Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MUNI/A/0947/2019
Masarykova Univerzita
PubMed
33530381
PubMed Central
PMC7865400
DOI
10.3390/jcm10030462
PII: jcm10030462
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen sulfide, inflammatory bowel diseases, intestinal microbiome, meta-analysis, sulfate-reducing bacteria, ulcerative colitis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Meta-analysis is a statistical process summarizing comparable data from a number of scientific papers. The use of meta-analysis in microbiology allows decision-making that has an impact on public health policy. It can happen that the primary researches come to different conclusions, although these are targeted with the same research question. It is, therefore, inevitable to have the means to systematically evaluate information and compare research results. Ulcerative colitis together with Crohn's disease are among the two main inflammatory bowel diseases. This chronic disease of the gastrointestinal tract, with an as yet unclear etiology, is presented by an uncontrolled inflammatory immune response in genetically predisposed individuals to as yet undefined environmental factors in interaction with the intestinal microbiota itself. In patients with ulcerative colitis (UC), changes in the composition and relative abundance of microorganisms could be observed. Sulfate-reducing bacteria (SRB), which commonly occur in the large intestine as part of the commensal microbiota of animals and humans involved in the pathogenesis of the disease, have been shown to occur. SRB are anaerobic organisms affecting short-chain fatty acid metabolism. This work outlines the perspectives of the use of meta-analysis for UC and changes in the representation of intestinal organisms in these patients.
Zobrazit více v PubMed
Ahmed I., Niaz Z. Ulcerative Colitis. Epidemiology, Pathogenesis and Complications. IntechOpen; London, UK: 2011. Ulcerative Colitis; pp. 1–12. DOI
Ho G.-T., Boyapati R., Satsangi J. Ulcerative colitis. Medicine. 2015;43:276–281. doi: 10.1016/j.mpmed.2015.02.004. DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M., Amedei A. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9:752. doi: 10.3390/biom9120752. PubMed DOI PMC
Vilela E.G. Evaluation of inflammatory activity in Crohn’s disease and ulcerative colitis. WJG. 2012;18:872. doi: 10.3748/wjg.v18.i9.872. PubMed DOI PMC
Gibson G.R., Macfarlane S., Macfarlane G.T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 1993;12:117–125. doi: 10.1111/j.1574-6941.1993.tb00023.x. DOI
Cummings J.H., Macfarlane G.T. Colonic microflora: Nutrition and health. Nutrition. 1997;13:476–478. doi: 10.1016/S0899-9007(97)00114-7. PubMed DOI
Cummings J.H., Macfarlane G.T., Macfarlane S. Intestinal bacteria and ulcerative colitis. Curr. Issues Intestig. Microbiol. 2003;4:9–20. PubMed
Malik T.A. Inflammatory Bowel Disease. Surg. Clin. N. Am. 2015;95:1105–1122. doi: 10.1016/j.suc.2015.07.006. PubMed DOI
Gibson G.R., Cummings J.H., Macfarlane G.T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Lett. 1991;86:103–112. doi: 10.1111/j.1574-6968.1991.tb04799.x. DOI
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim. Pol. 2015;62:103–108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I. Isolation and Purification of Sulfate-Reducing Bacteria. In: Blumenberg M., Shaaban M., Elgaml A., editors. Microorganisms. IntechOpen; London, UK: 2020.
Kushkevych I., Kollar P., Suchy P., Parak T., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuro Endocrinol. Lett. 2015;36(Suppl. 1):106–113. PubMed
Kushkevych I., Fafula R., Parák T., Bartoš M. Activity of Na+/K+-activated Mg2+-dependent ATP-hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Pitcher M.C., Cummings J.H. Hydrogen sulphide: A bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4. doi: 10.1136/gut.39.1.1. PubMed DOI PMC
Yuan Y., Hunt R.H. Systematic Reviews: The Good, the Bad and the Ugly. Am. J. Gastroenterol. 2009;104:1086–1092. doi: 10.1038/ajg.2009.118. PubMed DOI
Ergal İ., Fuchs W., Hasibar B., Thallinger B., Bochmann G., Rittmann S.K.-M.R. The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol. Adv. 2018;36:2165–2186. doi: 10.1016/j.biotechadv.2018.10.005. PubMed DOI
Rittmann S.K.-M.R., Seifert A.H., Bernacchi S. Kinetics, multivariate statistical modelling, and physiology of CO2-based biological methane production. Appl. Energy. 2018;216:751–760. doi: 10.1016/j.apenergy.2018.01.075. DOI
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 2020;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Kushkevych I., Dordević D., Kollár P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2019;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kováč J., Vítězová M., Kushkevych I. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. doi: 10.1515/med-2018-0052. PubMed DOI PMC
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. Appl. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Kushkevych I., Castro Sangrador J., Dordević D., Rozehnalová M., Černý M., Fafula R., Vítězová M., Rittmann S.K.-M.R. Evaluation of Physiological Parameters of Intestinal Sulfate-Reducing Bacteria Isolated from Patients Suffering from IBD and Healthy People. JCM. 2020;9:1920. doi: 10.3390/jcm9061920. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 2020;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Stange E.F. Inflammatory bowel diseases. Preface. Dig. Dis. 2013;31:269. doi: 10.1159/000354674. PubMed DOI
Boyapati R.K., Rossi A.G., Satsangi J., Ho G.-T. Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications. Mucosal. Immunol. 2016;9:567–582. doi: 10.1038/mi.2016.14. PubMed DOI
Head K., Jurenka J.S. Inflammatory bowel disease. Part II: Crohn’s disease--pathophysiology and conventional and alternative treatment options. Altern. Med. Rev. 2004;9:360–401. PubMed
Ek W.E., D’Amato M., Halfvarson J. The history of genetics in inflammatory bowel disease. Ann. Gastroenterol. 2014;27:294–303. PubMed PMC
Boirivant M., Cossu A. Inflammatory bowel disease: Inflammatory bowel disease. Oral Dis. 2012;18:1–15. doi: 10.1111/j.1601-0825.2011.01811.x. PubMed DOI
Juyal G., Sood A., Midha V., Thelma B.K. Genetics of ulcerative colitis: Putting into perspective the incremental gains from Indian studies. J. Genet. 2018;97:1493–1507. doi: 10.1007/s12041-018-1015-8. PubMed DOI
Molodecky N.A., Kaplan G.G. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.) 2010;6:339–346. PubMed PMC
Koloski N.-A., Bret L., Radford-Smith G. Hygiene hypothesis in inflammatory bowel disease: A critical review of the literature. World J. Gastroenterol. 2008;14:165–173. doi: 10.3748/wjg.14.165. PubMed DOI PMC
Sonnenberg A. Occupational distribution of inflammatory bowel disease among German employees. Gut. 1990;31:1037–1040. doi: 10.1136/gut.31.9.1037. PubMed DOI PMC
Macfarlane M.J., Hopkins G.T., Ma S. Bacterial Growth and Metabolism on Surfaces in the Large Intestine. Microb. Ecol. Health Dis. 2000;12:64–72. doi: 10.3402/mehd.v12i2.8103. DOI
Macfarlane S., Steed H., Macfarlane G.T. Intestinal bacteria and inflammatory bowel disease. Crit. Rev. Clin. Lab. Sci. 2009;46:25–54. doi: 10.1080/10408360802485792. PubMed DOI
Savage D.C. Microbial Ecology of the Gastrointestinal Tract. Annu. Rev. Microbiol. 1977;31:107–133. doi: 10.1146/annurev.mi.31.100177.000543. PubMed DOI
Carbonnel F., Jantchou P., Monnet E., Cosnes J. Environmental risk factors in Crohn’s disease and ulcerative colitis: An update. Gastroenterol. Clin. ET Biol. 2009;33:S145–S157. doi: 10.1016/S0399-8320(09)73150-1. PubMed DOI
Campieri M. Bacteria as the cause of ulcerative colitis. Gut. 2001;48:132–135. doi: 10.1136/gut.48.1.132. PubMed DOI PMC
Sands B.E. Inflammatory bowel disease: Past, present, and future. J. Gastroenterol. 2007;42:16–25. doi: 10.1007/s00535-006-1995-7. PubMed DOI PMC
Clavel T., Haller D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: Implications for chronic inflammation: Inflamm. Bowel Dis. 2007;13:1153–1164. doi: 10.1002/ibd.20174. PubMed DOI
Ng S.C., Shi H.Y., Hamidi N., Underwood F., Tang W., Benchimol E., Panaccione R., Ghosh S., Wu J., Chan F., et al. Evolving Trends in the Epidemiology of IBD in the 21st Century: A Systematic Review of Population-Based Studies: 594. Am. J. Gastroenterol. 2017;112:S319–S320. doi: 10.1038/ajg.2017.303. PubMed DOI
Sánchez de Medina F., Romero-Calvo I., Mascaraque C., Martínez-Augustin O. Intestinal Inflammation and Mucosal Barrier Function: Inflamm. Bowel Dis. 2014;20:2394–2404. doi: 10.1097/MIB.0000000000000204. PubMed DOI
Guarner F., Malagelada J.-R. Role of bacteria in experimental colitis. Best Pract. Res. Clin. Gastroenterol. 2003;17:793–804. doi: 10.1016/S1521-6918(03)00068-4. PubMed DOI
Li X., Bi Y. How Many Human and Bacteria Cells Are in the Human Body? Infect. Dis. Transl. Med. 2017:1–2. doi: 10.11979/idtm.201701001. DOI
Pushpanathan P., Mathew G., Selvarajan S., Seshadri K., Srikanth P. Gut microbiota and its mysteries. Indian J. Med. Microbiol. 2019;37:268. doi: 10.4103/ijmm.IJMM_19_373. PubMed DOI
Ziemer C.J. Newly Cultured Bacteria with Broad Diversity Isolated from Eight-Week Continuous Culture Enrichments of Cow Feces on Complex Polysaccharides. Appl. Environ. Microbiol. 2014;80:574–585. doi: 10.1128/AEM.03016-13. PubMed DOI PMC
Schroeder B.O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 2019;7:3–12. doi: 10.1093/gastro/goy052. PubMed DOI PMC
Johansson M.E.V., Gustafsson J.K., Holmén-Larsson J., Jabbar K.S., Xia L., Xu H., Ghishan F.K., Carvalho F.A., Gewirtz A.T., Sjövall H., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63:281–291. doi: 10.1136/gutjnl-2012-303207. PubMed DOI PMC
Cummings J.H. Short chain fatty acids in the human colon. Gut. 1981;22:763–779. doi: 10.1136/gut.22.9.763. PubMed DOI PMC
Rowland I., Gibson G., Heinken A., Scott K., Swann J., Thiele I., Tuohy K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018;57:1–24. doi: 10.1007/s00394-017-1445-8. PubMed DOI PMC
Couto M.R., Gonçalves P., Magro F., Martel F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol. Res. 2020;159:104947. doi: 10.1016/j.phrs.2020.104947. PubMed DOI
Mauerhofer L.-M., Pappenreiter P., Paulik C., Seifert A.H., Bernacchi S., Rittmann S.K.-M.R. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol. 2019;64:321–360. doi: 10.1007/s12223-018-0658-4. PubMed DOI PMC
Roy C.C., Kien C.L., Bouthillier L., Levy E. Short-Chain Fatty Acids: Ready for Prime Time? Nutr. Clin. Pract. 2006;21:351–366. doi: 10.1177/0115426506021004351. PubMed DOI
Treem W.R., Ahsan N., Shoup M., Hyams J.S. Fecal short-chain fatty acids in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 1994;18:159–164. doi: 10.1097/00005176-199402000-00007. PubMed DOI
Hill M.J. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 1997;6:S43–S45. doi: 10.1097/00008469-199703001-00009. PubMed DOI
Martens H., Barg M., Warren D., Jah J.-H. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 2002;58:275–285. doi: 10.1007/s00253-001-0902-7. PubMed DOI
Tremaroli V., Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–249. doi: 10.1038/nature11552. PubMed DOI
Duncan S.H., Holtrop G., Lobley G.E., Calder A.G., Stewart C.S., Flint H.J. Contribution of acetate to butyrate formation by human faecal bacteria. Br. J. Nutr. 2004;91:915–923. doi: 10.1079/BJN20041150. PubMed DOI
Gonçalves P., Martel F. Butyrate and Colorectal Cancer: The Role of Butyrate Transport. CDM. 2013;14:994–1008. doi: 10.2174/1389200211314090006. PubMed DOI
LeBlanc J.G., Chain F., Martín R., Bermúdez-Humarán L.G., Courau S., Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact. 2017;16:79. doi: 10.1186/s12934-017-0691-z. PubMed DOI PMC
Oliphant K., Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome. 2019;7:91. doi: 10.1186/s40168-019-0704-8. PubMed DOI PMC
Clausen M.R., Mortensen P.B. Kinetic studies on colonocyte metabolism of short chain fatty acids and glucose in ulcerative colitis. Gut. 1995;37:684–689. doi: 10.1136/gut.37.5.684. PubMed DOI PMC
Moeinian M. Beneficial effect of butyrate, Lactobacillus casei and L-carnitine combination in preference to each in experimental colitis. WJG. 2014;20:10876. doi: 10.3748/wjg.v20.i31.10876. PubMed DOI PMC
den Besten G., Lange K., Havinga R., van Dijk T.H., Gerding A., van Eunen K., Müller M., Groen A.K., Hooiveld G.J., Bakker B.M., et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;305:G900–G910. doi: 10.1152/ajpgi.00265.2013. PubMed DOI
Al-Asmakh M., Anuar F., Zadjali F., Rafter J., Pettersson S. Gut microbial communities modulating brain development and function. Gut Microbes. 2012;3:366–373. doi: 10.4161/gmic.21287. PubMed DOI PMC
De Vadder F., Kovatcheva-Datchary P., Goncalves D., Vinera J., Zitoun C., Duchampt A., Bäckhed F., Mithieux G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell. 2014;156:84–96. doi: 10.1016/j.cell.2013.12.016. PubMed DOI
Abdel Azim A., Rittmann S.K.-M.R., Fino D., Bochmann G. The physiological effect of heavy metals and volatile fatty acids on Methanococcus maripaludis S2. Biotechnol. Biofuels. 2018;11:301. doi: 10.1186/s13068-018-1302-x. PubMed DOI PMC
Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S., Hankir M., Zhang S., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014;5:3611. doi: 10.1038/ncomms4611. PubMed DOI PMC
Louis P., Flint H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017;19:29–41. doi: 10.1111/1462-2920.13589. PubMed DOI
Levitt M.D., Bond J.H. Volume, composition, and source of intestinal gas. Gastroenterology. 1970;59:921–929. doi: 10.1016/S0016-5085(19)33654-6. PubMed DOI
Figliuolo V.R., Coutinho-Silva R., Coutinho C.M.L.M. Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sci. 2018;215:145–151. doi: 10.1016/j.lfs.2018.11.009. PubMed DOI
Christl S.U., Murgatroyd P.R., Gibson G.R., Cummings J.H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology. 1992;102:1269–1277. doi: 10.1016/0016-5085(92)90765-Q. PubMed DOI
Wolf P.G., Biswas A., Morales S.E., Greening C., Gaskins H.R. H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes. 2016;7:235–245. doi: 10.1080/19490976.2016.1182288. PubMed DOI PMC
Florin T.H.J., Neale G., Goretski S., Cummings J.H. The Sulfate Content of Foods and Beverages. J. Food Compos. Anal. 1993;6:140–151. doi: 10.1006/jfca.1993.1016. DOI
Suarez F., Furne J., Springfield J., Levitt M. Insights into human colonic physiology obtained from the study of flatus composition. Am. J. Physiol. 1997;272:G1028–G1033. doi: 10.1152/ajpgi.1997.272.5.G1028. PubMed DOI
Postgate J. The Suphate-Reducing Bacteria. 2nd ed. Volume 1984 Cambridge University; Cambridge, UK: 1984.
Kushkevych I.V. Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Biol. Stud. 2016;10:197–228. doi: 10.30970/sbi.1001.560. DOI
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Kushkevych I., Leščanová O., Dordević D., Jančíková S., Hošek J., Vítězová M., Buňková L., Drago L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small–Large Intestine Axis. JCM. 2019;8:1656. doi: 10.3390/jcm8101656. PubMed DOI PMC
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. Energies. 2018;11:3270. doi: 10.3390/en11123270. DOI
Kovac J., Kushkevych I. New modification of cultivation medium for isolation and growth of intestinal sulfate-reducing bacteria; Proceedings of the MendelNet 2017, Faculty of AgriSciences, Mendel University in Brno; Brno, Czech Republic. 8–9 November 2017; pp. 702–707.
Abdulina D., Kováč J., Iutynska G., Kushkevych I. ATP sulfurylase activity of sulfate-reducing bacteria from various ecotopes. 3 Biotech. 2020;10:55. doi: 10.1007/s13205-019-2041-9. PubMed DOI PMC
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and its Role in IBD Development. JCM. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Loubinoux J., Valente F.M.A., Pereira I.A.C., Costa A., Grimont P.A.D., Le Faou A.E. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 2002;52:1305–1308. doi: 10.1099/00207713-52-4-1305. PubMed DOI
Kushkevych I., Dordević D., Vítězová M., Kollár P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
Kushkevych I., Coufalová M., Vítězová M., Rittmann S.K.-M.R. Sulfate-Reducing Bacteria of the Oral Cavity and Their Relation with Periodontitis—Recent Advances. JCM. 2020;9:2347. doi: 10.3390/jcm9082347. PubMed DOI PMC
Barton L.L., Fardeau M.-L., Fauque G.D. Hydrogen sulfide: A toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Met. Ions Life Sci. 2014;14:237–277. doi: 10.1007/978-94-017-9269-1_10. PubMed DOI
Brenner D.J., Krieg N.R., Staley J.T., Garrity G.M. Bergey’s Manual of Systematic Bacteriology. Volume 2005. Springer; Boston, MA, USA: 2010. The Proteobacteria, Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; p. 1388.
Glass G.V. Primary, Secondary, and Meta-Analysis of Research. Educ. Res. 1976;5:3–8. doi: 10.3102/0013189X005010003. DOI
Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700. PubMed DOI PMC
Pabalan N., Jarjanazi H., Steiner T.S. Meta-analysis in microbiology. Indian J. Med. Microbiol. 2014;32:229–235. doi: 10.4103/0255-0857.136547. PubMed DOI
Haidich A.B. Meta-analysis in medical research. Hippokratia. 2010;14:29–37. PubMed PMC
Goodman C.S. Introduction to Health Technology Assessment. National Library of Medicine; Rockville, MD, USA: 2014.
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Ishikawa H., Akedo I., Umesaki Y., Tanaka R., Imaoka A., Otani T. Randomized Controlled Trial of the Effect of Bifidobacteria-Fermented Milk on Ulcerative Colitis. J. Am. Coll. Nutr. 2003;22:56–63. doi: 10.1080/07315724.2003.10719276. PubMed DOI
Miele E., Pascarella F., Giannetti E., Quaglietta L., Baldassano R.N., Staiano A. Effect of a Probiotic Preparation (VSL#3) on Induction and Maintenance of Remission in Children with Ulcerative Colitis. Am. J. Gastroenterol. 2009;104:437–443. doi: 10.1038/ajg.2008.118. PubMed DOI
Sood A., Midha V., Makharia G.K., Ahuja V., Singal D., Goswami P., Tandon R.K. The Probiotic Preparation, VSL#3 Induces Remission in Patients with Mild-to-Moderately Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2009;7:1202–1209.e1. doi: 10.1016/j.cgh.2009.07.016. PubMed DOI
Rembacken B., Snelling A., Hawkey P., Chalmers D., Axon A. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomised trial. Lancet. 1999;354:635–639. doi: 10.1016/S0140-6736(98)06343-0. PubMed DOI
Fratila O.C., Craciun C. Ultrastructural evidence of mucosal healing after infliximab in patients with ulcerative colitis. J. Gastrointest. Liver Dis. 2010;19:147–153. PubMed
Ungar B., Mazor Y., Weisshof R., Yanai H., Ron Y., Goren I., Waizbard A., Yavzori M., Fudim E., Picard O., et al. Induction infliximab levels among patients with acute severe ulcerative colitis compared with patients with moderately severe ulcerative colitis. Aliment. Pharm. 2016;43:1293–1299. doi: 10.1111/apt.13631. PubMed DOI
Guo C., Wu K., Liang X., Liang Y., Li R. Infliximab clinically treating ulcerative colitis: A systematic review and meta-analysis. Pharmacol. Res. 2019;148:104455. doi: 10.1016/j.phrs.2019.104455. PubMed DOI
Dinesen L.C., Walsh A.J., Protic M.N., Heap G., Cummings F., Warren B.F., George B., Mortensen N.J.M., Travis S.P.L. The pattern and outcome of acute severe colitis. J. Crohns Colitis. 2010;4:431–437. doi: 10.1016/j.crohns.2010.02.001. PubMed DOI
Roberts S.E., Williams J.G., Yeates D., Goldacre M.J. Mortality in patients with and without colectomy admitted to hospital for ulcerative colitis and Crohn’s disease: Record linkage studies. BMJ. 2007;335:1033. doi: 10.1136/bmj.39345.714039.55. PubMed DOI PMC
Ananthakrishnan A.N., McGinley E.L., Saeian K., Binion D.G. Temporal trends in disease outcomes related to Clostridium difficile infection in patients with inflammatory bowel disease: Inflamm. Bowel Dis. 2011;17:976–983. doi: 10.1002/ibd.21457. PubMed DOI
Ran Z.-H., Shen J., Zhu Q., Peng J.-C. The impact of Clostridum difficile on surgical rate among ulcerative colitis patients: A systemic review and meta-analysis. Saudi J. Gastroenterol. 2015;21:208. doi: 10.4103/1319-3767.161644. PubMed DOI PMC