Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33339903
PubMed Central
PMC7749180
DOI
10.1038/s41598-020-79372-1
PII: 10.1038/s41598-020-79372-1
Knihovny.cz E-resources
- MeSH
- Aegilops genetics MeSH
- Chromosomes, Plant genetics MeSH
- Hybridization, Genetic genetics MeSH
- Germination genetics MeSH
- Triticum genetics physiology MeSH
- Sodium metabolism MeSH
- Salt Tolerance genetics physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sodium MeSH
Aegilops biuncialis is a promising gene source to improve salt tolerance of wheat via interspecific hybridization. In the present work, the salt stress responses of wheat-Ae. biuncialis addition lines were investigated during germination and in young plants to identify which Aegilops chromosomes can improve the salt tolerance of wheat. After salt treatments, the Aegilops parent and the addition lines 2M, 3M and 3M.4BS showed higher germination potential, shoot and root growth, better CO2 assimilation capacity and less chlorophyll degradation than the wheat parent. The Aegilops parent accumulated less Na in the roots due to an up-regulation of SOS1, SOS2 and HVP1 genes, while it contained higher amount of proline, fructose, glucose, galactose, maltose and raffinose. In the leaves, lower Na level was accompanied by high amount of proline and increased expression of NHX2 gene. The enhanced accumulation of sugars and proline was also observed in the roots of 3M and 3M.4BS addition lines. Typical mechanism of 2M addition line was the sequestration of Na into the vacuole due to the increased expression of HVP1 in the roots and NHX2 in the leaves. These results suggest the Aegilops chromosomes 2M and 3M can improve salt tolerance of wheat in different way.
See more in PubMed
Foresight. The Future of Food and Farming: Challenges and choices for global sustainability. Final Project Report. (The Government Office for Science, 2011) at https://www.foresightfordevelopment.org/sobipro/55/866-the-future-of-food-and-farming-challenges-and-choices-for-global-sustainability
Qadir M, et al. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 2014;38:282–295. doi: 10.1111/1477-8947.12054. DOI
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 2016;7:1787. doi: 10.3389/fpls.2016.01787. PubMed DOI PMC
Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018;495:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI
Deinlein U, et al. Plant salt-tolerance mechanisms. Trends Plant Sci. 2014;19:371–379. doi: 10.1016/j.tplants.2014.02.001. PubMed DOI PMC
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks Europe PMC Funders Group. J. Exp. Bot. 2012;63:1593–1608. doi: 10.1093/jxb/err460. PubMed DOI PMC
Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol. 2014;14:113. doi: 10.1186/1471-2229-14-113. PubMed DOI PMC
Nounjan N, et al. High performance of photosynthesis and osmotic adjustment are associated with salt tolerance ability in rice carrying drought tolerance QTL: Physiological and co-expression network analysis. Front. Plant Sci. 2018;9:1135. doi: 10.3389/fpls.2018.01135. PubMed DOI PMC
Tuteja, N. Mechanisms of high salinity tolerance in plants. In Methods in Enzymology, Vol. 428, 419–438 (Academic Press Inc., 2007). PubMed
Sunarpi, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 2005;44:928–938. doi: 10.1111/j.1365-313X.2005.02595.x. PubMed DOI
Leidi EO, et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 2010;61:495–506. doi: 10.1111/j.1365-313X.2009.04073.x. PubMed DOI
Ariyarathna HCK, Ul-Haq T, Colmer TD, Francki MG. Characterization of the multigene family TaHKT 2;1 in bread wheat and the role of gene members in plant Na+ and K+ status. BMC Plant Biol. 2014;14:159. doi: 10.1186/1471-2229-14-159. PubMed DOI PMC
Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: A mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant. Cell Environ. 2010;33:552–565. doi: 10.1111/j.1365-3040.2009.02056.x. PubMed DOI
Munns R, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 2012;30:360–364. doi: 10.1038/nbt.2120. PubMed DOI
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014;26:115–124. doi: 10.1016/j.copbio.2013.12.004. PubMed DOI
Zhang H, Mittal N, Leamy LJ, Barazani O, Song B-H. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2017;10:5–24. doi: 10.1111/eva.12434. PubMed DOI PMC
Mansouri A, et al. Variation and relationships among agronomic traits in durum wheat [Triticum turgidum (L.) Thell. ssp. turgidum conv. durum (Desf.) MacKey] under South Mediterranean growth conditions: Stepwise and path analyses. Int. J. Agron. 2018 doi: 10.1155/2018/8191749. DOI
Kishii M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019;10:585. doi: 10.3389/fpls.2019.00585. PubMed DOI PMC
Schneider A, Molnár I, Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1–19. doi: 10.1007/s10681-007-9624-y. DOI
Kilian B, et al. Aegilops. In: Kole C, et al., editors. Wild Crop Relatives: Genomic and Breeding Resources, Cereals. Berlin: Springer; 2011. pp. 1–76.
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum) Front. Plant Sci. 2019;10:308. doi: 10.3389/fpls.2019.00308. PubMed DOI PMC
Rakszegi M, et al. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front. Plant Sci. 2017;8:1529. doi: 10.3389/fpls.2017.01529. PubMed DOI PMC
Pritchard DJ, et al. K+/Na + discrimination in synthetic hexaploid wheat lines: Transfer of the trait for K+/Na + discrimination from Aegilops tauschii into a Triticum turgidum background. Cereal Res. Commun. 2002;30:261–267. doi: 10.1007/BF03543417. DOI
Zhao H, et al. Comparative study on drought tolerance of wheat and wheat-Aegilops biuncialis 6Ub addition lines. J. Food Agric. Environ. 2013;11:1046–1052.
Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57:1059–1078. doi: 10.1093/jxb/erj124. PubMed DOI
Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS. High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci. 2012;52:292–304. doi: 10.2135/cropsci2011.04.0186. DOI
Garcia RM, Parra-Quijano M, Iriondo JM. Identification of ecogeographical gaps in the Spanish Aegilops collections with potential tolerance to drought and salinity. PeerJ. 2017;5:e3494. doi: 10.7717/peerj.3494. PubMed DOI PMC
Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA. Breeding for abiotic stresses for sustainable agriculture. Philos. Trans. R. Soc. B. 2008;363:703–716. doi: 10.1098/rstb.2007.2179. PubMed DOI PMC
Arabbeigi M, Arzani A, Majidi MM, Sayed-Tabatabaei BE, Saha P. Expression pattern of salt tolerance-related genes in Aegilops cylindrica. Physiol. Mol. Biol. Plants. 2018;24:61–73. doi: 10.1007/s12298-017-0483-2. PubMed DOI PMC
Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat—Aegilops biuncialis disomic addition lines. Genome. 2005;48:1070–1082. doi: 10.1139/g05-062. PubMed DOI
Zhou J, et al. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet. Mol. Res. 2014;13:660–669. doi: 10.4238/2014.January.28.11. PubMed DOI
Song Z, et al. Analysis of structural genomic diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by fluorescence in situ hybridization karyotyping. Front. Plant Sci. 2020;11:710. doi: 10.3389/fpls.2020.00710. PubMed DOI PMC
Farkas A, Molnár I, Tibor K, Karsai I, Molnár-Láng M. Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica. 2014;195:45–55. doi: 10.1007/s10681-013-0970-7. DOI
Gulzar S, Khan MA. Seed germination of a halophytic grass Aeluropus lagopoides. Ann. Bot. 2001;87:319–324. doi: 10.1006/anbo.2000.1336. DOI
Chen X, Min D, Yasir TA, Hu YG. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD) Field Crop. Res. 2012;137:195–201. doi: 10.1016/j.fcr.2012.09.008. DOI
Wu H, et al. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front. Plant Sci. 2019;10:530. doi: 10.3389/fpls.2019.00530. PubMed DOI PMC
Sánchez-Blanco MJ, Álvarez S, Ortuño MF, Ruiz-Sánchez MC. Root system response to drought and salinity: Root distribution and water transport. In: Morte A, Varma A, editors. Root Engineering, Soil Biology. New York: Springer; 2014. pp. 325–352.
Rahneshan Z, Nasibi F, Moghadam AA. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018;13:73–82. doi: 10.1080/17429145.2018.1424355. DOI
Bajji M, Lutts S, Kinet J-M. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci. 2001;160:669–681. doi: 10.1016/S0168-9452(00)00443-X. PubMed DOI
Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis stomata are probably mainly responsible for the decline in leaf photosynthesis during mild drought conditions. Trend Plant Sci. 2000;5:187–188. doi: 10.1016/S1360-1385(00)01625-3. DOI
Molnár I, et al. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct. Plant Biol. 2004;31:1149–1159. doi: 10.1071/FP03143. PubMed DOI
Misra N, Gupta AK. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Sci. 2005;169:331–339. doi: 10.1016/j.plantsci.2005.02.013. DOI
Huang Z, et al. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One. 2013;8:e62085. doi: 10.1371/journal.pone.0062085. PubMed DOI PMC
Hayat S, et al. Role of proline under changing environments: A review. Plant Signal. Behav. 2012;7:1456–1466. doi: 10.4161/psb.21949. PubMed DOI PMC
Kaur G, Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI
Al-Thani RF, Yasseen BT. Solutes in native plants in the Arabian Gulf region and the role of microorganisms: Future research. J. Plant Ecol. 2018;11:671–684. doi: 10.1093/jpe/rtx066. DOI
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS ONE. 2019;14:e0212411. doi: 10.1371/journal.pone.0212411. PubMed DOI PMC
Darko E, et al. Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS One. 2019;14:e0226151. doi: 10.1371/journal.pone.0226151. PubMed DOI PMC
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schö F. 2004 Galactinol synthase1 A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 2004;136:3148–3158. doi: 10.1104/pp.104.042606. PubMed DOI PMC
Sathee L, Sairam RK, Chinnusamy V, Jha SK. Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol. Plant. 2015;37:169. doi: 10.1007/s11738-015-1910-z. DOI
Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 2007;58:301–308. doi: 10.1093/jxb/erl251. PubMed DOI
Gouiaa S, Khoudi H. Co-expression of vacuolar Na+/H+ antiporter and H+-pyrophosphatase with an IRES-mediated dicistronic vector improves salinity tolerance and enhances potassium biofortification of tomato. Phytochemistry. 2015;117:537–546. doi: 10.1016/j.phytochem.2015.05.016. PubMed DOI
Molnár I, et al. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One. 2013;8:e70844. doi: 10.1371/journal.pone.0070844. PubMed DOI PMC
Darko E, et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One. 2017;12:e0174170. doi: 10.1371/journal.pone.0174170. PubMed DOI PMC
Darko E, et al. Salt stress response of wheat-barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica. 2015;203:491–504. doi: 10.1007/s10681-014-1245-7. DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–207. doi: 10.1007/BF00018060. DOI
Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil. 1983;70:303–307. doi: 10.1007/BF02374789. DOI
Gondor OK, Szalai G, Kovács V, Janda T, Pál M. Relationship between polyamines and other cold-induced response mechanisms in different cereal species. J. Agron. Crop Sci. 2016;202:217–230. doi: 10.1111/jac.12144. DOI
Anton A, Rékási M, Uzinger N, Széplábi G, Makó A. Modelling the potential effects of the Hungarian red mud disaster on soil properties. Water Air Soil Pollut. 2012;223:5175–5188. doi: 10.1007/s11270-012-1269-3. DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis