Association Analysis in Children Born from Normal and Complicated Pregnancies-Cardiovascular Disease Associated microRNAs and the Incidence of Prehypertension/Hypertension, Overweight/Obesity, Valve Problems and Heart Defects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 16-27761A
Agency of Medical Research, Ministry of Health, Prague, Czech Republic
260529/SVV/2020
Charles University, Prague, Czech Republic
PROGRES Q34
Charles University, Prague, Czech Republic
PubMed
33182505
PubMed Central
PMC7672623
DOI
10.3390/ijms21218413
PII: ijms21218413
Knihovny.cz E-zdroje
- Klíčová slova
- body mass index, cardiovascular risk, children, echocardiography, heart defects, microRNA, overweight/obesity, pregnancy-related complications, prehypertension/hypertension, valve problems,
- MeSH
- cerebrovaskulární poruchy genetika MeSH
- dítě MeSH
- dospělí MeSH
- gestační diabetes genetika MeSH
- hypertenze indukovaná těhotenstvím genetika MeSH
- hypertenze genetika MeSH
- incidence MeSH
- kardiovaskulární nemoci genetika MeSH
- komplikace těhotenství genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- mladý dospělý MeSH
- nadváha genetika MeSH
- obezita genetika MeSH
- předškolní dítě MeSH
- preeklampsie genetika MeSH
- prehypertenze genetika MeSH
- prospektivní studie MeSH
- růstová retardace plodu genetika MeSH
- těhotenství MeSH
- upregulace genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
The goal was to assess how a history of any kind of pregnancy-related complication altered expression profile of microRNAs played a role in the pathogenesis of diabetes, cardiovascular and cerebrovascular diseases in the peripheral blood leukocytes of children at the age of 3-11 years. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes or spontaneous preterm birth causes that a significant proportion of children (57.42% to 90.0% specifically) had a substantially altered microRNA expression profile, which might be the origin of a lifelong cardiovascular risk. A total of 23 out of 29 tested microRNAs were upregulated in children born from such complicated gestation. The occurrence of overweight, obesity, valve problems and heart defects even intensified upregulation of microRNAs already present in children exposed to such pregnancy complications. The occurrence of overweight/obesity (miR-92a-3p, and miR-210-3p) and valve problems or heart defects (miR-342-3p) induced microRNA upregulation in children affected with pregnancy complications. Overall, 42.86% overweight/obese children and 27.36% children with valve problems or heart defects had even higher microRNA levels than children with normal clinical findings after complicated pregnancies. In addition, the microRNA expression profile was also able to differentiate between children descending from normal gestation in relation to the occurrence of overweight and obesity. Screening on the base of the combination of 19 microRNAs identified 70.0% overweight/obese children at 90.0% specificity. In general, children after complicated pregnancies, just as children after normal pregnancies, with abnormal findings are at a higher risk of the onset of cardiovascular complications, and their dispensarization, with the aim to implement primary prevention strategies, would be beneficial.
Zobrazit více v PubMed
Davis E.F., Lazdam M., Lewandowski A.J., Worton S.A., Kelly B., Kenworthy Y., Adwani S., Wilkinson A.R., McCormick K., Sargent I., et al. Cardiovascular Risk Factors in Children and Young Adults Born to Preeclamptic Pregnancies: A Systematic Review. Pediatrics. 2012;129:e1552–e1561. doi: 10.1542/peds.2011-3093. PubMed DOI
Alsnes I.V., Vatten L.J., Fraser A., Bjørngaard J.H., Rich-Edwards J., Romundstad P.R., Asvold B.O. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood. Hypertension. 2017;69:591–598. doi: 10.1161/HYPERTENSIONAHA.116.08414. PubMed DOI
Kawasaki M., Arata N., Miyazaki C., Mori R., Kikuchi T., Ogawa Y., Ota E. Obesity and abnormal glucose tolerance in offspring of diabetic mothers: A systematic review and meta-analysis. PLoS ONE. 2018;13:e0190676. doi: 10.1371/journal.pone.0190676. PubMed DOI PMC
Hammoud N.M., Visser G.H.A., Van Rossem L., Biesma D.H., Wit J.M., De Valk H.W. Long-term BMI and growth profiles in offspring of women with gestational diabetes. Diabetologia. 2018;61:1037–1045. doi: 10.1007/s00125-018-4584-4. PubMed DOI PMC
Bianco M.E., Josefson J.L. Hyperglycemia During Pregnancy and Long-Term Offspring Outcomes. Curr. Diabetes Rep. 2019;19:143. doi: 10.1007/s11892-019-1267-6. PubMed DOI PMC
Lee H., Jang H.C., Park H.K., Cho N.H. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res. Clin. Pr. 2007;78:238–245. doi: 10.1016/j.diabres.2007.03.023. PubMed DOI
Tam W.H., Ma R.C.W., Ozaki R., Li A.M., Chan M.H.M., Yuen L.Y., Lao T.T.H., Yang X., Ho C.S., Tutino G.E., et al. In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care. 2017;40:679–686. doi: 10.2337/dc16-2397. PubMed DOI PMC
Tsadok M.A., Friedlander Y., Paltiel O., Manor O., Meiner V., Hochner H., Sagy Y., Sharon N., Yazdgerdi S., Siscovick D., et al. Obesity and Blood Pressure in 17-Year-Old Offspring of Mothers with Gestational Diabetes: Insights from the Jerusalem Perinatal Study. Exp. Diabetes Res. 2011;2011:1–6. doi: 10.1155/2011/906154. PubMed DOI PMC
Chen Y.-L., Han L.-L., Shi X.-L., Su W.-J., Liu W., Wang L.-Y., Huang P.-Y., Lin M.-Z., Song H.-Q., Li X. Adverse pregnancy outcomes on the risk of overweight offspring: A population-based retrospective study in Xiamen, China. Sci. Rep. 2020;10:1549. doi: 10.1038/s41598-020-58423-7. PubMed DOI PMC
Josefson J.L., Catalano P.M., Lowe W.L., Scholtens D.M., Kuang A., Dyer A.R., Lowe L.P., Metzger B.E. The Joint Associations of Maternal BMI and Glycemia with Childhood Adiposity. J. Clin. Endocrinol. Metab. 2020;105:2177–2188. doi: 10.1210/clinem/dgaa180. PubMed DOI PMC
Liang Z., Liu H., Wang L., Song Q., Sun D., Li W., Leng J., Gao R., Hu G., Qi L. Maternal Gestational Diabetes Mellitus Modifies the Relationship between Genetically Determined Body Mass Index during Pregnancy and Childhood Obesity. Mayo Clin. Proc. 2020;95:1877–1887. doi: 10.1016/j.mayocp.2020.04.042. PubMed DOI PMC
Tenhola S., Rahiala E., Martikainen A., Halonen P., Voutilainen R. Blood Pressure, Serum Lipids, Fasting Insulin, and Adrenal Hormones in 12-Year-Old Children Born with Maternal Preeclampsia. J. Clin. Endocrinol. Metab. 2003;88:1217–1222. doi: 10.1210/jc.2002-020903. PubMed DOI
Ogland B., Forman M.R., Romundstad P.R., Nilsen S.T., Vatten L.J. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J. Hypertens. 2009;27:2051–2054. doi: 10.1097/HJH.0b013e328330052a. PubMed DOI
Fraser A., Nelson S.M., Macdonald-Wallis C., Sattar N., Lawlor D.A. Hypertensive Disorders of Pregnancy and Cardiometabolic Health in Adolescent Offspring. Hypertension. 2013;62:614–620. doi: 10.1161/HYPERTENSIONAHA.113.01513. PubMed DOI PMC
Staley J.R., Bradley J., Silverwood R.J., Howe L.D., Tilling K.M., Lawlor D.A., Macdonald-Wallis C. Associations of Blood Pressure in Pregnancy With Offspring Blood Pressure Trajectories During Childhood and Adolescence: Findings From a Prospective Study. J. Am. Hear. Assoc. 2015;4:4. doi: 10.1161/JAHA.114.001422. PubMed DOI PMC
Lazdam M., De La Horra A., Diesch J., Kenworthy Y., Davis E., Lewandowski A.J., Szmigielski C., Shore A.C., MacKillop L., Kharbanda R.K., et al. Unique Blood Pressure Characteristics in Mother and Offspring After Early Onset Preeclampsia. Hypertension. 2012;60:1338–1345. doi: 10.1161/HYPERTENSIONAHA.112.198366. PubMed DOI
Lim W.-Y., Lee Y.-S., Yap F.K.-P., Aris I.M., Lek N., Meaney M., Gluckman P.D., Godfrey K.M., Kwek K., Chong Y.-S., et al. Maternal Blood Pressure During Pregnancy and Early Childhood Blood Pressures in the Offspring. Medicine. 2015;94:e1981. doi: 10.1097/MD.0000000000001981. PubMed DOI PMC
Rostand S.G., Cliver S.P., Goldenberg R.L. Racial disparities in the association of foetal growth retardation to childhood blood pressure. Nephrol. Dial. Transplant. 2005;20:1592–1597. doi: 10.1093/ndt/gfh833. PubMed DOI
Lu J., Zhang S., Li W., Leng J., Wang L., Liu H., Li W., Zhang C., Qi L., Tuomilehto J., et al. Maternal Gestational Diabetes Is Associated With Offspring’s Hypertension. Am. J. Hypertens. 2019;32:335–342. doi: 10.1093/ajh/hpz005. PubMed DOI PMC
Wright C.S., Rifas-Shiman S.L., Rich-Edwards J.W., Taveras E.M., Gillman M.W., Oken E. Intrauterine Exposure to Gestational Diabetes, Child Adiposity, and Blood Pressure. Am. J. Hypertens. 2009;22:215–220. doi: 10.1038/ajh.2008.326. PubMed DOI PMC
Perng W., Hockett C.W., Sauder K.A., Dabelea D. In utero exposure to gestational diabetes mellitus and cardiovascular risk factors in youth: A longitudinal analysis in the EPOCH cohort. Pediatr. Obes. 2020;15:e12611. doi: 10.1111/ijpo.12611. PubMed DOI PMC
Beukers F., Rotteveel J., Ganzevoort W., Van Weissenbruch M.M., Van Goudoever J.B., Van Wassenaer-Leemhuis A.G. Blood pressure of 12-year-old children born after foetal growth restriction due to hypertensive disorders of pregnancy; relation to neonatal, life style, and family characteristics. Early Hum. Dev. 2019;130:33–37. doi: 10.1016/j.earlhumdev.2019.01.001. PubMed DOI
Perng W., Ringham B.M., Smith H.A., Michelotti G., Kechris K.M., Dabelea D. A prospective study of associations between in utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence. Diabetologia. 2020;63:296–312. doi: 10.1007/s00125-019-05036-z. PubMed DOI PMC
Lowe W.L., Scholtens D.M., Kuang A., Linder B., Lawrence J.M., Lebenthal Y., McCance D.R., Hamilton J.K., Nodzenski M., Talbot O., et al. Hyperglycemia and Adverse Pregnancy Outcome Follow-up Study (HAPO FUS): Maternal Gestational Diabetes Mellitus and Childhood Glucose Metabolism. Diabetes Care. 2019;42:372–380. doi: 10.2337/dc18-1646. PubMed DOI PMC
Jayet P.-Y., Rimoldi S.F., Stuber T., Salmoòn C.S., Hutter D., Rexhaj E., Thalmann S., Schwab M., Turini P., Sartori-Cucchia C., et al. Pulmonary and Systemic Vascular Dysfunction in Young Offspring of Mothers With Preeclampsia. Circulation. 2010;122:488–494. doi: 10.1161/CIRCULATIONAHA.110.941203. PubMed DOI
Sarvari S.I., Rodríguez-López M., Nunez-Garcia M., Sitges M., Sepúlveda-Martínez A., Camara O., Butakoff C., Gratacós E., Bijnens B., Crispi F. Persistence of Cardiac Remodeling in Preadolescents with Fetal Growth Restriction. Circ. Cardiovasc. Imaging. 2017;10:e005270. doi: 10.1161/CIRCIMAGING.116.005270. PubMed DOI
Yiallourou S.R., Wallace E.M., Whatley C., Odoi A., Hollis S., Weichard A.J., Muthusamy J.S., Varma S., Cameron J.D., Narayan O., et al. Sleep: A Window Into Autonomic Control in Children Born Preterm and Growth Restricted. Sleep. 2017;40 doi: 10.1093/sleep/zsx048. PubMed DOI
Patey O., Carvalho J.S., Thilaganathan B. Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term. Ultrasound Obstet. Gynecol. 2019;53:655–662. doi: 10.1002/uog.19193. PubMed DOI
Cohen E., Whatley C., Wong F.Y., Wallace E.M., Mockler J.C., Odoi A., Hollis S., Horne R.S., Yiallourou S.R. Effects of foetal growth restriction and preterm birth on cardiac morphology and function during infancy. Acta Paediatr. 2018;107:450–455. doi: 10.1111/apa.14144. PubMed DOI
Lunddorf L.L.H., Brix N., Ernst A., Arendt L.H., Støvring H., Clemmensen P.J., Olsen J., Ramlau-Hansen C.H. Hypertensive disorders in pregnancy and timing of pubertal development in daughters and sons. Hum. Reprod. 2020;35:2124–2133. doi: 10.1093/humrep/deaa147. PubMed DOI
Martinez M.P., Lin J., Chow T., Chung J., Wang X., Xiang A.H. Maternal Gestational Diabetes and Type 2 Diabetes During Pregnancy and Risk of Childhood Asthma in Offspring. J. Pediatr. 2020;219:173–179.e1. doi: 10.1016/j.jpeds.2019.12.053. PubMed DOI
Li P., Xiong T., Hu Y. Hypertensive disorders of pregnancy and risk of asthma in offspring: Protocol for a systematic review and meta-analysis. BMJ Open. 2020;10:e035145. doi: 10.1136/bmjopen-2019-035145. PubMed DOI PMC
Berkelhamer S.K., Mestan K.K., Steinhorn R.H. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension. Semin. Perinatol. 2018;42:432–443. doi: 10.1053/j.semperi.2018.09.005. PubMed DOI
Lagatta J.M., Hysinger E.B., Zaniletti I., Wymore E.M., Vyas-Read S., Yallapragada S., Nelin L.D., Truog W.E., Padula M.A., Porta N.F., et al. The Impact of Pulmonary Hypertension in Preterm Infants with Severe Bronchopulmonary Dysplasia through 1 Year. J. Pediatr. 2018;203:218–224.e3. doi: 10.1016/j.jpeds.2018.07.035. PubMed DOI PMC
Naumburg E., Söderström L. Increased risk of pulmonary hypertension following premature birth. BMC Pediatr. 2019;19:1–7. doi: 10.1186/s12887-019-1665-6. PubMed DOI PMC
Libby G., Murphy D.J., McEwan N.F., Greene S.A., Forsyth J.S., Chien P.W., Morris A.D., DARTS/MEMO Collaboration Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: An intergenerational study from the Walker cohort. Diabetologia. 2007;50:523–530. doi: 10.1007/s00125-006-0558-z. PubMed DOI
Garcia-Vargas L., Addison S.S., Nistala R., Kurukulasuriya D., Sowers J.R. Gestational Diabetes and the Offspring: Implications in the Development of the Cardiorenal Metabolic Syndrome in Offspring. Cardiorenal Med. 2012;2:134–142. doi: 10.1159/000337734. PubMed DOI PMC
Uemura O., Ishikura K., Kaneko T., Hirano D., Hamasaki Y., Ogura M., Mikami N., Gotoh Y., Sahashi T., Fujita N., et al. Perinatal factors contributing to chronic kidney disease in a cohort of Japanese children with very low birth weight. Pediatr. Nephrol. 2020:1–8. doi: 10.1007/s00467-020-04791-1. PubMed DOI PMC
Hoogenboom L.A., Wolfs T.G.A.M., Hütten M.C., Peutz-Kootstra C.J., Schreuder M.F. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr. Nephrol. 2020:1–9. doi: 10.1007/s00467-020-04712-2. PubMed DOI PMC
Leybovitz-Haleluya N., Wainstock T., Landau D., Sheiner E. Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: A population-based cohort study with up to 18 years of follow up. Acta Diabetol. 2018;55:1037–1042. doi: 10.1007/s00592-018-1176-1. PubMed DOI
Walter E., Tsumi E., Wainstock T., Spiegel E., Sheiner E. Maternal gestational diabetes mellitus: Is it associated with long-term pediatric ophthalmic morbidity of the offspring? J. Matern. Neonatal Med. 2019;32:2529–2538. doi: 10.1080/14767058.2018.1439918. PubMed DOI
Ornoy A., Ratzon N., Greenbaum C., Wolf A., Dulitzky M. School-age Children Born to Diabetic Mothers and to Mothers with Gestational Diabetes Exhibit a High Rate of Inattention and Fine and Gross Motor Impairment. J. Pediatr. Endocrinol. Metab. 2001;14:681–690. doi: 10.1515/JPEM.2001.14.S1.681. PubMed DOI
He X.-J., Dai R.-X., Tian C.-Q., Hu C.-L. Neurodevelopmental outcome at 1 year in offspring of women with gestational diabetes mellitus. Gynecol. Endocrinol. 2020;21:1–5. doi: 10.1080/09513590.2020.1754785. PubMed DOI
Noda M., Yoshida S., Mishina H., Matsubayashi K., Kawakami K. Association between maternal hypertensive disorders of pregnancy and child neurodevelopment at 3 years of age: A retrospective cohort study. J. Dev. Orig. Health Dis. 2020:1–8. doi: 10.1017/S2040174420000586. PubMed DOI
Marcelle E.T., Oliva M.T., Hinshaw S.P. Gestational Smoking and Hypertension as Predictors of Working Memory Functioning in Childhood Attention-Deficit/Hyperactivity Disorder. Front. Psychol. 2020;11:1950. doi: 10.3389/fpsyg.2020.01950. PubMed DOI PMC
Dachew B.A., Scott J.G., Betts K., Mamun A., Alati R. Hypertensive disorders of pregnancy and the risk of offspring depression in childhood: Findings from the Avon Longitudinal Study of Parents and Children. Dev. Psychopathol. 2020;32:845–851. doi: 10.1017/S0954579419000944. PubMed DOI
Dachew B.A., Scott J.G., Mamun A., Alati R. Hypertensive disorders of pregnancy and emotional and behavioural problems in children: A longitudinal population-based study. Eur. Child Adolesc. Psychiatry. 2020;29:1–10. doi: 10.1007/s00787-019-01443-0. PubMed DOI
Monteith C., Flood K., Pinnamaneni R., Levine T.A., Alderdice F.A., Unterscheider J., McAuliffe F.M., Dicker P., Tully E.C., Malone F.D., et al. An abnormal cerebroplacental ratio (CPR) is predictive of early childhood delayed neurodevelopment in the setting of fetal growth restriction. Am. J. Obstet. Gynecol. 2019;221:273.e1–273.e9. doi: 10.1016/j.ajog.2019.06.026. PubMed DOI
Delorme P., Kayem G., Lorthe E., Sentilhes L., Zeitlin J., Subtil D., Rozé J.C., Vayssière C., Durox M., Ancel P.Y., et al. Neurodevelopment at 2 years and umbilical artery Doppler in cases of very preterm birth after prenatal hypertensive disorder or suspected fetal growth restriction: EPIPAGE -2 prospective population-based cohort study. Ultrasound Obstet. Gynecol. 2020;56:557–565. doi: 10.1002/uog.22025. PubMed DOI
Tomlinson M.S., Santos H.P., Stewart J., Joseph R., Leviton A., Onderdonk A.B., Kuban K.C.K., Heeren T., O’Shea T.M., Fry R.C., et al. Neurocognitive and social-communicative function of children born very preterm at 10 years of age: Associations with microorganisms recovered from the placenta parenchyma. J. Perinatol. 2020;40:306–315. doi: 10.1038/s41372-019-0505-8. PubMed DOI PMC
Räikkönen K., Gissler M., Kajantie E. Associations Between Maternal Antenatal Corticosteroid Treatment and Mental and Behavioral Disorders in Children. JAMA. 2020;323:1924–1933. doi: 10.1001/jama.2020.3937. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. Int. J. Mol. Sci. 2019;20:654. doi: 10.3390/ijms20030654. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus—One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells. 2020;9:1557. doi: 10.3390/cells9061557. PubMed DOI PMC
Inzaghi E., Kistner A., Germani D., Deodati A., Vanpee M., Legnevall L., Berinder K., Cianfarani S. A prospective case-control study on miRNA circulating levels in subjects born small for gestational age (SGA) evaluated from childhood into young adulthood. PLoS ONE. 2020;15:e0228075. doi: 10.1371/journal.pone.0228075. PubMed DOI PMC
Chen R., Xin G., Zhang X. Long non-coding RNA HCP5 serves as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via the MAPK signaling pathway. J. Pediatr. Endocrinol. Metab. 2019;32:1327–1339. doi: 10.1515/jpem-2018-0432. PubMed DOI
Benite-Ribeiro S.A., Putt D.A., Soares-Filho M.C., Santos J.M. The link between hypothalamic epigenetic modifications and long-term feeding control. Appetite. 2016;107:445–453. doi: 10.1016/j.appet.2016.08.111. PubMed DOI
Liao J., Huang J., Wang S., Xiang M., Wang D., Deng H., Yin H., Xu F., Hu M. Effects of exercise and diet intervention on appetite-regulating hormones associated with miRNAs in obese children. Eat. Weight. Disord. 2020:1–9. doi: 10.1007/s40519-020-00869-9. PubMed DOI
Marzano F., Faienza M.F., Caratozzolo M.F., Brunetti G., Chiara M., Horner D.S., Annese A., D’Erchia A.M., Consiglio A., Pesole G., et al. Pilot study on circulating miRNA signature in children with obesity born small for gestational age and appropriate for gestational age. Pediatr. Obes. 2018;13:803–811. doi: 10.1111/ijpo.12439. PubMed DOI
Khalyfa A., Kheirandish-Gozal L., Bhattacharjee R., Khalyfa A.A., Gozal D. Circulating microRNAs as Potential Biomarkers of Endothelial Dysfunction in Obese Children. Chest. 2016;149:786–800. doi: 10.1378/chest.15-0799. PubMed DOI PMC
International Association of Diabetes and Pregnancy Study Groups Consensus Panel. Metzger B.E., Gabbe S.G., Persson B., Buchanan T.A., Catalano P.A., Damm P., Dyer A.R., Leiva A.D., Hod M., et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33:676–682. doi: 10.2337/dc10-0719. PubMed DOI PMC
ACOG Practice Bulletin No. 33. Diagnosis and Management of Preeclampsia and Eclampsia. Obstet. Gynecol. 2002;99:159–167. doi: 10.1097/00006250-200201000-00028. PubMed DOI
Figueras F., Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat. Diagn. 2014;34:655–659. doi: 10.1002/pd.4412. PubMed DOI
Baschat A.A. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet. Gynecol. 2011;37:501–514. doi: 10.1002/uog.9008. PubMed DOI
Nardozza L.M.M., Caetano A.C.R., Zamarian A.C.P., Mazzola J.B., Silva C.P., Marçal V.M.G., Lobo T.F., Peixoto A.B., Júnior E.A. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017;295:1061–1077. doi: 10.1007/s00404-017-4341-9. PubMed DOI
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI
Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576. doi: 10.1542/peds.114.2.S2.555. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Shapiro S.S., Wilk M.B. An analysis of variance test for normality (complete samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Pathogenesis of Pregnancy-Related Complications 1.0 and 2.0