IL10RA modulates crizotinib sensitivity in NPM1-ALK+ anaplastic large cell lymphoma

. 2020 Oct 01 ; 136 (14) : 1657-1669.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32573700

Grantová podpora
R01 CA196703 NCI NIH HHS - United States
RG86786 Cancer Research UK - United Kingdom

Odkazy

PubMed 32573700
PubMed Central PMC7530646
DOI 10.1182/blood.2019003793
PII: S0006-4971(20)61674-3
Knihovny.cz E-zdroje

Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; however, a subset of patients progressed within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor-relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemotherapy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could prevent ALK inhibitor resistance-specific relapse.

Center for Biomarker Research in Medicine Vienna Core Lab2 Medical University of Vienna Vienna Austria

Central European Institute of Technology Masaryk University Brno Czech Republic

Christian Doppler Laboratory for Applied Metabolomics Medical University of Vienna Vienna Austria

Department of Clinical Research Gustave Roussy Cancer Center Villejuif France

Department of Experimental Pathology and Laboratory Animal Pathology Institute of Clinical Pathology Medical University of Vienna Vienna Austria

Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic

Department of Medicine Columbia Center for Human Development Columbia University Irving Medical Center New York NY

Department of Molecular Biotechnology and Health Sciences University of Torino Torino Italy

Department of Pathology and Laboratory Medicine Aga Khan University Hospital Karachi Pakistan

Department of Pathology Boston Children's Hospital and Harvard Medical School Boston MA

Department of Pathology CHU Necker Enfants Malades Paris France

Department of Pathology Hematopathology Section Universitätsklinikum Schleswig Holstein Campus Kiel Kiel Germany

Department of Pediatric Adolescent and Young Adult Oncology Institute Curie Medical Centre Paris France

Department of Pediatric and Adolescent Oncology Gustave Roussy Cancer Center Villejuif France; and

Department of Pediatric Hematology and Oncology St Anna Children's Hospital Medical University of Vienna Vienna Austria

Department of Pediatric Hematology and Oncology University Hospital Hamburg Eppendorf Hamburg Germany

Department of Pediatric Hematology Oncology and Palliative Care Addenbrooke's Hospital Cambridge University Hospitals National Health Service Foundation Trust Cambridge United Kingdom

Department of Pediatric Oncology and Hematology Sorbonne Université Trousseau Hospital Assistance Publique Hôpitaux de Paris Paris France

Department of Pediatrics and Adolescent Medicine Medical University of Vienna Vienna Austria

Division of Cellular and Molecular Pathology Department of Pathology University of Cambridge Cambridge United Kingdom

Equipe Integrated Cancer Research Site Institut Curie Paris France

European Molecular Biology Laboratory European Bioinformatics Institute Hinxton Cambridge United Kingdom

Experimental and Laboratory Animal Pathology Department of Pathology Medical University of Vienna Vienna Austria

INSERM U1015 Université Paris Saclay Villejuif France

INSERM U830 Transfer Department Laboratoire de Génétique et Biologie des Cancers Institut Curie Paris France

Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen University Hospital Tübingen Eberhard Karls University Tübingen Germany

Oncology Center SIREDO Institut Curie Paris France

School of Biomedical Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong China

School of Medicine and Surgery University of Milano Bicocca Monza Italy

Unit of Laboratory Animal Pathology University of Veterinary Medicine Vienna Vienna Austria

Komentář v

PubMed

Zobrazit více v PubMed

Minard-Colin V, Brugières L, Reiter A, et al. . Non-Hodgkin lymphoma in children and adolescents: progress through effective collaboration, current knowledge, and challenges ahead. J Clin Oncol. 2015;33(27):2963-2974. PubMed PMC

Le Deley MC, Rosolen A, Williams DM, et al. . Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28(25):3987-3993. PubMed

Wrobel G, Mauguen A, Rosolen A, et al. ; European Inter-Group for Childhood, Non-Hodgkin Lymphoma (EICNHL) . Safety assessment of intensive induction therapy in childhood anaplastic large cell lymphoma: report of the ALCL99 randomised trial. Pediatr Blood Cancer. 2011;56(7):1071-1077. PubMed

Williams DM, Hobson R, Imeson J, Gerrard M, McCarthy K, Pinkerton CR; United Kingdom Children’s Cancer Study Group . Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br J Haematol. 2002;117(4):812-820. PubMed

Prokoph N, Larose H, Lim MS, Burke GAA, Turner SD. Treatment options for paediatric anaplastic large cell lymphoma (ALCL): current standard and beyond. Cancers (Basel). 2018;10(4):99. PubMed PMC

Alexander S, Kraveka JM, Weitzman S, et al. . Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61(12):2236-2242. PubMed PMC

Seidemann K, Tiemann M, Schrappe M, et al. . Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood. 2001;97(12):3699-3706. PubMed

Brugières L, Le Deley M-C, Rosolen A, et al. . Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol. 2009;27(6):897-903. PubMed

Reiter A, Schrappe M, Parwaresch R, et al. . Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage–a report of the Berlin-Frankfurt-Münster Group. J Clin Oncol. 1995;13(2):359-372. PubMed

Reiter A, Schrappe M, Tiemann M, et al. . Successful treatment strategy for Ki-1 anaplastic large-cell lymphoma of childhood: a prospective analysis of 62 patients enrolled in three consecutive Berlin-Frankfurt-Munster group studies. J Clin Oncol. 1994;12(5):899-908. PubMed

Rosolen A, Pillon M, Garaventa A, et al. . Anaplastic large cell lymphoma treated with a leukemia-like therapy: report of the Italian Association of Pediatric Hematology and Oncology (AIEOP) LNH-92 protocol. Cancer. 2005;104(10):2133-2140. PubMed

Laver JH, Kraveka JM, Hutchison RE, et al. . Advanced-stage large-cell lymphoma in children and adolescents: results of a randomized trial incorporating intermediate-dose methotrexate and high-dose cytarabine in the maintenance phase of the APO regimen: a Pediatric Oncology Group phase III trial. J Clin Oncol. 2005;23(3):541-547. PubMed

Lowe EJ, Sposto R, Perkins SL, et al. ; Children’s Cancer Group Study 5941 . Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52(3):335-339. PubMed PMC

Morris SW, Kirstein MN, Valentine MB, et al. . Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281-1284. doi:10.1126/science.8122112 PubMed

Zamo A, Chiarle R, Piva R, et al. . Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene. 2002;21(7):1038-1047. PubMed

Chiarle R, Simmons WJ, Cai H, et al. . Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11(6):623-629. PubMed

Turner SD, Alexander DR. Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells. Leukemia. 2006;20(4):572-582. PubMed

Cui Y-X, Kerby A, McDuff FKE, Ye H, Turner SD. NPM-ALK inhibits the p53 tumor suppressor pathway in an MDM2 and JNK-dependent manner. Blood. 2009;113(21):5217-5227. PubMed

Morris SW, Naeve C, Mathew P, et al. . ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK) [published correction appears in Oncogene. 1997;15(23):2883]. Oncogene. 1997;14(18):2175-2188. PubMed

Pulford K, Lamant L, Morris SW, et al. . Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood. 1997;89(4):1394-1404. PubMed

Mossé YP, Voss SD, Lim MS, et al. . Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: A Children’s Oncology Group study. J Clin Oncol. 2017;35(28):3215-3221. PubMed PMC

Balis FM, Thompson PA, Mosse YP, et al. . First-dose and steady-state pharmacokinetics of orally administered crizotinib in children with solid tumors: a report on ADVL0912 from the Children’s Oncology Group Phase 1/Pilot Consortium. Cancer Chemother Pharmacol. 2017;79(1):181-187. PubMed PMC

Mossé YP, Lim MS, Voss SD, et al. . Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14(6):472-480. PubMed PMC

Brugières L, Houot R, Cozic N, et al. . Crizotinib in advanced ALK+ anaplastic large cell lymphoma in children and adults: results of the Acs© phase II trial. Blood. 2017;130(suppl 1)):2831.

Garraway LA, Jänne PA. Circumventing cancer drug resistance in the era of personalized medicine. Cancer Discov. 2012;2(3):214-226. PubMed

Stewart EL, Tan SZ, Liu G, Tsao M-S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res. 2015;4(1):67-81. 10.3978/j.issn.2218-6751.2014.11.06 PubMed PMC

Davies HT, Crombie IK. Bias in cohort studies. Hosp Med. 2000;61(2):133-135. PubMed

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. PubMed

Travis WD, Brambilla E, Nicholson AG, et al. ; WHO Panel . The 2015 World Health Organization Classification of Lung Tumors: impact of genetic, clinical and radiologic advances since the 2004 Classification. J Thorac Oncol. 2015;10(9):1243-1260. PubMed

Shiramizu B, Mussolin L, Woessmann W, Klapper W. Paediatric non-Hodgkin lymphoma - perspectives in translational biology. Br J Haematol. 2016;173(4):617-624. PubMed PMC

Konermann S, Brigham MD, Trevino AE, et al. . Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583-588. PubMed PMC

Joung J, Konermann S, Gootenberg JS, et al. . Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening [published correction appears in Nat Protoc. 2019;14,2259(2019)]. Nat Protoc. 2017;12(4):828-863. PubMed PMC

Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783-784. PubMed PMC

Costa DB, Kobayashi S, Pandya SS, et al. . CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):e443-e445. PubMed

Katayama R, Sakashita T, Yanagitani N, et al. . P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine. 2015;3:54-66. PubMed PMC

Trigg RM, Lee LC, Prokoph N, et al. . The targetable kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma independent of MYCN status. Nat Commun. 2019;10(1):5428. PubMed PMC

Wilson FH, Johannessen CM, Piccioni F, et al. . A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27(3):397-408. PubMed PMC

Li W, Xu H, Xiao T, et al. . MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15(12):554. PubMed PMC

Weilemann A, Grau M, Erdmann T, et al. . Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma. Blood. 2015;125(1):124-132. PubMed

Bandini C, Pupuleku A, Spaccarotella E, et al. . IRF4 mediates the oncogenic effects of STAT3 in anaplastic large cell lymphomas. Cancers (Basel). 2018;10(1):21. PubMed PMC

Schleussner N, Merkel O, Costanza M, et al. . The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia. 2018;32(9):1994-2007. PubMed PMC

Redaelli S, Ceccon M, Zappa M, et al. . Lorlatinib treatment elicits multiple on- and off-target mechanisms of resistance in ALK-driven cancer. Cancer Res. 2018;78(24):6866-6680. doi:10.1158/0008-5472.CAN-18-1867 PubMed

Ceccon M, Mologni L, Bisson W, Scapozza L, Gambacorti-Passerini C. Crizotinib-resistant NPM-ALK mutants confer differential sensitivity to unrelated Alk inhibitors. Mol Cancer Res. 2013;11(2):122-132. PubMed

Ceccon M, Merlo MEB, Mologni L, et al. . Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35(29):3854-3865. PubMed PMC

Redaelli S, Ceccon M, Antolini L, et al. . Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-ALK positive lymphoma. Oncotarget. 2016;7(45):72886-72897. PubMed PMC

Katayama R, Khan TM, Benes C, et al. . Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci USA. 2011;108(18):7535-7540. PubMed PMC

Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci USA. 2006;103(26):9964-9969. PubMed PMC

Prutsch N, Gurnhofer E, Suske T, et al. . Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia. 2019;33(3):696-709. 10.1038/s41375-018-0239-1 PubMed PMC

Knörr F, Damm-Welk C, Ruf S, et al. . Blood cytokine concentrations in pediatric patients with anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2018;103(3):477-485. PubMed PMC

Abramov D, Oschlies I, Zimmermann M, et al. . Expression of CD8 is associated with non-common type morphology and outcome in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Haematologica. 2013;98(10):1547-1553. PubMed PMC

Woessmann W, Oschlies IMG. Intensification with HD-MTX, HD-Arac/VP-16 did not improve the outcome of high risk pediatric ALCL - results from the trial NHL-BFM95. J Pediatr Hematol Oncol. 2003;25:S4.

Pomari E, Basso G, Bresolin S, et al. . NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma. Leukemia. 2017;31(2):498-501. PubMed

Iqbal J, Wright G, Wang C, et al. ; Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project . Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915-2923. PubMed PMC

Piccaluga PP, Agostinelli C, Califano A, et al. . Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117(3):823-834. PubMed PMC

Eckerle S, Brune V, Döring C, et al. . Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia. 2009;23(11):2129-2138. PubMed

Iqbal J, Weisenburger DD, Greiner TC, et al. ; International Peripheral T-Cell Lymphoma Project . Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026-1036. PubMed PMC

Scarfò I, Pellegrino E, Mereu E, et al. ; European T-Cell Lymphoma Study Group . Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127(2):221-232. PubMed

Piva R, Chiarle R, Manazza AD, et al. . Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006;107(2):689-697. PubMed PMC

Piva R, Pellegrino E, Mattioli M, et al. . Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest. 2006;116(12):3171-3182. PubMed PMC

Kang BH, Jensen KJ, Hatch JA, Janes KA. Simultaneous profiling of 194 distinct receptor transcripts in human cells. Sci Signal. 2013;6(287):rs13. PubMed PMC

Béguelin W, Sawh S, Chambwe N, et al. . IL10 receptor is a novel therapeutic target in DLBCLs. Leukemia. 2015;29(8):1684-1694. PubMed

Spaccarotella E, Pellegrino E, Ferracin M, et al. . STAT3-mediated activation of microRNA cluster 17∼92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica. 2014;99(1):116-124. PubMed PMC

Liu C, Iqbal J, Teruya-Feldstein J, et al. . MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood. 2013;122(12):2083-2092. PubMed PMC

Hoareau-Aveilla C, Valentin T, Daugrois C, et al. . Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest. 2015;125(9):3505-3518. PubMed PMC

Menotti M, Ambrogio C, Cheong T-C, et al. . Wiskott–Aldrich syndrome protein (WASP) is a tumor suppressor in T cell lymphoma. Nat Med. 2019;25(1):130-140. PubMed PMC

Durant L, Watford WT, Ramos HL, et al. . Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity. 2010;32(5):605-615. PubMed PMC

Nagai H, Fukano R, Sekimizu M, et al. . Phase II trial of CH5424802 (alectinib hydrochloride) for recurrent or refractory ALK-positive anaplastic large cell lymphoma: study protocol for a non-randomized non-controlled trial. Nagoya J Med Sci. 2017;79(3):407-413. 10.18999/nagjms.79.3.407 PubMed PMC

Geoerger B, Schulte J, Zwaan CM, et al. . Phase I study of ceritinib in pediatric patients (Pts) with malignancies harboring a genetic alteration in ALK (ALK+): safety, pharmacokinetic (PK), and efficacy results. J Clin Oncol. 2015;33(15 suppl):10005 doi:10.1200/jco.2015.33.15_suppl.10005

Gambacorti Passerini C, Farina F, Stasia A, et al. . Crizotinib in advanced, chemoresistant anaplastic lymphoma kinase-positive lymphoma patients. J Natl Cancer Inst. 2014;106(2):djt378. PubMed

Gambacorti-Passerini C, Mussolin L, Brugieres L. Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med. 2016;374(1):95-96. PubMed

Gambacorti-Passerini C, Messa C, Pogliani EM. Crizotinib in anaplastic large-cell lymphoma. N Engl J Med. 2011;364(8):775-776. PubMed

Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19(1):683-765. PubMed

Boulland M-L, Meignin V, Leroy-Viard K, et al. . Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol. 1998;153(4):1229-1237. PubMed PMC

Bonzheim I, Irmler M, Klier-Richter M, et al. . Identification of C/EBPβ target genes in ALK+ anaplastic large cell lymphoma (ALCL) by gene expression profiling and chromatin immunoprecipitation. PLoS One. 2013;8(5):e64544. PubMed PMC

Werner MT, Zhang Q, Wasik MA. From pathology to precision medicine in anaplastic large cell lymphoma expressing anaplastic lymphoma kinase (ALK+ ALCL). Cancers (Basel). 2017;9(10):138. PubMed PMC

Furtek SL, Backos DS, Matheson CJ, Reigan P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol. 2016;11(2):308-318. PubMed

Reilley MJ, McCoon P, Cook C, et al. . STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trial. J Immunother Cancer. 2018;6(1):119. PubMed PMC

Williams D, Mori T, Reiter A, et al. ; European Intergroup for Childhood Non-Hodgkin Lymphoma, the Japanese Pediatric Leukemia/Lymphoma Study Group . Central nervous system involvement in anaplastic large cell lymphoma in childhood: results from a multicentre European and Japanese study. Pediatr Blood Cancer. 2013;60(10):E118-E121. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Targeting NRAS via miR-1304-5p or farnesyltransferase inhibition confers sensitivity to ALK inhibitors in ALK-mutant neuroblastoma

. 2024 Apr 23 ; 15 (1) : 3422. [epub] 20240423

STAT3 couples activated tyrosine kinase signaling to the oncogenic core transcriptional regulatory circuitry of anaplastic large cell lymphoma

. 2024 Mar 19 ; 5 (3) : 101472.

Patient-derived xenograft models of ALK+ ALCL reveal preclinical promise for therapy with brigatinib

. 2023 Sep ; 202 (5) : 985-994. [epub] 20230625

Targeting CCR7-PI3Kγ overcomes resistance to tyrosine kinase inhibitors in ALK-rearranged lymphoma

. 2023 Jun 28 ; 15 (702) : eabo3826. [epub] 20230628

PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma

. 2022 Aug 31 ; 21 (1) : 172. [epub] 20220831

Tyrosine phosphatases regulate resistance to ALK inhibitors in ALK+ anaplastic large cell lymphoma

. 2022 Feb 03 ; 139 (5) : 717-731.

BRG1 and NPM-ALK Are Co-Regulated in Anaplastic Large-Cell Lymphoma; BRG1 Is a Potential Therapeutic Target in ALCL

. 2021 Dec 29 ; 14 (1) : . [epub] 20211229

Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL

. 2021 Nov 29 ; 13 (23) : . [epub] 20211129

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace