Colorectal Adenocarcinomas Harboring ALK Fusion Genes: A Clinicopathologic and Molecular Genetic Study of 12 Cases and Review of the Literature
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, multicentrická studie, přehledy
Grantová podpora
ZIA BC011427
Intramural NIH HHS - United States
PubMed
32804454
PubMed Central
PMC9440614
DOI
10.1097/pas.0000000000001512
PII: 00000478-202009000-00008
Knihovny.cz E-zdroje
- MeSH
- adenokarcinom chemie genetika sekundární terapie MeSH
- anaplastická lymfomová kináza genetika MeSH
- fenotyp MeSH
- fúze genů * MeSH
- genetická predispozice k nemoci MeSH
- genová přestavba * MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- kolorektální nádory chemie genetika patologie terapie MeSH
- lidé MeSH
- lymfatické metastázy MeSH
- mutace MeSH
- mutační analýza DNA MeSH
- nádorové biomarkery analýza genetika MeSH
- senioři MeSH
- staging nádorů MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
- Japonsko MeSH
- Spojené státy americké MeSH
- Názvy látek
- ALK protein, human MeSH Prohlížeč
- anaplastická lymfomová kináza MeSH
- nádorové biomarkery MeSH
This study determined the frequency and the clinicopathologic and genetic features of colorectal carcinomas driven by oncogenic fusions of the anaplastic lymphoma kinase gene (ALK). Of the 8150 screened tumors, 12 (0.15%) were immunohistochemically ALK-positive with D5F3 antibody. These cancers harbored CAD-ALK (n=1), DIAPH2-ALK (n=2), EML4-ALK (n=2), LOC101929227-ALK (n=1), SLMAP-ALK (n=1), SPTBN1-ALK (n=4), and STRN-ALK (n=1) fusions, as detected by an RNA-based next-generation sequencing assay. ALK fusion carcinomas were diagnosed mostly in older patients with a 9:3 female predominance (median age: 72 y). All tumors, except a rectal one, occurred in the right colon. Most tumors were stage T3 (n=7) or T4 (n=3). Local lymph node and distant metastases were seen at presentation in 9 and 2 patients. These tumors showed moderate (n=6) or poor (n=3) glandular differentiation, solid medullary growth pattern (n=2), and pure mucinous morphology (n=1). DNA mismatch repair-deficient phenotype was identified in 10 cases. Tumor-infiltrating lymphocytes were prominent in 9 carcinomas. In 4 carcinomas, tumor cells showed strong, focal (n=3), or diffuse programmed death-ligand 1 immunoreactivity. CDX2 expression and loss of CK20 and MUC2 expression were frequent. CK7 was expressed in 5 tumors. Four patients died of disease within 3 years, and 7 were alive with follow-up ranging from 1 to 8 years. No mutations in BRAF, RAS, and in genes encoding components of PI3K-AKT/MTOR pathway were identified. However, 1 tumor had a loss-of-function PTEN mutation. Aberration of p53 signaling, TP53 mutations, and/or nuclear accumulation of p53 protein was seen in 9 cases. ALK fusion colorectal carcinomas are a distinct and rare subtype of colorectal cancers displaying some features of mismatch repair-deficient tumors.
Department of Experimental Pathology and Tumor Biology Nagoya City University Nagoya Japan
Department of Pathology and Laboratory Medicine Milan Italy
Department of Pathology Central Clinical Hospital of the Ministry of Interior
Department of Pathology Nagoya City East Medical Center
Department of Pathology Pomeranian Medical University
Department of Pathology West Pomeranian Specialist Hospital Gryfice
Department of Pathology Zhongshan Hospital Fudan University Shanghai People's Republic of China
Department of Pathomorphology and Oncological Cytology Medical University of Wroclaw Wrocław
Department of Pathomorphology Jagiellonian University
Departments of Biology and Genetics
Departments of Molecular Diagnostics
Division of Medical Biology Institute of Biology
Education and Research Center for Advanced Medicine
Faculty of Health Sciences Jan Kochanowski University Kielce
Faculty of Medicine Lazarski University
Health Sciences and Physical Education University of Technology and Humanities Radom
Independent Laboratory of Pathology Zdunomed Szczecin
Institute of Pathology University Hospital of Erlangen Erlangen Germany
Laboratory of Pathology National Cancer Institute Bethesda MD
Pathology and Neuropathology Medical University of Gdansk Gdansk
Zobrazit více v PubMed
Menter DG, Davis JS, Broom BM, Overman MJ, Morris J, Kopetz S. Back to the Colorectal Cancer Consensus Molecular Subtype Future. Curr Gastroenterol Rep. 2019;21:5. PubMed PMC
Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 2015;7:129. PubMed PMC
Stransky N, Cerami E, Schalm S, et al. The landscape of kinase fusions in cancer. Nat Commun. 2014;5:4846. PubMed PMC
Kloosterman WP, Coebergh van den Braak RRJ, Pieterse M, et al. A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer. Cancer Res. 2017;77:3814–3822. PubMed
Choi Y, Kwon CH, Lee SJ, et al. Integrative analysis of oncogenic fusion genes and their functional impact in colorectal cancer. Br J Cancer. 2018;119:230–240. PubMed PMC
Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–1284. PubMed
Iwahara T, Fujimoto J, Wen D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 1997;14:439–449. PubMed
Holla VR, Elamin YY, Bailey AM, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud. 2017;3:a001115. PubMed PMC
Menichincheri M, Ardini E, Magnaghi P, et al. Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J Med Chem. 2016;59:3392–3408. PubMed
Rolfo C, Ruiz R, Giovannetti E, et al. Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs. 2015;24:1493–1500. PubMed
Amatu A, Somaschini A, Cerea G, et al. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer. Br J Cancer. 2015;113:1730–1734. PubMed PMC
Aisner DL, Nguyen TT, Paskulin DD, et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res. 2014;12:111–118. PubMed PMC
Eddy S, Toile M, Brick ME et al. Expanded clinical opportunities for crizotinib from an analysis of over 5,000 cancer patient exomes. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. 2013. abstract C256.
Houang M, Toon CW, Clarkson A, et al. ALK and ROS1 overexpression is very rare in colorectal adenocarcinoma. Appl Immunohistochem Mol Morphol. 2015;23:134–138. PubMed
Lai AZ, Schrock AB, Erlich RL, et al. Detection of an ALK Fusion in Colorectal Carcinoma by Hybrid Capture-Based Assay of Circulating Tumor DNA. Oncologist. 2017;22:774–779. PubMed PMC
Lee J, Kim HC, Hong JY, et al. Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening. Oncotarget. 2015;6:24320–24332. PubMed PMC
Lee CH, Lee CT, Chen YL et al. Detection of anaplastic lymphoma kinase gene rearrangement in a patient with right colon cancer. J Cancer Res Pract. 2019;6:89–91
Lin E, Li L, Guan Y, Rivers CS, Mohan S, Pandita A, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol CancerRes. 2009;7:1466–1476. PubMed
Lipson D, Capelletti M, Yelensky R, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–384. PubMed PMC
Pietrantonio F, Di Nicolantonio F, Schrock AB, et al. ALK, ROS1, and NTRK Rearrangements in Metastatic Colorectal Cancer. J Natl Cancer Inst. 2017;109(12). PubMed
Wang J, Yi Y, Xiao Y, et al. Prevalence of recurrent oncogenic fusion in mismatch repair-deficient colorectal carcinoma with hypermethylated MLH1 and wild-type BRAF and KRAS. Mod Pathol. 2019;32:1053–1064. PubMed
Yakirevich E, Resnick MB, Mangray S, et al. Oncogenic ALK Fusion in Rare and Aggressive Subtype of Colorectal Adenocarcinoma as a Potential Therapeutic Target. Clin Cancer Res. 2016;22:3831–3840. PubMed
Ying J, Lin C, Wu J, et al. Anaplastic Lymphoma Kinase Rearrangement in Digestive Tract Cancer: Implication for Targeted Therapy in Chinese Population. PLoS One. 2015;10:e0144731. PubMed PMC
Lasota J, Chłopek M, Lamoureux J, et al. Colonic Adenocarcinomas Harboring NTRK Fusion Genes: A Clinicopathologic and Molecular Genetic Study of 16 Cases and Review of the Literature. Am J Surg Pathol. 2020;44:162–173. PubMed PMC
Nagtegaal ID, Arends MJ, Salto-Tellez M. Colorectal adenocarcinoma. In: WHO Classification of Tumours: Digestive System Tumours, 5th ed., International Agency for Research on Cancer, Lyon, France, 2019, pp. 177–187.
Greenson JK, Huang SC, Herron C, et al. Pathologic predictors of microsatellite instability in colorectal cancer. Am J Surg Pathol. 2009;33:126–133. PubMed PMC
Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–566. PubMed
Sokai A, Enaka M, Sokai R, et al. Pulmonary inflammatory myofibroblastic tumor harboring EML4-ALK fusion gene. Jpn J Clin Oncol. 2014;44:93–96. PubMed
Lin E, Li L, Guan Y, et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol CancerRes. 2009;7:1466–1476. PubMed
Shen Q, Wang X, Yu B, et al. Comparing four different ALK antibodies with manual immunohistochemistry (IHC) to screen for ALK-rearranged non-small cell lung cancer (NSCLC). Lung Cancer. 2015;90:492–498. PubMed
Houtman SH, Rutteman M, De Zeeuw CI, et al. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience. 2007;144:1373–1382. PubMed
Gu FF, Zhang Y, Liu YY, et al. Lung adenocarcinoma harboring concomitant SPTBN1-ALK fusion, c-Met overexpression, and HER-2 amplification with inherent resistance to crizotinib, chemotherapy, and radiotherapy. J Hematol Oncol. 2016;9:66. PubMed PMC
Grand FH, Iqbal S, Zhang L, et al. A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp Hematol. 2007;35:1723–1727. PubMed
Gallagher G, Horsman DE, Tsang P, et al. Fusion of PRKG2 and SPTBN1 to the platelet-derived growth factor receptor beta gene (PDGFRB) in imatinib-responsive atypical myeloproliferative disorders. Cancer Genet Cytogenet. 2008;181:46–51. PubMed
An X, Guo X, Gratzer W, et al. Phospholipid binding by proteins of the spectrin family: a comparative study. Biochem Biophys Res Commun. 2005;327:794–800. PubMed
Liem RK. Cytoskeletal Integrators: The Spectrin Superfamily. Cold Spring Harb Perspect Biol. 2016. Oct 3;8(10). PubMed PMC
Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111:4233–4238. PubMed PMC
Kusano H, Togashi Y, Akiba J, et al. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am J Surg Pathol. 2016;40:761–769. PubMed
Tang Y, Chen M, Zhou L, et al. Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov. 2019;5:3. PubMed PMC
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol. 2014;47:118–148. PubMed PMC
Shi Z, Jiao S, Zhou Z. STRIPAK complexes in cell signaling and cancer. Oncogene. 2016;35:4549–4557. PubMed
Pagan C, Barua S, Hsiao SJ, et al. Targeting SLMAP-ALK-a novel gene fusion in lung adenocarcinoma. Cold Spring Harb Mol Case Stud. 2019;5(3). PubMed PMC
Simmer JP, Kelly RE, Rinker AG Jr, et al. Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD. Proc Natl Acad Sci U S A. 1990;87:174–178. PubMed PMC
Koch J, Mayr JA, Alhaddad B, et al. CAD mutations and uridine-responsive epileptic encephalopathy. Brain. 2017;140:279–286. PubMed
Bione S, Sala C, Manzini C, et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet. 1998;62:533–541. PubMed PMC
Huang H.Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: A Catalytic Receptor with Many Faces. Int J Mol Sci. 2018;19(11). PubMed PMC
Lee GH, Malietzis G, Askari A, et al. Is right-sided colon cancer different to left-sided colorectal cancer? - a systematic review. Eur J Surg Oncol. 2015;41:300–308. PubMed
Loree JM, Pereira AAL, Lam M, et al. Classifying Colorectal Cancer by Tumor Location Rather than Sidedness Highlights a Continuum in Mutation Profiles and Consensus Molecular Subtypes. Clin Cancer Res. 2018;24:1062–1072. PubMed PMC
Langner C, Harbaum L, Pollheimer MJ, et al. Mucinous differentiation in colorectal cancer--indicator of poor prognosis? Histopathology. 2012;60:1060–1072. PubMed
Kim JH, Rhee YY, Bae JM, et al. Loss of CDX2/CK20 expression is associated with poorly differentiated carcinoma, the CpG island methylator phenotype, and adverse prognosis in microsatellite-unstable colorectal cancer. Am J Surg Pathol. 2013;37:1532–1541. PubMed
Yamagishi H, Imai Y, Okamura T, et al. Aberrant cytokeratin expression as a possible prognostic predictor in poorly differentiated colorectal carcinoma. J Gastroenterol Hepatol. 2013;28:1815–1822. PubMed
Li C, Zuo D, Yin L, et al. Prognostic Value of MUC2 Expression in Colorectal Cancer: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract. 2018;2018:6986870. PubMed PMC
Williams DS, Mouradov D, Jorissen RN, et al. Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes. Gut. 2019;68:465–474. PubMed
Inaguma S, Lasota J, Wang Z, et al. Clinicopathologic profile, immunophenotype, and genotype of CD274 (PD-L1)-positive colorectal carcinomas. Mod Pathol. 2017;30:278–285. PubMed PMC
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 2018;17:115. PubMed PMC
Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, van Es JH, Mohammed S, Heck AJ, Maurice MM, Clevers H. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–669. PubMed