Siderophore-Based Molecular Imaging of Fungal and Bacterial Infections-Current Status and Future Perspectives
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
P 30924
Austrian Science Fund FWF - Austria
PubMed
32485852
PubMed Central
PMC7345832
DOI
10.3390/jof6020073
PII: jof6020073
Knihovny.cz E-resources
- Keywords
- bacterial, fluorescence, fungal, imaging, infection, positron emission tomography, siderophore,
- Publication type
- Journal Article MeSH
- Review MeSH
Invasive fungal infections such as aspergillosis are life-threatening diseases mainly affecting immuno-compromised patients. The diagnosis of fungal infections is difficult, lacking specificity and sensitivity. This review covers findings on the preclinical use of siderophores for the molecular imaging of infections. Siderophores are low molecular mass chelators produced by bacteria and fungi to scavenge the essential metal iron. Replacing iron in siderophores by radionuclides such as gallium-68 allowed the targeted imaging of infection by positron emission tomography (PET). The proof of principle was the imaging of pulmonary Aspergillus fumigatus infection using [68Ga]Ga-triacetylfusarinine C. Recently, this approach was expanded to imaging of bacterial infections, i.e., with Pseudomonas aeruginosa. Moreover, the conjugation of siderophores and fluorescent dyes enabled the generation of hybrid imaging compounds, allowing the combination of PET and optical imaging. Nevertheless, the high potential of these imaging probes still awaits translation into clinics.
Department of Nuclear Medicine Medical University Innsbruck 6020 Innsbruck Austria
Institute of Molecular Biology Medical University Innsbruck 6020 Innsbruck Austria
See more in PubMed
Cassat J.E., Skaar E.P. Iron in infection and immunity. Cell Host Microbe. 2013;13:509–519. doi: 10.1016/j.chom.2013.04.010. PubMed DOI PMC
Schrettl M., Bignell E., Kragl C., Joechl C., Rogers T., Arst H.N., Haynes K., Haas H. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J. Exp. Med. 2004;200:1213–1219. doi: 10.1084/jem.20041242. PubMed DOI PMC
McDonagh A., Fedorova N.D., Crabtree J., Yu Y., Kim S., Chen D., Loss O., Cairns T., Goldman G., Armstrong-James D., et al. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog. 2008;4:e1000154. doi: 10.1371/journal.ppat.1000154. PubMed DOI PMC
Schrettl M., Kim H.S., Eisendle M., Kragl C., Nierman W.C., Heinekamp T., Werner E.R., Jacobsen I., Illmer P., Yi H., et al. SreA-mediated iron regulation in Aspergillus fumigatus. Mol. Microbiol. 2008;70:27–43. doi: 10.1111/j.1365-2958.2008.06376.x. PubMed DOI PMC
Hider R.C., Kong X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010;27:637. doi: 10.1039/b906679a. PubMed DOI
Haas H., Eisendle M., Turgeon B.G. Siderophores in fungal physiology and virulence. Annu. Rev. Phytopathol. 2008;46:149–187. doi: 10.1146/annurev.phyto.45.062806.094338. PubMed DOI
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC
Raymond-Bouchard I., Carroll C.S., Nesbitt J.R., Henry K.A., Pinto L.J., Moinzadeh M., Scott J.K., Moore M.M. Structural requirements for the activity of the MirB ferrisiderophore transporter of Aspergillus fumigatus. Eukaryot. Cell. 2012;11:1333–1344. doi: 10.1128/EC.00159-12. PubMed DOI PMC
Kragl C., Schrettl M., Abt B., Sarg B., Lindner H.H., Haas H. EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot. Cell. 2007;6:1278–1285. doi: 10.1128/EC.00066-07. PubMed DOI PMC
Gründlinger M., Gsaller F., Schrettl M., Lindner H., Haas H. Aspergillus fumigatus SidJ mediates intracellular siderophore hydrolysis. Appl. Environ. Microbiol. 2013;79:7534–7536. doi: 10.1128/AEM.01285-13. PubMed DOI PMC
Ecker F., Haas H., Groll M., Huber E.M. Iron scavenging in Aspergillus species: Structural and biochemical insights into fungal siderophore esterases. Angew. Chemie-Int. Ed. 2018;57:14624–14629. doi: 10.1002/anie.201807093. PubMed DOI
Gsaller F., Eisendle M., Lechner B.E., Schrettl M., Lindner H., Müller D., Geley S., Haas H. The interplay between vacuolar and siderophore-mediated iron storage in Aspergillus fumigatus. Metallomics. 2012;4:1262–1270. doi: 10.1039/c2mt20179h. PubMed DOI
Sanguinetti M., Posteraro B., Beigelman-Aubry C., Lamoth F., Dunet V., Slavin M., Richardson M.D. Diagnosis and treatment of invasive fungal infections: Looking ahead. J. Antimicrob. Chemother. 2019;74:ii27–ii37. doi: 10.1093/jac/dkz041. PubMed DOI
Pelc N.J., Kinahan P.E., Pettigrew R.I. Special Section Guest Editorial: Positron emission tomography: History, current status, and future prospects. J. Med. Imaging. 2017;4:011001. doi: 10.1117/1.JMI.4.1.011001. PubMed DOI PMC
Fadeev E.A., Luo M., Groves J.T. Synthesis, structure, and molecular dynamics of Gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrin. J. Am. Chem. Soc. 2004;126:12065–12075. doi: 10.1021/ja048145j. PubMed DOI
Velikyan I. Continued rapid growth in 68 Ga applications: Update 2013 to June 2014. J. Label. Compd. Radiopharm. 2015;58:99–121. doi: 10.1002/jlcr.3250. PubMed DOI
Petrik M., Haas H., Dobrozemsky G., Lass-Florl C., Helbok A., Blatzer M., Dietrich H., Decristoforo C. 68Ga-Siderophores for PET imaging of invasive pulmonaryaspergillosis: Proof of principle. J. Nucl. Med. 2010;51:639–645. doi: 10.2967/jnumed.109.072462. PubMed DOI PMC
Petrik M., Haas H., Schrettl M., Helbok A., Blatzer M., Decristoforo C. In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl. Med. Biol. 2012;39:361–369. doi: 10.1016/j.nucmedbio.2011.09.012. PubMed DOI PMC
Petrik M., Franssen G.M., Haas H., Laverman P., Hörtnagl C., Schrettl M., Helbok A., Lass-Flörl C., Decristoforo C. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1175–1183. doi: 10.1007/s00259-012-2110-3. PubMed DOI PMC
Petrik M., Haas H., Laverman P., Schrettl M., Franssen G.M., Blatzer M., Decristoforo C. 68Ga-Triacetylfusarinine C and 68Ga-Ferrioxamine E for Aspergillus infection imaging: Uptake specificity in various microorganisms. Mol. Imaging Biol. 2014;16:102–108. doi: 10.1007/s11307-013-0654-7. PubMed DOI PMC
Kaeopookum P., Summer D., Pfister J., Orasch T., Lechner B.E., Petrik M., Novy Z., Matuszczak B., Rangger C., Haas H., et al. Modifying the siderophore Triacetylfusarinine C for molecular imaging of fungal infection. Mol. Imaging Biol. 2019;21:1097–1106. PubMed PMC
Pfister J., Summer D., Petrik M., Khoylou M., Lichius A., Kaeopookum P., Kochinke L., Orasch T., Haas H., Decristoforo C., et al. Hybrid imaging of Aspergillus fumigatus pulmonary infection with fluorescent, 68Ga-labelled siderophores. Biomolecules. 2020;10:168. doi: 10.3390/biom10020168. PubMed DOI PMC
Skriba A., Pluhacek T., Palyzova A., Novy Z., Lemr K., Hajduch M., Petrik M., Havlicek V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front. Microbiol. 2018;9:1–7. doi: 10.3389/fmicb.2018.02356. PubMed DOI PMC
Navalkissoor S., Gnanasegaran G., Baum R. Theranostics and precision medicine special feature. Br. J. Radiol. 2018;91:20189004. PubMed PMC
Haas H., Petrik M., Decristoforo C. An iron-mimicking, Trojan horse entering fungi—Has the time come for molecular imaging of fungal infections? PLoS Pathog. 2015;11:1–7. doi: 10.1371/journal.ppat.1004568. PubMed DOI PMC
Ji C., Juárez-Hernández R.E., Miller M.J. Exploiting bacterial iron acquisition: Siderophore conjugates. Future Med. Chem. 2012;4:297–313. doi: 10.4155/fmc.11.191. PubMed DOI PMC
Gumienna-Kontecka E., Carver P.L. Building a Trojan horse: Siderophore-drug conjugates for the treatment of infectious diseases. In: Carver P.L., editor. Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic. Volume 19. De Gruyter; Berlin, Germany: Boston, MA, USA: 2019. pp. 331–358. PubMed
Lu Y., Wang H., Wang Z., Cong Y., Zhang P., Liu G., Liu C., Chi Z., Chi Z. Metabolic rewiring improves the production of the fungal active targeting molecule Fusarinine C. ACS Synth. Biol. 2019;8:1755–1765. doi: 10.1021/acssynbio.9b00026. PubMed DOI
Shanzer A., Libman J. Biomimetic siderophores: From structural probes to diagnosic tools. Met. Ions Biol. Syst. 1998;35:329. PubMed
Besserglick J., Olshvang E., Szebesczyk A., Englander J., Levinson D., Hadar Y., Gumienna-Kontecka E., Shanzer A. Ferrichrome has found its match: Biomimetic Analogues with diversified activity map discrete microbial targets. Chem.-Eur. J. 2017;23:13181–13191. PubMed
Marvig R.L., Damkiær S., Khademi S.M.H., Markussen T.M., Molin S., Jelsbak L. Within-Host Evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. MBio. 2014;5:1–8. doi: 10.1128/mBio.00966-14. PubMed DOI PMC
Minandri F., Imperi F., Frangipani E., Bonchi C., Visaggio D., Facchini M., Pasquali P., Bragonzi A., Visca P. Role of iron uptake systems in Pseudomonas aeruginosa virulence and airway infection. Infect. Immun. 2016;84:2324–2335. doi: 10.1128/IAI.00098-16. PubMed DOI PMC
Gao Q., Wang X., Xu H., Xu Y., Ling J., Zhang D., Gao S., Liu X. Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: Salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol. 2012;12:143. PubMed PMC
Sheldon J.R., Heinrichs D.E. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol. Rev. 2015;39:592–630. PubMed
Cendrowski S., MacArthur W., Hanna P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 2004;51:407–417. doi: 10.1046/j.1365-2958.2003.03861.x. PubMed DOI
Caza M., Kronstad J.W. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 2013;3:1–23. doi: 10.3389/fcimb.2013.00080. PubMed DOI PMC
Petrik M., Zhai C., Novy Z., Urbanek L., Haas H., Decristoforo C. In Vitro and in vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol. Imaging Biol. 2016;18:344–352. doi: 10.1007/s11307-015-0897-6. PubMed DOI PMC
Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Haas H., Novy Z., Dolezal D., Hajduch M., Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 2018;8:15698. doi: 10.1038/s41598-018-33895-w. PubMed DOI PMC
Petrik M., Vlckova A., Novy Z., Urbanek L., Haas H. Selected 68Ga-siderophores versus 68Ga-colloid and 68Ga-citrate: Biodistribution and small animal imaging in mice. Biomed. Pap. Med Fac. Univ. Palacky Olomouc Czechoslov. 2015;159:60–66. PubMed PMC
Sass G., Nazik H., Penner J., Shah H., Ansari S.R., Clemons K.V., Groleau M.C., Dietl A.M., Visca P., Haas H., et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J. Bacteriol. 2017;200:e00345-17. doi: 10.1128/JB.00345-17. PubMed DOI PMC
Ioppolo J.A., Caldwell D., Beiraghi O., Llano L., Blacker M., Valliant J.F., Berti P.J. 67 Ga-labeled deferoxamine derivatives for imaging bacterial infection: Preparation and screening of functionalized siderophore complexes. Nucl. Med. Biol. 2017;52:32–41. doi: 10.1016/j.nucmedbio.2017.05.010. PubMed DOI
Hoenigl M., Orasch T., Faserl K., Prattes J., Loeffler J., Springer J., Gsaller F., Reischies F., Duettmann W., Raggam R.B., et al. Triacetylfusarinine C: A urine biomarker for diagnosis of invasive aspergillosis. J. Infect. 2018;78:150–157. doi: 10.1016/j.jinf.2018.09.006. PubMed DOI PMC