-2015. https://doi.org/10.1038/sdata.2017.191

Ashcroft, M. B., Cavanagh, M., Eldridge, M. D. B., & Gollan, J. R. (2014). Testing the ability of topoclimatic grids of extreme temperatures to explain the distribution of the endangered brush-tailed rock-wallaby (Petrogale penicillata). Journal of Biogeography, 41, 1402-1413.

Ashcroft, M. B., Chisholm, L. A., & French, K. O. (2008). The effect of exposure on landscape scale soil surface temperatures and species distribution models. Landscape Ecology, 23, 211-225. https://doi.org/10.1007/s10980-007-9181-8

Ashcroft, M. B., Chisholm, L. A., & French, K. O. (2009). Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15, 656-667. https://doi.org/10.1111/j.1365-2486.2008.01762.x

Ashcroft, M. B., & Gollan, J. R. (2012). Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region. International Journal of Climatology, 32, 2134-2148.

Ashcroft, M. B., & Gollan, J. R. (2013). Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperatures: Understanding factors that promote microrefugia. Agricultural and Forest Meteorology, 176, 77-89. https://doi.org/10.1016/j.agrformet.2013.03.008

Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 216, 47-59. https://doi.org/10.1016/j.ecolmodel.2008.04.010

Bennie, J., Wilson, R. J., Maclean, I. M. D., & Suggitt, A. J. (2014). Seeing the woods for the trees - When is microclimate important in species distribution models? Global Change Biology, 20, 2699-2700. https://doi.org/10.1111/gcb.12525

Bramer, I., Anderson, B., Bennie, J., Bladon, A., De Frenne, P., Hemming, D., … Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. Advances in Ecological Research, 58, 101-161.

Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., … Jandt, U. (2018). Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2, 1906-1917. https://doi.org/10.1038/s41559-018-0699-8

Cameron, E. K., Martins, I. S., Lavelle, P., Mathieu, J., Tedersoo, L., Gottschall, F., … Eisenhauer, N. (2018). Global gaps in soil biodiversity data. Nature Ecology & Evolution, 2, 1042-1043. https://doi.org/10.1038/s41559-018-0573-8

Carter, A., Kearney, M., Mitchell, N., Hartley, S., Porter, W., & Nelson, N. (2015). Modelling the soil microclimate: Does the spatial or temporal resolution of input parameters matter? Frontiers of Biogeography, 7, 138-154. https://doi.org/10.21425/F5FBG27849

Copernicus Climate Change Service (C3s). (2019). C3S ERA5-Land reanalysis (Ed. Copernicus Climate Change Service).

Coûteaux, M.-M., Bottner, P., & Berg, B. (1995). Litter decomposition, climate and litter quality. Trends in Ecology & Evolution, 10, 63-66.

Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707-721. https://doi.org/10.1002/joc.1322

De Boeck, H. J., Van De Velde, H., De Groote, T., & Nijs, I. (2016). Ideas and perspectives: Heat stress: More than hot air. Biogeosciences, 13, 5821-5825. https://doi.org/10.5194/bg-13-5821-2016

De Frenne, P., Rodriguez-Sanchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., … Verheyen, K. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110, 18561-18565. https://doi.org/10.1073/pnas.1311190110

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086

Geiger, R. (1950). The climate near the ground. Cambridge, MA: Harvard University Press.

Gottschall, F., Davids, S., Newiger-Dous, T. E., Auge, H., Cesarz, S., & Eisenhauer, N. (2019). Tree species identity determines wood decomposition via microclimatic effects. Ecology and Evolution, 9, 12113-12127. https://doi.org/10.1002/ece3.5665

Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumbore, S. E., Crill, P. M., Gower, S. T., … Munger, J. W. (1998). Sensitivity of boreal forest carbon balance to soil thaw. Science, 279, 214-217. https://doi.org/10.1126/science.279.5348.214

Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., … Delgado-Baquerizo, M. (2019). Blind spots in global soil biodiversity and ecosystem function research. bioRxiv, 774356. https://doi.org/10.1101/774356

Hursh, A., Ballantyne, A., Cooper, L., Maneta, M., Kimball, J., & Watts, J. (2017). The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 23, 2090-2103. https://doi.org/10.1111/gcb.13489

Jarraud, M. (2008). Guide to meteorological instruments and methods of observation (WMO-No. 8). Geneva, Switzerland: World Meteorological Organisation.

Jucker, T., Jackson, T., Zellweger, F., Swinfield, T., Gregory, N., Williamson, J., … Coomes, D. (2020). A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change, 2. https://doi.org/10.3389/ffgc.2019.00092.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., … Wirth, C. (2019). TRY plant trait database-enhanced coverage and open access. Global Change Biology, 26, 119-188. https://doi.org/10.1111/gcb.14904

Kearney, M. R. (2019). MicroclimOz - A microclimate data set for Australia, with example applications. Austral Ecology, 44, 534-544. https://doi.org/10.1111/aec.12689

Kearney, M. R., Isaac, A. P., & Porter, W. P. (2014). microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Scientific Data, 1, 140006. https://doi.org/10.1038/sdata.2014.6

Kearney, M. R., Shamakhy, A., Tingley, R., Karoly, D. J., Hoffmann, A. A., Briggs, P. R., & Porter, W. P. (2014). Microclimate modelling at macro scales: A test of a general microclimate model integrated with gridded continental-scale soil and weather data. Methods in Ecology and Evolution, 5, 273-286. https://doi.org/10.1111/2041-210X.12148

Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106, 3835-3840. https://doi.org/10.1073/pnas.0808913106

Kissling, W. D., Walls, R., Bowser, A., Jones, M. O., Kattge, J., Agosti, D., … Guralnick, R. P. (2018). Towards global data products of essential biodiversity variables on species traits. Nature Ecology & Evolution, 2, 1531-1540. https://doi.org/10.1038/s41559-018-0667-3

Körner, C., & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 30, 16-21. https://doi.org/10.1016/j.ppees.2017.04.004

Körner, C., & Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713-732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., … Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in-situ logging to remote sensing. Global Ecology and Biogeography, 28, 1578-1596. https://doi.org/10.1111/geb.12974

Lembrechts, J., Nijs, I., & Lenoir, J. (2019). Incorporating microclimate into species distribution models. Ecography, 42, 1267-1279. https://doi.org/10.1111/ecog.03947

Lenoir, J., Hattab, T., & Pierre, G. (2017). Climatic microrefugia under anthropogenic climate change: Implications for species redistribution. Ecography, 40, 253-266. https://doi.org/10.1111/ecog.02788

Li, T.-T. (1926). Soil temperature as influenced by forest cover. New Haven, CT: Yale University - School of Forestry.

Macek, M., Kopecký, M., & Wild, J. (2019). Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecology, 34, 2541-2556. https://doi.org/10.1007/s10980-019-00903-x

Maclean, I. M. (2019). Predicting future climate at high spatial and temporal resolution. Global Change Biology, 26, 1003-1011. https://doi.org/10.1111/gcb.14876

Maclean, I. M. D., Hopkins, J. J., Bennie, J., Lawson, C. R., & Wilson, R. J. (2015). Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography, 24, 1340-1350. https://doi.org/10.1111/geb.12359

Maclean, I. M. D., Suggitt, A. J., Wilson, R. J., Duffy, J. P., & Bennie, J. J. (2017). Fine-scale climate change: Modelling spatial variation in biologically meaningful rates of warming. Global Change Biology, 23, 256-268. https://doi.org/10.1111/gcb.13343

Maestre, F. T., & Eisenhauer, N. (2019). Recommendations for establishing global collaborative networks in soil ecology. Soil Organisms, 91, 73.

Medinets, S., Gasche, R., Kiese, R., Rennenberg, H., & Butterbach-Bahl, K. (2019). Seasonal dynamics and profiles of soil NO concentrations in a temperate forest. Plant and Soil, 445, 335-348. https://doi.org/10.1007/s11104-019-04305-5

Meineri, E., & Hylander, K. (2017). Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography, 40, 1003-1013. https://doi.org/10.1111/ecog.02494

Niittynen, P., & Luoto, M. (2017). The importance of snow in species distribution models of arctic vegetation. Ecography, 41, 1024-1037. https://doi.org/10.1111/ecog.03348

Opedal, O. H., Armbruster, W. S., & Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8, 305-315. https://doi.org/10.1080/17550874.2014.987330

Pincebourde, S., & Casas, J. (2019). Narrow safety margin in the phyllosphere during thermal extremes. Proceedings of the National Academy of Sciences of the United States of America, 116, 5588-5596. https://doi.org/10.1073/pnas.1815828116

Pincebourde, S., Murdock, C. C., Vickers, M., & Sears, M. W. (2016). Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integrative and Comparative Biology, 56, 45-61. https://doi.org/10.1093/icb/icw016

Pleim, J. E., & Gilliam, R. (2009). An indirect data assimilation scheme for deep soil temperature in the Pleim-Xiu land surface model. Journal of Applied Meteorology and Climatology, 48, 1362-1376. https://doi.org/10.1175/2009JAMC2053.1

Portillo-Estrada, M., Pihlatie, M., Korhonen, J. F. J., Levula, J., Frumau, A. K. F., Ibrom, A., … Niinemets, U. (2016). Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences, 13, 1621-1633. https://doi.org/10.5194/bg-13-1621-2016

Pradervand, J.-N., Dubuis, A., Pellissier, L., Guisan, A., & Randin, C. (2014). Very high resolution environmental predictors in species distribution models: Moving beyond topography? Progress in Physical Geography, 38, 79-96. https://doi.org/10.1177/0309133313512667

Randin, C. F., Vuissoz, G., Liston, G. E., Vittoz, P., & Guisan, A. (2009). Introduction of snow and geomorphic disturbance variables into predictive models of alpine plant distribution in the Western Swiss Alps. Arctic, Antarctic, and Alpine Research, 41, 347-361. https://doi.org/10.1657/1938-4246-41.3.347

Rosenberg, N. J., Kimball, B., Martin, P., & Cooper, C. (1990). From climate and CO2 enrichment to evapotranspiration. In P. Wagoner (Ed.), Climate change and US water resources (pp. 151-175). New York, NY: John Wiley and Sons Inc.

Schimel, D. S., Braswell, B., Mckeown, R., Ojima, D. S., Parton, W., & Pulliam, W. (1996). Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycles, 10, 677-692. https://doi.org/10.1029/96GB01524

Slavich, E., Warton, D. I., Ashcroft, M. B., Gollan, J. R., & Ramp, D. (2014). Topoclimate versus macroclimate: How does climate mapping methodology affect species distribution models and climate change projections? Diversity and Distributions, 20, 952-963. https://doi.org/10.1111/ddi.12216

Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120, 1-8. https://doi.org/10.1111/j.1600-0706.2010.18270.x

Suggitt, A. J., Wilson, R. J., Isaac, N. J. B., Beale, C. M., Auffret, A. G., August, T., … Maclean, I. M. D. (2018). Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8, 713. https://doi.org/10.1038/s41558-018-0231-9

Vitasse, Y., Klein, G., Kirchner, J. W., & Rebetez, M. (2017). Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theoretical and Applied Climatology, 130, 1073-1083. https://doi.org/10.1007/s00704-016-1944-1

Wason, J. W., Bevilacqua, E., & Dovciak, M. (2017). Climates on the move: Implications of climate warming for species distributions in mountains of the northeastern United States. Agricultural and Forest Meteorology, 246, 272-280. https://doi.org/10.1016/j.agrformet.2017.05.019

Western, A. W., Grayson, R. B., & Blöschl, G. (2002). Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences, 30, 149-180. https://doi.org/10.1146/annurev.earth.30.091201.140434

Whiteman, C. D. (1982). Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270-289. https://doi.org/10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2

Whittaker, R. H. (1975). Communities and ecosystems. Communities and ecosystems (2nd ed). New York, NY: Macmillan.

Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D., & Coomes, D. (2019). Advances in microclimate ecology arising from remote sensing. Trends in Ecology & Evolution, 34, 327-341. https://doi.org/10.1016/j.tree.2018.12.012

Zhang, Y., Wang, S., Barr, A. G., & Black, T. (2008). Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Science and Technology, 52, 355-370. https://doi.org/10.1016/j.coldregions.2007.07.001

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...