Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32496587
PubMed Central
PMC7300910
DOI
10.1111/all.14429
Knihovny.cz E-zdroje
- Klíčová slova
- COPD, COVID-19, COVID-19 children, SARS receptor, asthma, hypertension, obesity,
- MeSH
- angiotensin-konvertující enzym 2 genetika imunologie MeSH
- basigin genetika imunologie MeSH
- bronchiální astma epidemiologie genetika imunologie MeSH
- chronická nemoc epidemiologie MeSH
- chronická obstrukční plicní nemoc epidemiologie genetika imunologie MeSH
- COVID-19 epidemiologie genetika imunologie MeSH
- dipeptidylpeptidasa 4 genetika imunologie MeSH
- dítě MeSH
- dospělí MeSH
- exprese genu genetika MeSH
- hypertenze epidemiologie genetika imunologie MeSH
- kojenec MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita epidemiologie genetika imunologie MeSH
- předškolní dítě MeSH
- přirozená imunita imunologie MeSH
- rizikové faktory MeSH
- SARS-CoV-2 genetika imunologie MeSH
- senioři MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- basigin MeSH
- BSG protein, human MeSH Prohlížeč
- dipeptidylpeptidasa 4 MeSH
- DPP4 protein, human MeSH Prohlížeč
BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland
Christine Kühne Center for Research and Education Davos Switzerland
Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
Department of Cancer Immunology Institute for Cancer Research Oslo University Hospital Oslo Norway
Functional Genomic Centre Zurich ETH Zurich University of Zurich Zurich Switzerland
Institute of Computational Biology Helmholtz Zentrum Munchen Munich Germany
Institute of Experimental Medicine Czech Academy of Sciences Prague Czech Republic
Otorhinolaryngology Hospital The 1st Affiliated Hospital Sun Yat sen University Guangzhou China
Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
Zobrazit více v PubMed
Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy 2020;75:1730‐1741. PubMed
Wu A, Peng Y, Huang B, et al. Genome Composition and Divergence of the Novel Coronavirus (2019‐nCoV) Originating in China. Cell Host Microbe. 2020;27(3):325‐328. PubMed PMC
Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2):271‐280.e8. PubMed PMC
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS‐CoV‐2 by full‐length human ACE2. Science 2020;367(6485):1444‐1448. PubMed PMC
Ziegler C, Allon S, Nyquist S, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is enriched in specific cell subsets across tissues. SSRN Electronic Journal. 2020. PubMed PMC
Wu C, Zheng M. Single‐cell RNA expression profiling shows that ACE2, the putative receptor for COVID‐2019, has significant expression in nasal and mounth tissue and is co‐expressed with TMPRSS2 and not co‐expressed with SLC6A19 in the tissues. PREPRINT (Version 1) available at Research Square. 12 March 2020.
Chu H, Zhou J, Wong BH, et al. Middle east respiratory syndrome coronavirus efficiently infects human primary T Lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J Infect Dis. 2016;213(6):904‐914. PubMed PMC
Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415‐424. PubMed PMC
Wang K, Chen W, Zhou Y‐S, et al.SARS‐CoV‐2 invades host cells via a novel route: CD147‐spike protein. bioRxiv. 2020:2020.2003.2014.988345.
Chen Z, Mi L, Xu J, et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;191(5):755‐760. PubMed PMC
Pushkarsky T, Zybarth G, Dubrovsky L, et al. CD147 facilitates HIV‐1 infection by interacting with virus‐associated cyclophilin A. Proc Natl Acad Sci USA. 2001;98(11):6360‐6365. PubMed PMC
Watanabe A, Yoneda M, Ikeda F, Terao‐Muto Y, Sato H, Kai C. CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol. 2010;84(9):4183‐4193. PubMed PMC
Zhang MY, Zhang Y, Wu XD, et al. Disrupting CD147‐RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood 2018;131(10):1111‐1121. PubMed PMC
Bian H, Zheng Z‐H, Wei D, et al. Meplazumab treats COVID‐19 pneumonia: an open‐labelled, concurrent controlled add‐on clinical trial. medRxiv. 2020:2020.2003.2021.20040691.
Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481‐490. PubMed PMC
Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin‐CD147 interactions: a new target for anti‐inflammatory therapeutics. Clin Exp Immunol. 2010;160(3):305‐317. PubMed PMC
Hibino T, Sakaguchi M, Miyamoto S, et al. S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis. Cancer Res. 2013;73(1):172‐183. PubMed
Kato N, Yuzawa Y, Kosugi T, et al. The E‐selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol. 2009;20(7):1565‐1576. PubMed PMC
Seizer P, Borst O, Langer HF, et al. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI‐EMMPRIN interaction. Thromb Haemost. 2009;101(4):682‐686. PubMed
Huang W, Luo WJ, Zhu P, et al. Modulation of CD147‐induced matrix metalloproteinase activity: role of CD147 N‐glycosylation. Biochem J. 2013;449(2):437‐448. PubMed
Vankadari N, Wilce JA. Emerging WuHan (COVID‐19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601‐604. PubMed PMC
Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of Covid‐19 in New York City. N Engl J Med. 2020. PubMed PMC
Wathelet MG, Orr M, Frieman MB, Baric RS. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol. 2007;81(21):11620‐11633. PubMed PMC
Tanaka Y, Sato Y, Sasaki T. Suppression of coronavirus replication by cyclophilin inhibitors. Viruses 2013;5(5):1250‐1260. PubMed PMC
Zhao K, Li J, He W, et al. Cyclophilin B facilitates the replication of Orf virus. Virol J. 2017;14(1):114. PubMed PMC
de Wilde AH, Zevenhoven‐Dobbe JC, van der Meer Y, et al. Cyclosporin A inhibits the replication of diverse coronaviruses. J Gen Virol. 2011;92(Pt 11):2542‐2548. PubMed PMC
Pfefferle S, Schopf J, Kogl M, et al. The SARS‐coronavirus‐host interactome: identification of cyclophilins as target for pan‐coronavirus inhibitors. PLoS Pathog. 2011;7(10):e1002331. PubMed PMC
Pushkarsky T, Yurchenko V, Laborico A, Bukrinsky M. CD147 stimulates HIV‐1 infection in a signal‐independent fashion. Biochem Biophys Res Commun. 2007;363(3):495‐499. PubMed PMC
Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000;19(15):3896‐3904. PubMed PMC
Ait‐Ali N, Fridlich R, Millet‐Puel G, et al. Rod‐derived cone viability factor promotes cone survival by stimulating aerobic glycolysis. Cell 2015;161(4):817‐832. PubMed
Slomiany MG, Grass GD, Robertson AD, et al. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res. 2009;69(4):1293‐1301. PubMed PMC
Berditchevski F, Chang S, Bodorova J, Hemler ME. Generation of monoclonal antibodies to integrin‐associated proteins. Evidence that alpha3beta1 complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem. 1997;272(46):29174‐29180. PubMed
Xu D, Hemler ME. Metabolic activation‐related CD147‐CD98 complex. Mol Cell Proteomics. 2005;4(8):1061‐1071. PubMed PMC
Khunkaewla P, Schiller HB, Paster W, et al. LFA‐1‐mediated leukocyte adhesion regulated by interaction of CD43 with LFA‐1 and CD147. Mol Immunol. 2008;45(6):1703‐1711. PubMed
Priglinger CS, Szober CM, Priglinger SG, et al. Galectin‐3 induces clustering of CD147 and integrin‐beta1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS One 2013;8(7):e70011. PubMed PMC
Till A, Rosenstiel P, Brautigam K, et al. A role for membrane‐bound CD147 in NOD2‐mediated recognition of bacterial cytoinvasion. J Cell Sci. 2008;121(Pt 4):487‐495. PubMed
Zhou S, Zhou H, Walian PJ, Jap BK. CD147 is a regulatory subunit of the gamma‐secretase complex in Alzheimer's disease amyloid beta‐peptide production. Proc Natl Acad Sci USA. 2005;102(21):7499‐7504. PubMed PMC
Yao H, Teng Y, Sun Q, et al. Important functional roles of basigin in thymocyte development and T cell activation. Int J Biol Sci. 2013;10(1):43‐52. PubMed PMC
Ruiz S, Castro‐Castro A, Bustelo XR. CD147 inhibits the nuclear factor of activated T‐cells by impairing Vav1 and Rac1 downstream signaling. J Biol Chem. 2008;283(9):5554‐5566. PubMed
Muller MR, Rao A. NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol. 2010;10(9):645‐656. PubMed
Macian F. NFAT proteins: key regulators of T‐cell development and function. Nat Rev Immunol. 2005;5(6):472‐484. PubMed
Solstad T, Bains SJ, Landskron J, et al. CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+‐activated human regulatory T cells. Blood 2011;118(19):5141‐5151. PubMed
Kim J, Yang YL, Jeong Y, Jang YS. Middle East Respiratory Syndrome‐Coronavirus Infection into Established hDPP4‐Transgenic Mice Accelerates Lung Damage Via Activation of the Pro‐Inflammatory Response and Pulmonary Fibrosis. J Microbiol Biotechnol. 2020;30(3):427‐438. PubMed PMC
van Doremalen N, Miazgowicz KL, Milne‐Price S, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014;88(16):9220‐9232. PubMed PMC
Kleine‐Weber H, Schroeder S, Kruger N, et al. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg Microbes Infect. 2020;9(1):155‐168. PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139‐140. PubMed PMC
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single‐cell RNA‐seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019‐nCoV infection. Front Med. 2020;14(2):185‐192. PubMed PMC
Uhlen M, Fagerberg L, Hallstrom BM, et al. Tissue‐based map of the human proteome. Science. 2015;347(6220):1260419. PubMed
Lu X, Zhang L, Du H, et al. SARS‐CoV‐2 Infection in Children. N Engl J Med. 2020;382(17):1663‐1665. PubMed PMC
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID‐19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020;323(13):1239. PubMed
Erkeller‐Yuksel FM, Deneys V, Yuksel B, et al. Age‐related changes in human blood lymphocyte subpopulations. J Pediatr. 1992;120(2 Pt 1):216‐222. PubMed
Watanabe M, Risi R, Tuccinardi D, Baquero CJ, Manfrini S, Gnessi L. Obesity and SARS‐CoV‐ 2: a population to safeguard. Diabetes Metab Res Rev. 2020;e3325. PubMed
Recalcati S. Cutaneous manifestations in COVID‐19: a first perspective. J Eur Acad Dermatol Venereol. 2020. PubMed
Kursat Azkur A, Akdis M, Azkur D, et al. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy. 2020;75:1564‐1581. PubMed PMC
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS‐CoV‐2 entry by using human ACE2. Cell 2020;181(4):894‐904.e9. PubMed PMC
Sungnak W, Huang N, Becavin C, et al. SARS‐CoV‐2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020;26(5):681‐687. PubMed PMC
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS‐CoV‐2 receptor ACE2 is an interferon‐stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020. PubMed PMC
Bröer S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life 2009;61(6):591‐599. PubMed PMC
Leung JM, Yang CX, Tam A, et al. ACE‐2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID‐19. Eur Respir J. 2020;2000688. PubMed PMC
Imai Y, Kuba K, Rao S, et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112‐116. PubMed PMC
Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma and expression of the SARS‐CoV‐2 receptor, ACE2. J Allergy Clin Immunol. 2020. PubMed PMC
Peng L, Liu J, Xu W, et al. SARS‐CoV‐2 can be detected in urine, blood, anal swabs and oropharyngeal swabs specimens. J Med Virol. 2020. PubMed PMC
Bao W, Min D, Twigg SM, et al. Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications. Am J Physiol Cell Physiol. 2010;299(5):C1212‐1219. PubMed
Zhang H, Fan Q, Xie H, et al. Elevated Serum Cyclophilin B Levels Are Associated with the Prevalence and Severity of Metabolic Syndrome. Front Endocrinol. 2017;8(360). PubMed PMC
Hahn JN, Kaushik DK, Yong VW. The role of EMMPRIN in T cell biology and immunological diseases. J Leukoc Biol. 2015;98(1):33‐48. PubMed PMC
Halestrap AP. The monocarboxylate transporter family–Structure and functional characterization. IUBMB Life. 2012;64(1):1‐9. PubMed
Darmoul D, Voisin T, Couvineau A, et al. Regional expression of epithelial dipeptidyl peptidase IV in the human intestines. Biochem Biophys Res Commun. 1994;203(2):1224‐1229. PubMed
Li Y, Jiang D, Liang J, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459‐1471. PubMed PMC
Pure E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med. 2001;7(5):213‐221. PubMed
Chen H, Hou J, Jiang X, et al. Response of memory CD8+ T cells to severe acute respiratory syndrome (SARS) coronavirus in recovered SARS patients and healthy individuals. J Immunol (Baltimore, Md: 1950). 2005;175(1):591‐598. PubMed
Bouaziz JD, Duong T, Jachiet M, et al. Vascular skin symptoms in COVID‐19: a french observational study. J Eur Acad Dermatol Venereol. 2020. PubMed PMC
Wollenberg A, Flohr C, Simon D, et al. European Task Force on Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome coronavirus 2 (SARS‐Cov‐2)‐infection and atopic dermatitis. J Eur Acad Dermatol Venereol. 2020. PubMed
Seegraber M, Worm M, Werfel T, et al. Recurrent eczema herpeticum ‐ a retrospective European multicenter study evaluating the clinical characteristics of eczema herpeticum cases in atopic dermatitis patients. J Eur Acad Dermatol Venereol. 2019;34(5):1074‐1079. PubMed
Vankadari N, Wilce JA. Emerging COVID‐19 coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601‐604. PubMed PMC
Allan DSJ, Cerdeira AS, Ranjan A, et al. Transcriptome analysis reveals similarities between human blood CD3(‐) CD56(bright) cells and mouse CD127(+) innate lymphoid cells. Sci Rep. 2017;7(1):3501. PubMed PMC
Peters MJ, Joehanes R, Pilling LC, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570. PubMed PMC
Team CC‐R. Coronavirus Disease 2019 in Children ‐ United States, February 12‐April 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(14):422‐426. PubMed PMC
A compendium answering 150 questions on COVID-19 and SARS-CoV-2