European experience with a first totally leadless cardiac resynchronization therapy pacemaker system
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
33313789
PubMed Central
PMC8139811
DOI
10.1093/europace/euaa342
PII: 6032815
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac pacing, Cardiac resynchronization therapy, Endocardial left ventricular pacing, Leadless, WiSE-CRT,
- MeSH
- kardiostimulátor * MeSH
- lidé MeSH
- prostředky srdeční resynchronizační terapie MeSH
- srdeční resynchronizační terapie * MeSH
- srdeční selhání * diagnóza terapie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: Totally leadless cardiac resynchronization therapy (CRT) can be delivered with a combination of Micra and WiSE-CRT systems. We describe the technical feasibility and first insights into the safety and efficacy of this combination in European experience. METHODS AND RESULTS: Patients enrolled had indication for both Micra and WiSE-CRT systems because of heart failure related to high burden of pacing by a Micra necessitating system upgrade or inability to implant a conventional CRT system because of infectious or anatomical conditions. The endpoints of the study were technical success of WiSE-CRT implantation with right ventricle-synchonized CRT delivery, acute QRS duration reduction, and freedom from procedure-related major adverse events. All eight WiSE-CRT devices were able to detect the Micra pacing output and to be trained to deliver synchronous LV endocardial pacing. Acute QRS reduction following WiSE-CRT implantation was observed in all eight patients (mean QRS 204.38 ± 30.26 vs. 137.5 ± 24.75 mS, P = 0.012). Seven patients reached 6 months of follow-up. At 6 months after WiSE-CRT implantation, there was a significant increase in LV ejection fraction (28.43 ± 8.01% vs. 39.71 ± 11.89%; P = 0.018) but no evidence of LV reverse remodelling or improvement in New York Heart Association class. CONCLUSION: The Micra and the WiSE-CRT systems can successfully operate together to deliver total leadless CRT to a patient. Moreover, the WiSE-CRT system provides the only means to upgrade the large population of Micra patients to CRT capability without replacing the Micra. The range of application of this combination could broaden in the future with the upcoming developments of leadless cardiac pacing.
Cardiology and Electrophysiology Unit San Gerardo Hospital 20900 Monza Italy
Cardiology and vascular diseases Division Rennes University Hospital 35033 Rennes France
Cardiology Department Guy's and St Thomas' Hospitals Westminster Bridge Road London SE1 7EH UK
Cardiology Department Na Homolce Hospital Roentgenova 2 Prague 515030 Czech Republic
Department of Cardiology University of Erlangen Nürnberg Ulmenweg 18 91054 Erlangen Germany
Zobrazit více v PubMed
Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA. et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 2013;15:1070–118. PubMed
León AR, Abraham WT, Curtis AB, Daubert JP, Fisher WG, Gurley J. et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol 2005;46:2348–56. PubMed
Reddy VY, Miller MA, Neuzil P, Søgaard P, Butter C, Seifert M. et al. Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV Study. J Am Coll Cardiol 2017;69:2119–29. PubMed
Singh JP, Abraham WT, Auricchio A, Delnoy PP, Gold M, Reddy VY. et al. Design and rationale for the Stimulation Of the Left Ventricular Endocardium for Cardiac Resynchronization Therapy in non-responders and previously untreatable patients (SOLVE-CRT) trial. Am Heart J 2019;217:13–22. PubMed
Udo EO, Zuithoff NPA, Van Hemel NM, De Cock CC, Hendriks T, Doevendans PA. et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm 2012;9:728–35. PubMed
Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S. et al. A leadless intracardiac transcatheter pacing system. N Engl J Med 2016;374:533–41. PubMed
Reddy VY, Knops RE, Sperzel J, Miller MA, Petru J, Simon J. et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 2014;129:1466–71. PubMed
Dreger H, Maethner K, Bondke H, Baumann G, Melzer C.. Pacing-induced cardiomyopathy in patients with right ventricular stimulation for >15 years. Europace 2012;14:238–42. PubMed
Leclercq C, Cazeau S, Lellouche D, Fossati F, Anselme F, Davy JM. et al. Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure: the RD-CHF study. Pacing Clin Electrophysiol 2007;30:23–30. PubMed
Montemerlo E, Pozzi M, De Ceglia S, Santini F, Piazzi E, Rovaris G.. First-in-man fully leadless transvenous CRT-P with a transseptal implant of WISE-CRT® system and Micra® PM. Pacing Clin Electrophysiol 2019;42:1489–92. PubMed
Funasako M, Neuzil P, Dujka L, Petru J, Sediva L, Simon J. et al. Successful implementation of a totally leadless biventricular pacing approach. Heart Case Reports 2020;6:153–7. PubMed PMC
Sieniewicz BJ, Gould JS, Rimington HM, Ioannou N, Rinaldi CA.. Transseptal delivery of a leadless left ventricular endocardial pacing electrode. JACC Clin Electrophysiol 2017;3:1333–5. PubMed
Ritter P, Duray GZ, Steinwender C, Soejima K, Omar R, Mont L. et al. Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. Eur Heart J 2015;36:2510–9. PubMed PMC
Strik M, Rademakers LM, Van Deursen CJM, Van Hunnik A, Kuiper M, Klersy C. et al. Endocardial left ventricular pacing improves cardiac resynchronization therapy in chronic asynchronous infarction and heart failure models. Circ Arrhythm Electrophysiol 2012;5:191–200. PubMed
Jastrzębski M, Baranchuk A, Fijorek K, Kisiel R, Kukla P, Sondej T. et al. Cardiac resynchronization therapy-induced acute shortening of QRS duration predicts long-term mortality only in patients with left bundle branch block. Europace 2019;21:281–9. PubMed
Morgan JM, Biffi M, Gellér L, Leclercq C, Ruffa F, Tung S. et al. ALternate Site Cardiac ResYNChronization (ALSYNC): a prospective and multicentre study of left ventricular endocardial pacing for cardiac resynchronization therapy. Eur Heart J 2016;37:2118–27. PubMed
Biffi M, Defaye P, Jaïs P, Ruffa F, Leclercq C, Gras D. et al. Benefits of left ventricular endocardial pacing comparing failed implants and prior non-responders to conventional cardiac resynchronization therapy: a subanalysis from the ALSYNC study. Int J Cardiol 2018;259:88–93. PubMed
Prinzen FW, Van Deursen C, Van Geldorp IE, Rademakers LM, Van Hunnik A, Kuiper M. et al. Left ventricular endocardial pacing improves resynchronization therapy in canine left bundle-branch hearts. Circ Arrhythm Electrophysiol 2009;2:580–7. PubMed
Sieniewicz BJ, Betts TR, James S, Turley A, Butter C, Seifert M. et al. Real-world experience of leadless left ventricular endocardial cardiac resynchronization therapy: a multicenter international registry of the WiSE-CRT pacing system. Heart Rhythm 2020; 17: 1291–7. PubMed PMC
Sidhu BS, Gould J, Porter B, Elliott M, Mehta V, Niederer S. et al. Completely leadless cardiac resynchronization defibrillator system. JACC Clin Electrophysiol 2020;6:588–9. PubMed
Steinwender C, Khelae SK, G1arweg C, Chan JYS, Ritter P, Johansen JB. et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 Study. JACC Clin Electrophysiol 2020;6:94–106. PubMed
Retrieval and replacement feasibility of 7-year-old implanted leadless pacemaker with tines fixation