Sulphonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation
Language English Country Germany Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- anion recognition, electron-withdrawing groups, host-guest systems, sulphonamides, urea-based receptors,
- MeSH
- Alkylation MeSH
- Anions MeSH
- Electrons MeSH
- Phosphoric Acids chemistry MeSH
- Urea chemistry MeSH
- Proton Magnetic Resonance Spectroscopy MeSH
- Protons MeSH
- Spectrophotometry, Ultraviolet MeSH
- Sulfonamides chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anions MeSH
- Phosphoric Acids MeSH
- Urea MeSH
- phosphoric acid MeSH Browser
- Protons MeSH
- Sulfonamides MeSH
A sulphonamidic moiety was utilized as an electron-withdrawing group for enhancement of anion complexation features of urea-based receptors. A series of receptors varying in acidity of sulphonamidic and urea NH groups was synthesized and thoroughly tested. The individual complexation properties reflect deprotonation/complexation equilibrium in a given molecule as a function of the substitution. The receptors containing electron-donating groups in conjugation to the sulphonamidic moiety showed higher association constants towards H2 PO4- and carboxylate anions, while those containing electron-withdrawing groups inclined to deprotonation of sulphonamidic NH. The deprotonation issue can be avoided by alkylation at the early step of receptor synthesis or it can be utilized for insertion of suitable groups that enable its anchoring on various substrates to form more elaborated receptor structures.
See more in PubMed
J. L. Sessler, P. A. Gale, W. S. Cho, Anion Receptor Chemistry, The Royal Soc. Of Chemistry, Cambridge 2006;
N. Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038-8155;
P. A. Gale, E. N. W. Howe, X. Wu, Chem. 2016, 1, 351-422.
P. A. Gale, W. Dehaen, Anion Recognition in Supramolecular Chemistry, Top. Heterocycl. Chem., 24, Springer-Verlag, Berlin Heidelberg 2011.
C. R. Bondy, S. J. Loeb, Coord. Chem. Rev. 2003, 240, 77-99.
V. Amendola, L. Fabbrizzi, L. Mosca, Chem. Soc. Rev. 2010, 39, 3889-3915;
A. F. Li, J. H. Wang, F. Wang, Y. B. Jiang, Chem. Soc. Rev. 2010, 39, 3729-3745.
I. Stibor, J. Budka, V. Michlová, M. Tkadlecová, M. Pojarová, P. Cuřínová, P. Lhoták, New J. Chem. 2008, 9, 1597-1607;
W. Van Rossom, J. Caers, K. Robeyns, L. Van Meervelt, W. Maes, W. Dehaen, J. Org. Chem. 2012, 77, 2791-279.
T. Klejch, J. Slavíček, O. Hudeček, V. Eigner, N. A. Gutierrez, P. Cuřínová, P. Lhoták, New J. Chem. 2016, 40, 7935-7942.
F. Hu, M. Cao, J. Huang, Z. Chen, D. Wu, Z. Xu, S. H. Liu, J. Yin, Dyes Pigm. 2015, 119, 108-115.
V. Amendola, L. Fabbrizzi, L. Mosca, F. P. Schmidtchen, Chem. Eur. J. 2011, 17, 5972-5981;
S. V. Shinde, P. Talukdar, Chem. Commun. 2018, 54, 10351-10354;
B. Kuswandi, N. Nuriman, W. Verboom, D. N. Reinhoudt, Sensors 2006, 6, 978-1017.
C. Caltagirone, G. W. Bates, P. A. Gale, M. E. Light, Chem. Commun. 2008, 1, 61-63.
O. Exner, A Critical Compilation of Substituent Constants, in Correlation Analysis in Chemistry, N. B. Chapman, J. Shorter eds., Plenum, New York 1978, 439-540.
R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger, T. Gunnlaugsson, Chem. Soc. Rev. 2010, 39, 3936-3953;
M. E. Moragues, R. Martínes-Mañez, F. Sancenon, Chem. Soc. Rev. 2011, 40, 2593-2643;
L. E. Santos-Figueroa, M. E. Moragues, E. Climent, A. Agostini, R. Martínes-Mañez, F. Sancenon, Chem. Soc. Rev. 2013, 42, 3489-3613.
K. Hirose, J. Incl. Phenom. Macro. 2001, 39, 193-209;
P. Thordarson, Chem. Soc. Rev. 2011, 40, 1305-1323.
http://app.supramolecular.org/bindfit/.
T. P. Lin, C. Y. Chen, Y. S. Wen, S. S. Sun, Inorg. Chem. 2007, 46, 9201-9212;
B. B. Touré, K. Miller-Moslin, N. Yusuff, L. Perez, M. Doré, C. Joud, W. Michael, L. DiPietro, S. van der Plas, M. McEwan, F. Lenoir, M. Hoe, R. Karki, C. Springer, J. Sullivan, K. Levine, C. Fiorilla, X. Xie, R. Kulathila, K. Herlihy, D. Porter, M. Visser, ACS Med. Chem. Lett. 2013, 4, 186-190.
E. Brillas, G. Farnia, M. G. Severin, E. Vianello, Electrochim. Acta 1986, 31, 759.
S. Ram, R. E. Ehrenkaufer, Tetrahedron Lett. 1984, 26, 3415-3418.
U. Fleischer, W. Kutzelnigg, A. Bleiber, J. Sauer, J. Am, Chem. Soc. 1993, 115, 7833-7838.
M. Boiocchi, L. Del Boca, D. E. Gómez, L. Fabbrizzi, M. Licchelli, E. Monzani, J. Am. Chem. Soc. 2004, 50, 16507-16514.
P. Job, Ann. Chim. Appl. 1928, 9, 113-20;
K. Hirose in Quantitative Analysis of Binding Properties, Analytical Methods in Supramolecular Chemistry, Wiley-VCH Verlag 2012, 27-66.
M. Remko, J. Mol. Struc.-THEOCHEM 2010, 1, 34-42.
H. Lund, Cathodic Reduction of Nitro and related Compounds, in Organic electrochemistry, H. Lund, M. M. Baizer eds., Marcel Dekker, New York 1991, 413.
M. Meldal, C. W. Tornøe, Chem. Rev. 2008, 108, 2952-3015;
V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708-2711;
Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
G. H. Young, J. Am, Chem. Soc. 1934, 56, 2167.
G. M. Sheldrick, SHELXL-2017/1, Program for the Solution of Crystal Structures, University of Göttingen, Germany.
P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
A. Liška, P. Vojtíšek, A. J. Fry, J. Ludvík, J. Org. Chem., 2013, 78, 10651-10656.
Z. Zhao, Y. Liang, C. Zhao, B. Wang, Synth. Commun. 2018, 12, 1436-1442.
Chemoselective Electrochemical Cleavage of Sulfonimides as a Direct Way to Sulfonamides