Key Mechanistic Principles and Considerations Concerning RNA Interference
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
32903622
PubMed Central
PMC7438612
DOI
10.3389/fpls.2020.01237
Knihovny.cz E-resources
- Keywords
- RNAi, argonaute, dicer, dsRNA, miRNA, off-targeting,
- Publication type
- Journal Article MeSH
- Review MeSH
Canonical RNAi, one of the so-called RNA-silencing mechanisms, is defined as sequence-specific RNA degradation induced by long double-stranded RNA (dsRNA). RNAi occurs in four basic steps: (i) processing of long dsRNA by RNase III Dicer into small interfering RNA (siRNA) duplexes, (ii) loading of one of the siRNA strands on an Argonaute protein possessing endonucleolytic activity, (iii) target recognition through siRNA basepairing, and (iv) cleavage of the target by the Argonaute's endonucleolytic activity. This basic pathway diversified and blended with other RNA silencing pathways employing small RNAs. In some organisms, RNAi is extended by an amplification loop employing an RNA-dependent RNA polymerase, which generates secondary siRNAs from targets of primary siRNAs. Given the high specificity of RNAi and its presence in invertebrates, it offers an opportunity for highly selective pest control. The aim of this text is to provide an introductory overview of key mechanistic aspects of RNA interference for understanding its potential and constraints for its use in pest control.
See more in PubMed
Ameres S. L., Martinez J., Schroeder R. (2007). Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101–112. 10.1016/j.cell.2007.04.037 PubMed DOI
Aoki K., Moriguchi H., Yoshioka T., Okawa K., Tabara H. (2007). In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 26, 5007–5019. 10.1038/sj.emboj.7601910 PubMed DOI PMC
Bachman P. M., Bolognesi R., Moar W. J., Mueller G. M., Paradise M. S., Ramaseshadri P., et al. (2013). Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res. 22, 1207–1222. 10.1007/s11248-013-9716-5 PubMed DOI PMC
Baum J. A., Bogaert T., Clinton W., Heck G. R., Feldmann P., Ilagan O., et al. (2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326. 10.1038/nbt1359 PubMed DOI
Bhatia V., Bhattacharya R., Uniyal P. L., Singh R., Niranjan R. S. (2012). Host Generated siRNAs Attenuate Expression of Serine Protease Gene in Myzus persicae. PloS One 7, e46343–e46343. 10.1371/journal.pone.0046343 PubMed DOI PMC
Billi A. C., Fischer S. E., Kim J. K. (2014). Endogenous RNAi pathways in C. elegans. WormBook, ed. The C. elegans Research Community, WormBook; 1–49. 10.1895/wormbook.1.170.1 PubMed DOI PMC
Bologna N. G., Voinnet O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65, 473–503. 10.1146/annurev-arplant-050213-035728 PubMed DOI
Borges F., Martienssen R. A. (2015). The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741. 10.1038/nrm4085 PubMed DOI PMC
Brodersen P., Sakvarelidze-Achard L., Bruun-Rasmussen M., Dunoyer P., Yamamoto Y. Y., Sieburth L., et al. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190. 10.1126/science.1159151 PubMed DOI
Buck A. H., Blaxter M. (2013). Functional diversification of Argonautes in nematodes: an expanding universe. Biochem. Soc. Trans. 41, 881–886. 10.1042/BST20130086 PubMed DOI PMC
Burroughs A. M., Ando Y., De Hoon M. J. L., Tomaru Y., Suzuki H., Hayashizaki Y., et al. (2011). Deep-sequencing of human argonaute-associated small RNAs provides insight into miRNA sorting and reveals argonaute association with RNA fragments of diverse origin. RNA Biol. 8, 158–177. 10.4161/rna.8.1.14300 PubMed DOI PMC
Cai Q., He B., Kogel K. H., Jin H. (2018). Cross-kingdom RNA trafficking and environmental RNAi-nature’s blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46, 58–64. 10.1016/j.mib.2018.02.003 PubMed DOI PMC
Cappelle K., De Oliveira C. F., Van Eynde B., Christiaens O., Smagghe G. (2016). The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol. Biol. 25, 315–323. 10.1111/imb.12222 PubMed DOI
Cerutti H., Casas-Mollano J. A. (2006). On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 50, 81–99. 10.1007/s00294-006-0078-x PubMed DOI PMC
Chandradoss S. D., Schirle N. T., Szczepaniak M., Macrae I. J., Joo C. (2015). A Dynamic Search Process Underlies MicroRNA Targeting. Cell 162, 96–107. 10.1016/j.cell.2015.06.032 PubMed DOI PMC
Chen P. Y., Weinmann L., Gaidatzis D., Pei Y., Zavolan M., Tuschl T., et al. (2008). Strand-specific 5 ‘-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Rna-a Publ. RNA Soc. 14, 263–274. 10.1261/rna.789808 PubMed DOI PMC
Chen Y. H., Jia X. T., Zhao L., Li C. Z., Zhang S. A., Chen Y. G., et al. (2011). Identification and functional characterization of Dicer2 and five single VWC domain proteins of Litopenaeus vannamei. Dev. Comp. Immunol. 35, 661–671. 10.1016/j.dci.2011.01.010 PubMed DOI
Chera S., De Rosa R., Miljkovic-Licina M., Dobretz K., Ghila L., Kaloulis K., et al. (2006). Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J. Cell Sci. 119, 846–857. 10.1242/jcs.02807 PubMed DOI
Correa R. L., Steiner F. A., Berezikov E., Ketting R. F. (2010). MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans. PloS Genet. 6, e1000903. 10.1371/journal.pgen.1000903 PubMed DOI PMC
Czech B., Zhou R., Erlich Y., Brennecke J., Binari R., Villalta C., et al. (2009). Hierarchical Rules for Argonaute Loading in Drosophila. Mol. Cell 36, 445–456. 10.1016/j.molcel.2009.09.028 PubMed DOI PMC
Dalzell J. J., Mcveigh P., Warnock N. D., Mitreva M., Bird D. M., Abad P., et al. (2011). RNAi effector diversity in nematodes. PloS Negl. Trop. Dis. 5, e1176. 10.1371/journal.pntd.0001176 PubMed DOI PMC
Demeter T., Vaskovicova M., Malik R., Horvat F., Pasulka J., Svobodova E., et al. (2019). Main constraints for RNAi induced by expressed long dsRNA in mouse cells. Life Sci. Alliance 2, 1–13. 10.26508/lsa.201800289 PubMed DOI PMC
Deng P., Muhammad S., Wu L. (2018). Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnol. J. 16 (5), 965–975. 10.1111/pbi.12882 PubMed DOI PMC
Ding S. W., Voinnet O. (2007). Antiviral immunity directed by small RNAs. Cell 130, 413–426. 10.1016/j.cell.2007.07.039 PubMed DOI PMC
Dowling D., Pauli T., Donath A., Meusemann K., Podsiadlowski L., Petersen M., et al. (2016). Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects. Genome Biol. Evol. 8, 3784–3793. 10.1093/gbe/evw281 PubMed DOI PMC
Du Q., Thonberg H., Wang J., Wahlestedt C., Liang Z. (2005). A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 33, 1671–1677. 10.1093/nar/gki312 PubMed DOI PMC
Dueck A., Ziegler C., Eichner A., Berezikov E., Meister G. (2012). microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res. 40, 9850–9862. 10.1093/nar/gks705 PubMed DOI PMC
Echeverri C. J., Beachy P. A., Baum B., Boutros M., Buchholz F., Chanda S. K., et al. (2006). Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods 3, 777–779. 10.1038/nmeth1006-777 PubMed DOI
Elkayam E., Kuhn C. D., Tocilj A., Haase A. D., Greene E. M., Hannon G. J., et al. (2012). The Structure of Human Argonaute-2 in Complex with miR-20a. Cell 150, 100–110. 10.1016/j.cell.2012.05.017 PubMed DOI PMC
Elvin M., Snoek L. B., Frejno M., Klemstein U., Kammenga J. E., Poulin G. B. (2011). A fitness assay for comparing RNAi effects across multiple C. elegans genotypes. BMC Genomics 12, 510. 10.1186/1471-2164-12-510 PubMed DOI PMC
Feinberg E. H., Hunter C. P. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547. 10.1126/science.1087117 PubMed DOI
Felix M. A., Ashe A., Piffaretti J., Wu G., Nuez I., Belicard T., et al. (2011). Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PloS Biol. 9, e1000586. 10.1371/journal.pbio.1000586 PubMed DOI PMC
Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811. 10.1038/35888 PubMed DOI
Fluiter K., Mook O. R., Baas F. (2009). The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol. 487, 189–203. 10.1007/978-1-60327-547-7_9 PubMed DOI
Forstemann K., Horwich M. D., Wee L., Tomari Y., Zamore P. D. (2007). Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell 130, 287–297. 10.1016/j.cell.2007.05.056 PubMed DOI PMC
Gantier M. P., Williams B. R. (2007). The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev. 18, 363–371. 10.1016/j.cytogfr.2007.06.016 PubMed DOI PMC
Geldhof P., Visser A., Clark D., Saunders G., Britton C., Gilleard J., et al. (2007). RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134, 609–619. 10.1017/S0031182006002071 PubMed DOI
Ghildiyal M., Xu J., Seitz H., Weng Z. P., Zamore P. D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. Rna-a Publ. RNA Soc. 16, 43–56. 10.1261/rna.1972910 PubMed DOI PMC
Haasnoot J., De Vries W., Geutjes E. J., Prins M., De Haan P., Berkhout B. (2007). The Ebola virus VP35 protein is a suppressor of RNA silencing. PloS Pathog. 3, e86. 10.1371/journal.ppat.0030086 PubMed DOI PMC
Haley B., Zamore P. D. (2004). Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606. 10.1038/nsmb780 PubMed DOI
Haley B., Foys B., Levine M. (2010). Vectors and parameters that enhance the efficacy of RNAi-mediated gene disruption in transgenic Drosophila. Proc. Natl. Acad. Sci. U.S.A. 107, 11435–11440. 10.1073/pnas.1006689107 PubMed DOI PMC
Hannus M., Beitzinger M., Engelmann J. C., Weickert M. T., Spang R., Hannus S., et al. (2014). siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 42, 8049–8061. 10.1093/nar/gku480 PubMed DOI PMC
Himber C., Dunoyer P., Moissiard G., Ritzenthaler C., Voinnet O. (2003). Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J. 22, 4523–4533. 10.1093/emboj/cdg431 PubMed DOI PMC
Holen T., Moe S. E., Sorbo J. G., Meza T. J., Ottersen O. P., Klungland A. (2005). Tolerated wobble mutations in siRNAs decrease specificity, but can enhance activity in vivo . Nucleic Acids Res. 33, 4704–4710. 10.1093/nar/gki785 PubMed DOI PMC
Hoy M. A., Waterhouse R. M., Wu K., Estep A. S., Ioannidis P., Palmer W. J., et al. (2016). Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomised Hox genes and super-dynamic intron evolution. Genome Biol. Evol. 8 (6), 1762–1775. 10.1093/gbe/evw048 PubMed DOI PMC
Huang T. Z., Zhang X. B. (2013). Host defense against DNA virus infection in shrimp is mediated by the siRNA pathway. Eur. J. Immunol. 43, 137–146. 10.1002/eji.201242806 PubMed DOI
Hunter W., Ellis J., Vanengelsdorp D., Hayes J., Westervelt D., Glick E., et al. (2010). Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PloS Pathog. 6, e1001160. 10.1371/journal.ppat.1001160 PubMed DOI PMC
Huvenne H., Smagghe G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227–235. 10.1016/j.jinsphys.2009.10.004 PubMed DOI
Ivashuta S., Zhang Y., Wiggins B. E., Ramaseshadri P., Segers G. C., Johnson S., et al. (2015). Environmental RNAi in herbivorous insects. RNA 21, 840–850. 10.1261/rna.048116.114 PubMed DOI PMC
Jackson A. L., Bartz S. R., Schelter J., Kobayashi S. V., Burchard J., Mao M., et al. (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637. 10.1038/nbt831 PubMed DOI
Jackson A. L., Burchard J., Schelter J., Chau B. N., Cleary M., Lim L., et al. (2006). Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. Rna 12, 1179–1187. 10.1261/rna.25706 PubMed DOI PMC
Jaskiewicz L., Filipowicz W. (2008). Role of Dicer in posttranscriptional RNA silencing. Curr. Top. Microbiol. Immunol. 320, 77–97. 10.1007/978-3-540-75157-1_4 PubMed DOI
Jo M. H., Shin S., Jung S. R., Kim E., Song J. J., Hohng S. (2015. a). Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol. Cell 59, 117–124. 10.1016/j.molcel.2015.04.027 PubMed DOI
Jo M. H., Song J.-J., Hohng S. (2015. b). Single-molecule fluorescence measurements reveal the reaction mechanisms of the core-RISC, composed of human Argonaute 2 and a guide RNA. Bmb Rep. 48, 643–644. 10.5483/BMBRep.2015.48.12.235 PubMed DOI PMC
Jones-Rhoades M. W., Bartel D. P., Bartel B. (2006). “MicroRNAs and their regulatory roles in plants,”. Annu. Rev. Plant Biol.) 19–53. 10.1146/annurev.arplant.57.032905.105218 PubMed DOI
Kang W., Bang-Berthelsen C. H., Holm A., Houben A. J., Muller A. H., Thymann T., et al. (2017). Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA 23, 433–445. 10.1261/rna.059725.116 PubMed DOI PMC
Kennedy E. M., Whisnant A. W., Kornepati A. V., Marshall J. B., Bogerd H. P., Cullen B. R. (2015). Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl. Acad. Sci. U.S.A. 112, E6945–E6954. 10.1073/pnas.1513421112 PubMed DOI PMC
Kennedy E. M., Kornepati A. V., Bogerd H. P., Cullen B. R. (2017). Partial reconstitution of the RNAi response in human cells using Drosophila gene products. RNA 23, 153–160. 10.1261/rna.059345.116 PubMed DOI PMC
Ketting R. F. (2011). The many faces of RNAi. Dev. Cell 20, 148–161. 10.1016/j.devcel.2011.01.012 PubMed DOI
Khajuria C., Ivashuta S., Wiggins E., Flagel L., Moar W., Pleau M., et al. (2018). Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PloS One 13, e0197059. 10.1371/journal.pone.0197059 PubMed DOI PMC
Khvorova A., Reynolds A., Jayasena S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216. 10.1016/S0092-8674(03)00801-8 PubMed DOI
Kim V. N., Han J., Siomi M. C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139. 10.1038/nrm2632 PubMed DOI
Koch A., Biedenkopf D., Furch A., Weber L., Rossbach O., Abdellatef E., et al. (2016). An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PloS Pathog. 12, e1005901. 10.1371/journal.ppat.1005901 PubMed DOI PMC
Kola V. S., Renuka P., Padmakumari A. P., Mangrauthia S. K., Balachandran S. M., Ravindra Babu V., et al. (2016). Silencing of CYP6 and APN Genes Affects the Growth and Development of Rice Yellow Stem Borer, Scirpophaga incertulas. Front. Physiol. 7:20. 10.3389/fphys.2016.00020 PubMed DOI PMC
Komiya R. (2017). Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. J. Plant Res. 130, 17–23. 10.1007/s10265-016-0878-0 PubMed DOI PMC
Konakalla N. C., Kaldis A., Masarapu H., Voloudakis A. E. (2019). Topical application of double stranded RNA molecules deriving from Sesbania mosaic virus (SeMV) CP and MP genes protects Sesbania plants against SeMV. Eur. J. Plant Pathol. 155, 1345–1352. 10.1007/s10658-019-01821-z DOI
Kunte N., Mcgraw E., Bell S., Held D., Avila L. A. (2020). Prospects, challenges and current status of RNAi through insect feeding. Pest Manag. Sci. 76, 26–41. 10.1002/ps.5588 PubMed DOI
Kurscheid S., Lew-Tabor A. E., Valle M. R., Bruyeres A. G., Doogan V. J., Munderloh U. G., et al. (2009). Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol. Biol. 10, 26–26. 10.1186/1471-2199-10-26 PubMed DOI PMC
Lanet E., Delannoy E., Sormani R., Floris M., Brodersen P., Crete P., et al. (2009). Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs. Plant Cell 21, 1762–1768. 10.1105/tpc.108.063412 PubMed DOI PMC
Lau P. W., Guiley K. Z., De N., Potter C. S., Carragher B., Macrae I. J. (2012). The molecular architecture of human Dicer. Nat. Struct. Mol. Biol. 19, 436–440. 10.1038/nsmb.2268 PubMed DOI PMC
Li F., Li P., Yang L. M., Tang B. (2012). Simple and sensitive fluorescence detection of the RNA endonuclease activity of mammalian argonaute2 protein based on an RNA molecular beacon. Chem. Commun. 48, 12192–12194. 10.1039/c2cc36404b PubMed DOI
Lingel A., Simon B., Izaurralde E., Sattler M. (2003). Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469. 10.1038/nature02123 PubMed DOI
Lu R., Maduro M., Li F., Li H. W., Broitman-Maduro G., Li W. X., et al. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043. 10.1038/nature03870 PubMed DOI PMC
Ma J. B., Ye K., Patel D. J. (2004). Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322. 10.1038/nature02519 PubMed DOI PMC
Ma Y., Creanga A., Lum L., Beachy P. A. (2006). Prevalence of off-target effects in Drosophila RNA interference screens. Nature 443, 359–363. 10.1038/nature05179 PubMed DOI
Macrae I. J., Zhou K., Li F., Repic A., Brooks A. N., Cande W. Z., et al. (2006). Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198. 10.1126/science.1121638 PubMed DOI
Macrae I. J., Zhou K., Doudna J. A. (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940. 10.1038/nsmb1293 PubMed DOI
Maida Y., Masutomi K. (2011). RNA-dependent RNA polymerases in RNA silencing. Biol. Chem. 392, 299–304. 10.1515/bc.2011.035 PubMed DOI
Maillard P. V., Van Der Veen A. G., Deddouche-Grass S., Rogers N. C., Merits A., Reis E Sousa C. (2016). Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. EMBO J. 35, 2505–2518. 10.15252/embj.201695086 PubMed DOI PMC
Malik R., Svoboda P. (2012). “Nuclear RNA silencing and related phenomena in animals,” in Toxicology and Epigenetics. Ed. Sahu S. C. (Chichester, West Sussex, United Kingdom: John Wiley & Sons; ).
Mao Y. B., Cai W. J., Wang J. W., Hong G. J., Tao X. Y., Wang L. J., et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25, 1307–1313. 10.1038/nbt1352 PubMed DOI
Matveyev A. V., Alves J. M., Serrano M. G., Lee V., Lara A. M., Barton W. A., et al. (2017). The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. J. Mol. Evol. 84, 104–115. 10.1007/s00239-017-9780-1 PubMed DOI PMC
Mcfarlane L., Svingen T., Braasch I., Koopman P., Schartl M., Wilhelm D. (2011). Expansion of the Ago gene family in the teleost clade. Dev. Genes Evol. 221, 95–104. 10.1007/s00427-011-0363-7 PubMed DOI
Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197. 10.1016/j.molcel.2004.07.007 PubMed DOI
Meister G. (2013). Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459. 10.1038/nrg3462 PubMed DOI
Minkina O., Hunter C. P. (2017). Stable Heritable Germline Silencing Directs Somatic Silencing at an Endogenous Locus. Mol. Cell 65 659-670, e655. 10.1016/j.molcel.2017.01.034 PubMed DOI PMC
Moissiard G., Parizotto E. A., Himber C., Voinnet O. (2007). Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA 13, 1268–1278. 10.1261/rna.541307 PubMed DOI PMC
Murphy D., Dancis B., Brown J. R. (2008). The evolution of core proteins involved in microRNA biogenesis. BMC Evol. Biol. 8, 92. 10.1186/1471-2148-8-92 PubMed DOI PMC
Nakayashiki H., Kadotani N., Mayama S. (2006). Evolution and diversification of RNA silencing proteins in fungi. J. Mol. Evol. 63, 127–135. 10.1007/s00239-005-0257-2 PubMed DOI
Namgial T., Kaldis A., Chakraborty S., Voloudakis A. (2019). Topical application of double-stranded RNA molecules containing sequences of Tomato leaf curl virus and Cucumber mosaic virus confers protection against the cognate viruses. Physiol. Mol. Plant Pathol. 108, 1–9. 10.1016/j.pmpp.2019.101432 DOI
Nayak A., Berry B., Tassetto M., Kunitomi M., Acevedo A., Deng C., et al. (2010). Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat. Struct. Mol. Biol. 17, 547–554. 10.1038/nsmb.1810 PubMed DOI PMC
Newmark P. A., Reddien P. W., Cebria F., Sanchez Alvarado A. (2003). Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc. Natl. Acad. Sci. U.S.A. 100 Suppl 1, 11861–11865. 10.1073/pnas.1834205100 PubMed DOI PMC
Obbard D. J., Gordon K. H., Buck A. H., Jiggins F. M. (2009). The evolution of RNAi as a defence against viruses and transposable elements. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 99–115. 10.1098/rstb.2008.0168 PubMed DOI PMC
Okamura K., Chung W. J., Ruby J. G., Guo H. L., Bartel D. P., Lai E. C. (2008). The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–U808. 10.1038/nature07015 PubMed DOI PMC
Okamura K., Liu N., Lai E. C. (2009). Distinct Mechanisms for MicroRNA Strand Selection by Drosophila Argonautes. Mol. Cell 36, 431–444. 10.1016/j.molcel.2009.09.027 PubMed DOI PMC
Orii H., Mochii M., Watanabe K. (2003). A simple “soaking method” for RNA interference in the planarian Dugesia japonica. Dev. Genes Evol. 213, 138–141. 10.1007/s00427-003-0310-3 PubMed DOI
Paces J., Nic M., Novotny T., Svoboda P. (2017). Literature review of baseline information to support the risk assessment of RNAi-based GM plants. EFSA Support. Publ. 14, 1246E. 10.2903/sp.efsa.2017.EN-1246 DOI
Palmer W. J., Jiggins F. M. (2015). Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems. Mol. Biol. Evol. 32, 2111–2129. 10.1093/molbev/msv093 PubMed DOI PMC
Parrish S., Fire A. (2001). Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. Rna 7, 1397–1402. PubMed PMC
Provost P., Dishart D., Doucet J., Frendewey D., Samuelsson B., Radmark O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874. 10.1093/emboj/cdf578 PubMed DOI PMC
Rechavi O., Lev I. (2017). Principles of Transgenerational Small RNA Inheritance in Caenorhabditis elegans. Curr. Biol. 27, R720–R730. 10.1016/j.cub.2017.05.043 PubMed DOI
Roignant J. Y., Carre C., Mugat B., Szymczak D., Lepesant J. A., Antoniewski C. (2003). Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308. 10.1261/rna.2154103 PubMed DOI PMC
Roth B. M., Pruss G. J., Vance V. B. (2004). Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108. 10.1016/j.virusres.2004.01.020 PubMed DOI
Salomon W. E., Jolly S. M., Moore M. J., Zamore P. D., Serebrov V. (2015). Single-Molecule Imaging Reveals that Argonaute Reshapes the Binding Properties of Its Nucleic Acid Guides. Cell 162, 84–95. 10.1016/j.cell.2015.06.029 PubMed DOI PMC
Santos D., Mingels L., Vogel E., Wang L., Christiaens O., Cappelle K., et al. (2019). Generation of Virus- and dsRNA-Derived siRNAs with Species-Dependent Length in Insects. Viruses 11, 1–15. 10.3390/v11080738 PubMed DOI PMC
Schirle N. T., Macrae I. J. (2012). The Crystal Structure of Human Argonaute2. Science 336, 1037–1040. 10.1126/science.1221551 PubMed DOI PMC
Schirle N. T., Sheu-Gruttadauria J., Macrae I. J. (2014). Structural basis for microRNA targeting. Science 346, 608–613. 10.1126/science.1258040 PubMed DOI PMC
Schirle N. T., Sheu-Gruttadauria J., Chandradoss S. D., Joo C., Macrae I. J. (2015). Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Elife 4, 1–16. 10.7554/eLife.07646 PubMed DOI PMC
Schmitter D., Filkowski J., Sewer A., Pillai R. S., Oakeley E. J., Zavolan M., et al. (2006). Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34, 4801–4815. 10.1093/nar/gkl646 PubMed DOI PMC
Schnettler E., Tykalova H., Watson M., Sharma M., Sterken M. G., Obbard D. J., et al. (2014). Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 42, 9436–9446. 10.1093/nar/gku657 PubMed DOI PMC
Schwarz D. S., Hutvagner G., Haley B., Zamore P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548. 10.1016/S1097-2765(02)00651-2 PubMed DOI
Schwarz D. S., Hutvagner G., Du T., Xu Z., Aronin N., Zamore P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208. 10.1016/S0092-8674(03)00759-1 PubMed DOI
Seok H., Jang E.-S., Chi S. W. (2016). Rationally designed siRNAs without miRNA-like off-target repression. Bmb Rep. 49, 135–136. 10.5483/BMBRep.2016.49.3.019 PubMed DOI PMC
Shih J. D., Hunter C. P. (2011). SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057–1065. 10.1261/rna.2596511 PubMed DOI PMC
Shih J. D., Fitzgerald M. C., Sutherlin M., Hunter C. P. (2009). The SID-1 double-stranded RNA transporter is not selective for dsRNA length. RNA 15, 384–390. 10.1261/rna.1286409 PubMed DOI PMC
Sijen T., Fleenor J., Simmer F., Thijssen K. L., Parrish S., Timmons L., et al. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476. 10.1016/S0092-8674(01)00576-1 PubMed DOI
Snead N. M., Escamilla-Powers J. R., Rossi J. J., Mccaffrey A. P. (2013). 5 ‘ Unlocked Nucleic Acid Modification Improves siRNA Targeting. Mol. Therapy-Nucleic Acids 2, e103–e103. 10.1038/mtna.2013.36 PubMed DOI PMC
Song J. J., Liu J., Tolia N. H., Schneiderman J., Smith S. K., Martienssen R. A., et al. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032. 10.1038/nsb1016 PubMed DOI
Song J. J., Smith S. K., Hannon G. J., Joshua-Tor L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437. 10.1126/science.1102514 PubMed DOI
Stein P., Svoboda P., Anger M., Schultz R. M. (2003). RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. Rna 9, 187–192. 10.1261/rna.2860603 PubMed DOI PMC
Stein P., Zeng F., Pan H., Schultz R. M. (2005). Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev. Biol. 286, 464–471. 10.1016/j.ydbio.2005.08.015 PubMed DOI
Su H., Trombly M. I., Chen J., Wang X. Z. (2009). Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev. 23, 304–317. 10.1101/gad.1749809 PubMed DOI PMC
Svoboda P. (2007). Off-targeting and other non-specific effects of RNAi experiments in mammalian cells. Curr. Opin. Mol. Ther. 9, 248–257. PubMed
Svoboda P. (2014). Renaissance of mammalian endogenous RNAi. FEBS Lett. 588, 2550–2556. 10.1016/j.febslet.2014.05.030 PubMed DOI
Svobodova E., Kubikova J., Svoboda P. (2016). Production of small RNAs by mammalian Dicer. Pflugers Arch. 468, 1089–1102. 10.1007/s00424-016-1817-6 PubMed DOI PMC
Tabara H., Grishok A., Mello C. C. (1998). RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431. 10.1126/science.282.5388.430 PubMed DOI
Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., et al. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132. 10.1016/S0092-8674(00)81644-X PubMed DOI
Tabara H., Yigit E., Siomi H., Mello C. C. (2002). The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871. 10.1016/S0092-8674(02)00793-6 PubMed DOI
Tam O. H., Aravin A. A., Stein P., Girard A., Murchison E. P., Cheloufi S., et al. (2008). Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538. 10.1038/nature06904 PubMed DOI PMC
Tijsterman M., Okihara K. L., Thijssen K., Plasterk R. H. (2002). PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr. Biol. 12, 1535–1540. 10.1016/S0960-9822(02)01110-7 PubMed DOI
Timmons L., Fire A. (1998). Specific interference by ingested dsRNA. Nature 395, 854. 10.1038/27579 PubMed DOI
Tomari Y., Zamore P. D. (2005). Perspective: machines for RNAi. Genes Dev. 19, 517–529. 10.1101/gad.1284105 PubMed DOI
Tomari Y., Du T., Zamore P. D. (2007). Sorting of Drosophila small silencing RNAs. Cell 130, 299–308. 10.1016/j.cell.2007.05.057 PubMed DOI PMC
Tomoyasu Y., Miller S. C., Tomita S., Schoppmeier M., Grossmann D., Bucher G. (2008). Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9, R10. 10.1186/gb-2008-9-1-r10 PubMed DOI PMC
Vaistij F. E., Jones L., Baulcombe D. C. (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14, 857–867. 10.1105/tpc.010480 PubMed DOI PMC
Van Der Veen A. G., Maillard P. V., Schmidt J. M., Lee S. A., Deddouche-Grass S., Borg A., et al. (2018). The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells. EMBO J. 37, 1–14. 10.15252/embj.201797479 PubMed DOI PMC
Wang F., Polydore S., Axtell M. J. (2015). More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs. Curr. Opin. Plant Biol. 27, 118–124. 10.1016/j.pbi.2015.06.012 PubMed DOI PMC
Wassenegger M. (2005). The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16. 10.1016/j.cell.2005.06.034 PubMed DOI
Watanabe T., Totoki Y., Toyoda A., Kaneda M., Kuramochi-Miyagawa S., Obata Y., et al. (2008). Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543. 10.1038/nature06908 PubMed DOI
Wee L. M., Flores-Jasso C. F., Salomon W. E., Zamore P. D. (2012). Argonaute Divides Its RNA Guide into Domains with Distinct Functions and RNA-Binding Properties. Cell 151, 1055–1067. 10.1016/j.cell.2012.10.036 PubMed DOI PMC
Whangbo J. S., Hunter C. P. (2008). Environmental RNA interference. Trends Genet. 24, 297–305. 10.1016/j.tig.2008.03.007 PubMed DOI
Wilkins C., Dishongh R., Moore S. C., Whitt M. A., Chow M., Machaca K. (2005). RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047. 10.1038/nature03957 PubMed DOI
Winston W. M., Molodowitch C., Hunter C. P. (2002). Systemic RNAi in C-elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459. 10.1126/science.1068836 PubMed DOI
Winston W. M., Sutherlin M., Wright A. J., Feinberg E. H., Hunter C. P. (2007). Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl. Acad. Sci. U.S.A. 104, 10565–10570. 10.1073/pnas.0611282104 PubMed DOI PMC
Worrall E. A., Bravo-Cazar A., Nilon A. T., Fletcher S. J., Robinson K. E., Carr J. P., et al. (2019). Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Front. Plant Sci. 10:265. 10.3389/fpls.2019.00265 PubMed DOI PMC
Xu W., Han Z. (2008). Cloning and phylogenetic analysis of sid-1-like genes from aphids. J. Insect Sci. 8, 1–6. 10.1673/031.008.3001 PubMed DOI PMC
Yan K. S., Yan S., Farooq A., Han A., Zeng L., Zhou M. M. (2003). Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474. 10.1038/nature02129 PubMed DOI
Yang L. S., Li X. L., Jiang S., Qiu L. H., Zhou F. L., Liu W. J., et al. (2014). Characterization of Argonaute2 gene from black tiger shrimp (Penaeus monodon) and its responses to immune challenges. Fish Shellfish Immunol. 36, 261–269. 10.1016/j.fsi.2013.11.010 PubMed DOI
Yekta S., Shih I. H., Bartel D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596. 10.1126/science.1097434 PubMed DOI
Yigit E., Batista P. J., Bei Y., Pang K. M., Chen C. C., Tolia N. H., et al. (2006). Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757. 10.1016/j.cell.2006.09.033 PubMed DOI
Yuan Y. R., Pei Y., Ma J. B., Kuryavyi V., Zhadina M., Meister G., et al. (2005). Crystal structure of A-aeolicus Argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419. 10.1016/j.molcel.2005.07.011 PubMed DOI PMC
Zander A., Holzmeister P., Klose D., Tinnefeld P., Grohmann D. (2014). Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol. 11, 45–56. 10.4161/rna.27446 PubMed DOI PMC
Zhang H., Kolb F. A., Brondani V., Billy E., Filipowicz W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885. 10.1093/emboj/cdf582 PubMed DOI PMC
Zhang H., Kolb F. A., Jaskiewicz L., Westhof E., Filipowicz W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68. 10.1016/j.cell.2004.06.017 PubMed DOI
Zhang L., Hou D. X., Chen X., Li D. H., Zhu L. Y., Zhang Y. J., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126. 10.1038/cr.2011.158 PubMed DOI PMC
Zhang J., Khan S. A., Hasse C., Ruf S., Heckel D. G., Bock R. (2015). Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347, 991–994. 10.1126/science.1261680 PubMed DOI
RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection