The Pancreatic β-Cell: The Perfect Redox System
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
20-00408S
Grantová Agentura České Republiky
PubMed
33572903
PubMed Central
PMC7912581
DOI
10.3390/antiox10020197
PII: antiox10020197
Knihovny.cz E-resources
- Keywords
- ATP-sensitive K+ channel, GLP-1, GPR40, NADPH oxidase 4, TRPM channels, branched-chain ketoacid oxidation, fatty-acid-stimulated insulin secretion, insulin secretion, pancreatic β-cells, redox signaling,
- Publication type
- Journal Article MeSH
- Review MeSH
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
See more in PubMed
Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010. PubMed DOI PMC
Bell E.L., Klimova T.A., Eisenbart J., Moraes C.T., Murphy M.P., Budinger G.R., Chandel N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007;177:1029–1036. doi: 10.1083/jcb.200609074. PubMed DOI PMC
Briggs K.J., Koivunen P., Cao S., Backus K.M., Olenchock B.A., Patel H., Zhang Q., Signoretti S., Gerfen G.J., Richardson A.L., et al. Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine. Cell. 2016;166:126–139. doi: 10.1016/j.cell.2016.05.042. PubMed DOI PMC
Plecita-Hlavata L., Jaburek M., Holendova B., Tauber J., Pavluch V., Berkova Z., Cahova M., Schroeder K., Brandes R.P., Siemen D., et al. Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes. 2020 doi: 10.2337/db19-1130. PubMed DOI
Sakaguchi R., Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic. Biol. Med. 2020;146:36–44. doi: 10.1016/j.freeradbiomed.2019.10.415. PubMed DOI
Kakei M., Yoshida M., Dezaki K., Ito K., Yamada H., Funazaki S., Kawakami M., Sugawara H., Yada T. Glucose and GTP-binding protein-coupled receptor cooperatively regulate transient receptor potential-channels to stimulate insulin secretion [Review] Endocr. J. 2016;63:867–876. doi: 10.1507/endocrj.EJ16-0262. PubMed DOI
Prentki M., Joly E., El-Assaad W., Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: Role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002;51(Suppl. 3):S405–S413. doi: 10.2337/diabetes.51.2007.S405. PubMed DOI
Lenzen S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008;36:343–347. doi: 10.1042/BST0360343. PubMed DOI
Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim. Et Biophys. Acta. Gen. Subj. 2017;1861:1929–1942. doi: 10.1016/j.bbagen.2017.05.013. PubMed DOI
Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 1996;20:463–466. doi: 10.1016/0891-5849(96)02051-5. PubMed DOI
Welsh N., Margulis B., Borg L.A., Wiklund H.J., Saldeen J., Flodström M., Mello M.A., Andersson A., Pipeleers D.G., Hellerström C. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: Implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol. Med. (Camb. Mass.) 1995;1:806–820. doi: 10.1007/BF03401895. PubMed DOI PMC
Ivarsson R., Quintens R., Dejonghe S., Tsukamoto K., Veld P., Renström E., Schuit F.C. Redox control of exocytosis: Regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54:2132–2142. doi: 10.2337/diabetes.54.7.2132. PubMed DOI
Reinbothe T.M., Ivarsson R., Li D.-Q., Niazi O., Jing X., Zhang E., Stenson L., Bryborn U., Renström E. Glutaredoxin-1 Mediates NADPH-Dependent Stimulation of Calcium-Dependent Insulin Secretion. Mol. Endocrinol. 2009;23:893–900. doi: 10.1210/me.2008-0306. PubMed DOI PMC
Jezek P., Holendova B., Plecita-Hlavata L. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules. 2020;10:93. doi: 10.3390/biom10010093. PubMed DOI PMC
Woo H.A., Yim S.H., Shin D.H., Kang D., Yu D.Y., Rhee S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell. 2010;140:517–528. doi: 10.1016/j.cell.2010.01.009. PubMed DOI
Ježek P., Jabůrek M., Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid. Redox Signal. 2019 doi: 10.1089/ars.2018.7656. PubMed DOI PMC
Swisa A., Glaser B., Dor Y. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Front. Genet. 2017;8:21. doi: 10.3389/fgene.2017.00021. PubMed DOI PMC
Ashcroft F.M., Rorsman P. Diabetes Mellitus and the β Cell: The Last Ten Years. Cell. 2012;148:1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC
Maechler P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013 doi: 10.1016/j.mce.2013.06.019. PubMed DOI
Prentki M., Matschinsky F.M., Madiraju S.R.M. Metabolic Signaling in Fuel-Induced Insulin Secretion. Cell Metab. 2013;18:162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI
Rutter G.A., Pullen T.J., Hodson D.J., Martinez-Sanchez A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 2015;466:203–218. doi: 10.1042/BJ20141384. PubMed DOI
Straub S.G., Sharp G.W. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes/Metab. Res. Rev. 2002;18:451–463. doi: 10.1002/dmrr.329. PubMed DOI
Henquin J.C. Regulation of insulin secretion: A matter of phase control and amplitude modulation. Diabetologia. 2009;52:739–751. doi: 10.1007/s00125-009-1314-y. PubMed DOI
Seino S., Sugawara K., Yokoi N., Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. DiabetesObes. Metab. 2017;19(Suppl. 1):22–29. doi: 10.1111/dom.12995. PubMed DOI
Shibasaki T., Takahashi T., Takahashi H., Seino S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. DiabetesObes. Metab. 2014;16(Suppl. 1):118–125. doi: 10.1111/dom.12343. PubMed DOI
Seino S. Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55:2096–2108. doi: 10.1007/s00125-012-2562-9. PubMed DOI
Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018;23:1483. doi: 10.3390/molecules23061483. PubMed DOI PMC
Leloup C., Tourrel-Cuzin C., Magnan C., Karaca M., Castel J., Carneiro L., Colombani A.-L., Ktorza A., Casteilla L., Penicaud L. Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion. Diabetes. 2009;58:673–681. doi: 10.2337/db07-1056. PubMed DOI PMC
Saadeh M., Ferrante T.C., Kane A., Shirihai O., Corkey B.E., Deeney J.T. Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol. PLoS ONE. 2012;7:e30200. doi: 10.1371/journal.pone.0030200. PubMed DOI PMC
Rebelato E., Abdulkader F., Curi R., Carpinelli A.R. Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism. PLoS ONE. 2011;6:e24507. doi: 10.1371/journal.pone.0024507. PubMed DOI PMC
Pi J., Bai Y., Zhang Q., Wong V., Floering L.M., Daniel K., Reece J.M., Deeney J.T., Andersen M.E., Corkey B.E., et al. Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes. 2007;56:1783–1791. doi: 10.2337/db06-1601. PubMed DOI
Morgan D., Rebelato E., Abdulkader F., Graciano M.F.R., Oliveira-Emilio H.R., Hirata A.E., Rocha M.S., Bordin S., Curi R., Carpinelli A.R. Association of NAD(P)H Oxidase with Glucose-Induced Insulin Secretion by Pancreatic β-Cells. Endocrinology. 2009;150:2197–2201. doi: 10.1210/en.2008-1149. PubMed DOI
Imoto H., Sasaki N., Iwase M., Nakamura U., Oku M., Sonoki K., Uchizono Y., Iida M. Impaired Insulin Secretion by Diphenyleneiodium Associated with Perturbation of Cytosolic Ca 2+ Dynamics in Pancreatic β-Cells. Endocrinology. 2008;149:5391–5400. doi: 10.1210/en.2008-0186. PubMed DOI
Syed I., Kyathanahalli C.N., Kowluru A. Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: Role of protein prenylation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R756–R762. doi: 10.1152/ajpregu.00786.2010. PubMed DOI PMC
Li N., Li B., Brun T., Deffert-Delbouille C., Mahiout Z., Daali Y., Ma X.-J., Krause K.-H., Maechler P. NADPH Oxidase NOX2 Defines a New Antagonistic Role for Reactive Oxygen Species and cAMP/PKA in the Regulation of Insulin Secretion. Diabetes. 2012;61:2842–2850. doi: 10.2337/db12-0009. PubMed DOI PMC
Bouzakri K., Veyrat-Durebex C., Holterman C., Arous C., Barbieux C., Bosco D., Altirriba J., Alibashe M., Tournier B.B., Gunton J.E., et al. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid. Redox Signal. 2020;32:618–635. doi: 10.1089/ars.2018.7579. PubMed DOI
Plecitá-Hlavatá L., Engstová H., Holendová B., Tauber J., Špaček T., Petrásková L., Křen V., Špačková J., Gotvaldová K., Ježek J., et al. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD(+) Ratio. Antioxid. Redox Signal. 2020 doi: 10.1089/ars.2019.7800. PubMed DOI PMC
Spégel P., Sharoyko V.V., Goehring I., Danielsson A.P., Malmgren S., Nagorny C.L., Andersson L.E., Koeck T., Sharp G.W., Straub S.G., et al. Time-resolved metabolomics analysis of β-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem. J. 2013;450:595–605. doi: 10.1042/BJ20121349. PubMed DOI
Bedard K., Krause K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI
Serrander L., Cartier L., Bedard K., Banfi B., Lardy B., Plastre O., Sienkiewicz A., Fórró L., Schlegel W., Krause K.-H. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 2007;406:105–114. doi: 10.1042/BJ20061903. PubMed DOI PMC
Di Fulvio M., Aguilar-Bryan L. Chloride transporters and channels in β-cell physiology: Revisiting a 40-year-old model. Biochem. Soc. Trans. 2019;47:1843–1855. doi: 10.1042/BST20190513. PubMed DOI PMC
Rao A., McBride E.L., Zhang G., Xu H., Cai T., Notkins A.L., Aronova M.A., Leapman R.D. Determination of secretory granule maturation times in pancreatic islet β-cells by serial block face scanning electron microscopy. J. Struct. Biol. 2020 doi: 10.1016/j.jsb.2020.107584. PubMed DOI PMC
Ma W., Chang J., Tong J., Ho U., Yau B., Kebede M.A., Thorn P. Arp2/3 nucleates F-actin coating of fusing insulin granules in pancreatic β cells to control insulin secretion. J. Cell Sci. 2020;133 doi: 10.1242/jcs.236794. PubMed DOI
Meda P., Bosco D., Chanson M., Giordano E., Vallar L., Wollheim C., Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J. Clin. Investig. 1990;86:759–768. doi: 10.1172/JCI114772. PubMed DOI PMC
Meda P. The role of gap junction membrane channels in secretion and hormonal action. J. Bioenerg. Biomembr. 1996;28:369–377. doi: 10.1007/BF02110113. PubMed DOI
Ravier M.A., Güldenagel M., Charollais A., Gjinovci A., Caille D., Söhl G., Wollheim C.B., Willecke K., Henquin J.C., Meda P. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes. 2005;54:1798–1807. doi: 10.2337/diabetes.54.6.1798. PubMed DOI
Jacob S., Köhler M., Tröster P., Visa M., García-Prieto C.F., Alanentalo T., Moede T., Leibiger B., Leibiger I.B., Berggren P.O. In vivo Ca(2+) dynamics in single pancreatic β cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020;34:945–959. doi: 10.1096/fj.201901302RR. PubMed DOI
Johnston N.R., Mitchell R.K., Haythorne E., Pessoa M.P., Semplici F., Ferrer J., Piemonti L., Marchetti P., Bugliani M., Bosco D., et al. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell Metab. 2016;24:389–401. doi: 10.1016/j.cmet.2016.06.020. PubMed DOI PMC
Rutter G.A., Hodson D.J., Chabosseau P., Haythorne E., Pullen T.J., Leclerc I. Local and regional control of calcium dynamics in the pancreatic islet. DiabetesObes. Metab. 2017;19(Suppl. 1):30–41. doi: 10.1111/dom.12990. PubMed DOI
Leturque A., Brot-Laroche E., Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiol. Endocrinol. Metab. 2009;296:E985–E992. doi: 10.1152/ajpendo.00004.2009. PubMed DOI
Kaminski M.T., Lenzen S., Baltrusch S. Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy. Biochim. Et Biophys. Acta. 2012;1823:1697–1707. doi: 10.1016/j.bbamcr.2012.06.022. PubMed DOI
Park J.H., Kim S.J., Park S.H., Son D.G., Bae J.H., Kim H.K., Han J., Song D.K. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology. 2012;153:574–582. doi: 10.1210/en.2011-0259. PubMed DOI
Matschinsky F.M., Wilson D.F. The Central Role of Glucokinase in Glucose Homeostasis: A Perspective 50 Years After Demonstrating the Presence of the Enzyme in Islets of Langerhans. Front. Physiol. 2019;10:148. doi: 10.3389/fphys.2019.00148. PubMed DOI PMC
Schuit F., De Vos A., Farfari S., Moens K., Pipeleers D., Brun T., Prentki M. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 1997;272:18572–18579. doi: 10.1074/jbc.272.30.18572. PubMed DOI
Zhang Z., Liew C.W., Handy D.E., Zhang Y., Leopold J.A., Hu J., Guo L., Kulkarni R.N., Loscalzo J., Stanton R.C. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:1497–1505. doi: 10.1096/fj.09-136572. PubMed DOI PMC
Huang M., Joseph J.W. Metabolomic analysis of pancreatic β-cell insulin release in response to glucose. Islets. 2012;4:210–222. doi: 10.4161/isl.20141. PubMed DOI PMC
Goehring I., Sauter N.S., Catchpole G., Assmann A., Shu L., Zien K.S., Moehlig M., Pfeiffer A.F.H., Oberholzer J., Willmitzer L., et al. Identification of an intracellular metabolic signature impairing beta cell function in the rat beta cell line INS-1E and human islets. Diabetologia. 2011;54:2584–2594. doi: 10.1007/s00125-011-2249-7. PubMed DOI
Ammon H.P., Steinke J. 6-Amnionicotinamide (6-AN) as a diabetogenic agent. In vitro and in vivo studies in the rat. Diabetes. 1972;21:143–148. doi: 10.2337/diab.21.3.143. PubMed DOI
Verspohl E.J., Händel M., Ammon H.P. Pentosephosphate shunt activity of rat pancreatic islets: Its dependence on glucose concentration. Endocrinology. 1979;105:1269–1274. doi: 10.1210/endo-105-5-1269. PubMed DOI
Monte Alegre S., Saad S.T., Delatre E., Saad M.J. Insulin secretion in patients deficient in glucose-6-phosphate dehydrogenase. Horm. Metab. Res. Horm. Und Stoffwechs. Horm. Et Metab. 1991;23:171–173. doi: 10.1055/s-2007-1003644. PubMed DOI
Akhmedov D., De Marchi U., Wollheim C.B., Wiederkehr A. Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells. Biochim. Et Biophys. Acta. 2012;1823:1815–1824. doi: 10.1016/j.bbamcr.2012.07.005. PubMed DOI
Lorenz M.A., El Azzouny M.A., Kennedy R.T., Burant C.F. Metabolome response to glucose in the β-cell line INS-1 832/13. J. Biol. Chem. 2013;288:10923–10935. doi: 10.1074/jbc.M112.414961. PubMed DOI PMC
Alves T.C., Pongratz R.L., Zhao X., Yarborough O., Sereda S., Shirihai O., Cline G.W., Mason G., Kibbey R.G. Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. Cell Metab. 2015;22:936–947. doi: 10.1016/j.cmet.2015.08.021. PubMed DOI PMC
Ouyang Q., Nakayama T., Baytas O., Davidson S.M., Yang C., Schmidt M., Lizarraga S.B., Mishra S., Ei-Quessny M., Niaz S., et al. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features. Proc. Natl. Acad. Sci. USA. 2016;113:E5598–E5607. doi: 10.1073/pnas.1609221113. PubMed DOI PMC
Yang R.Z., Park S., Reagan W.J., Goldstein R., Zhong S., Lawton M., Rajamohan F., Qian K., Liu L., Gong D.W. Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatol. (Baltim. Md.) 2009;49:598–607. doi: 10.1002/hep.22657. PubMed DOI PMC
Maechler P. Glutamate pathways of the beta-cell and the control of insulin secretion. Diabetes Res. Clin. Pract. 2017;131:149–153. doi: 10.1016/j.diabres.2017.07.009. PubMed DOI
Takahashi H., Yokoi N., Seino S. Glutamate as intracellular and extracellular signals in pancreatic islet functions. Proc. Jpn. Acad. Ser. BPhys. Biol. Sci. 2019;95:246–260. doi: 10.2183/pjab.95.017. PubMed DOI PMC
Hoang D.T., Hara M., Jo J. Design Principles of Pancreatic Islets: Glucose-Dependent Coordination of Hormone Pulses. PLoS ONE. 2016;11:e0152446. doi: 10.1371/journal.pone.0152446. PubMed DOI PMC
Kalwat M.A., Cobb M.H. Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharmacol. Ther. 2017;179:17–30. doi: 10.1016/j.pharmthera.2017.05.003. PubMed DOI PMC
Villard O., Brun J.F., Bories L., Molinari N., Benhamou P.Y., Berney T., Wojtusciszyn A. The Second Phase of Insulin Secretion in Nondiabetic Islet-Grafted Recipients Is Altered and Can Predict Graft Outcome. J. Clin. Endocrinol. Metab. 2018;103:1310–1319. doi: 10.1210/jc.2017-01342. PubMed DOI
Henquin J.C., Dufrane D., Kerr-Conte J., Nenquin M. Dynamics of glucose-induced insulin secretion in normal human islets. Am. J. Physiol. Endocrinol. Metab. 2015;309:E640–E650. doi: 10.1152/ajpendo.00251.2015. PubMed DOI
Gembal M., Detimary P., Gilon P., Gao Z.Y., Henquin J.C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J. Clin. Investig. 1993;91:871–880. doi: 10.1172/JCI116308. PubMed DOI PMC
Komatsu M., Takei M., Ishii H., Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig. 2013;4:511–516. doi: 10.1111/jdi.12094. PubMed DOI PMC
Pedersen M.G., Tagliavini A., Henquin J.C. Calcium signaling and secretory granule pool dynamics underlie biphasic insulin secretion and its amplification by glucose: Experiments and modeling. Am. J. Physiol. Endocrinol. Metab. 2019;316:E475–E486. doi: 10.1152/ajpendo.00380.2018. PubMed DOI
Rorsman P., Ashcroft F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018;98:117–214. doi: 10.1152/physrev.00008.2017. PubMed DOI PMC
Daniel S., Noda M., Straub S.G., Sharp G.W. Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes. 1999;48:1686–1690. doi: 10.2337/diabetes.48.9.1686. PubMed DOI
Rorsman P., Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46:1029–1045. doi: 10.1007/s00125-003-1153-1. PubMed DOI
Nagamatsu S., Ohara-Imaizumi M., Nakamichi Y., Kikuta T., Nishiwaki C. Imaging docking and fusion of insulin granules induced by antidiabetes agents: Sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes. 2006;55:2819–2825. doi: 10.2337/db06-0105. PubMed DOI
Ohara-Imaizumi M., Fujiwara T., Nakamichi Y., Okamura T., Akimoto Y., Kawai J., Matsushima S., Kawakami H., Watanabe T., Akagawa K., et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J. Cell Biol. 2007;177:695–705. doi: 10.1083/jcb.200608132. PubMed DOI PMC
Kalwat M.A., Thurmond D.C. Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp. Mol. Med. 2013;45:e37. doi: 10.1038/emm.2013.73. PubMed DOI PMC
Mourad N.I., Nenquin M., Henquin J.C. Metabolic amplifying pathway increases both phases of insulin secretion independently of beta-cell actin microfilaments. Am. J. Physiol. Cell Physiol. 2010;299:C389–C398. doi: 10.1152/ajpcell.00138.2010. PubMed DOI
Wang Z., Thurmond D.C. Mechanisms of biphasic insulin-granule exocytosis-roles of the cytoskeleton, small GTPases and SNARE proteins. J. Cell Sci. 2009;122:893–903. doi: 10.1242/jcs.034355. PubMed DOI PMC
Mourad N.I., Nenquin M., Henquin J.C. cAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments. Endocrinology. 2012;153:4644–4654. doi: 10.1210/en.2012-1450. PubMed DOI
Mourad N.I., Nenquin M., Henquin J.C. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol. Cell. Endocrinol. 2013;367:11–20. doi: 10.1016/j.mce.2012.12.002. PubMed DOI
Shibasaki T., Takahashi H., Miki T., Sunaga Y., Matsumura K., Yamanaka M., Zhang C., Tamamoto A., Satoh T., Miyazaki J., et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. USA. 2007;104:19333–19338. doi: 10.1073/pnas.0707054104. PubMed DOI PMC
Leguina-Ruzzi A., Vodičková A., Holendová B., Pavluch V., Tauber J., Engstová H., Dlasková A., Ježek P. Glucose-Induced Expression of DAPIT in Pancreatic β-Cells. Biomolecules. 2020;10:1026. doi: 10.3390/biom10071026. PubMed DOI PMC
Bränström R., Leibiger I.B., Leibiger B., Corkey B.E., Berggren P.O., Larsson O. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J. Biol. Chem. 1998;273:31395–31400. doi: 10.1074/jbc.273.47.31395. PubMed DOI
Bränström R., Corkey B.E., Berggren P.O., Larsson O. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J. Biol. Chem. 1997;272:17390–17394. doi: 10.1074/jbc.272.28.17390. PubMed DOI
Gribble F.M., Proks P., Corkey B.E., Ashcroft F.M. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J. Biol. Chem. 1998;273:26383–26387. doi: 10.1074/jbc.273.41.26383. PubMed DOI
Prentki M., Vischer S., Glennon M.C., Regazzi R., Deeney J.T., Corkey B.E. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 1992;267:5802–5810. doi: 10.1016/S0021-9258(18)42624-5. PubMed DOI
Yang S.N., Shi Y., Yang G., Li Y., Yu J., Berggren P.O. Ionic mechanisms in pancreatic β cell signaling. Cell. Mol. Life Sci. Cmls. 2014;71:4149–4177. doi: 10.1007/s00018-014-1680-6. PubMed DOI PMC
Drews G., Krippeit-Drews P., Düfer M. Electrophysiology of Islet Cells. In: Islam M., editor. Advances in Experimental Medicine and Biology. Volume 654. Springer; Dordrecht, The Netherlands: 2010. pp. 115–163. PubMed DOI
Bennett K., James C., Hussain K. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia. Rev. Endocr. Metab. Disord. 2010;11:157–163. doi: 10.1007/s11154-010-9144-2. PubMed DOI
Szollosi A., Nenquin M., Henquin J. Pharmacological stimulation and inhibition of insulin secretion in mouse islets lacking ATP-sensitive K+ channels. Br. J. Pharmacol. 2010;159:669–677. doi: 10.1111/j.1476-5381.2009.00588.x. PubMed DOI PMC
Soty M., Visa M., Soriano S., del Carmen Carmona M., Nadal Á., Novials A. Involvement of ATP-sensitive Potassium (KATP) Channels in the Loss of Beta-cell Function Induced by Human Islet Amyloid Polypeptide. J. Biol. Chem. 2011;286:40857–40866. doi: 10.1074/jbc.M111.232801. PubMed DOI PMC
Rorsman P., Braun M., Zhang Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium. 2012;51:300–308. doi: 10.1016/j.ceca.2011.11.006. PubMed DOI PMC
MacDonald P.E. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2011;301:E1065–E1069. doi: 10.1152/ajpendo.00426.2011. PubMed DOI
Zhang Q., Chibalina M.V., Bengtsson M., Groschner L.N., Ramracheya R., Rorsman N.J., Leiss V., Nassar M.A., Welling A., Gribble F.M., et al. Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression. J. Physiol. 2014;592:4677–4696. doi: 10.1113/jphysiol.2014.274209. PubMed DOI PMC
Tarasov A.I., Semplici F., Li D., Rizzuto R., Ravier M.A., Gilon P., Rutter G.A. Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic β cells. Pflug. Arch. Eur. J. Physiol. 2013;465:543–554. doi: 10.1007/s00424-012-1177-9. PubMed DOI PMC
Lewandowski S.L., Cardone R.L., Foster H.R., Ho T., Potapenko E., Poudel C., VanDeusen H.R., Sdao S.M., Alves T.C., Zhao X., et al. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab. 2020;32:736–750.e735. doi: 10.1016/j.cmet.2020.10.007. PubMed DOI PMC
Rorsman P., Braun M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 2013;75:155–179. doi: 10.1146/annurev-physiol-030212-183754. PubMed DOI
Smith P.A., Ashcroft F.M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. Febs Lett. 1990;261:187–190. doi: 10.1016/0014-5793(90)80667-8. PubMed DOI
Tarasov A.I., Girard C.A., Ashcroft F.M. ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes. 2006;55:2446–2454. doi: 10.2337/db06-0360. PubMed DOI
Catterall W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 2000;16:521–555. doi: 10.1146/annurev.cellbio.16.1.521. PubMed DOI
Schulla V., Renström E., Feil R., Feil S., Franklin I., Gjinovci A., Jing X.J., Laux D., Lundquist I., Magnuson M.A., et al. Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. Embo J. 2003;22:3844–3854. doi: 10.1093/emboj/cdg389. PubMed DOI PMC
Jing X., Li D.Q., Olofsson C.S., Salehi A., Surve V.V., Caballero J., Ivarsson R., Lundquist I., Pereverzev A., Schneider T., et al. CaV2.3 calcium channels control second-phase insulin release. J. Clin. Investig. 2005;115:146–154. doi: 10.1172/JCI200522518. PubMed DOI PMC
Kanno T., Suga S., Wu J., Kimura M., Wakui M. Intracellular cAMP potentiates voltage-dependent activation of L-type Ca2+ channels in rat islet beta-cells. Pflug. Arch. Eur. J. Physiol. 1998;435:578–580. doi: 10.1007/s004240050556. PubMed DOI
Rorsman P., Eliasson L., Kanno T., Zhang Q., Gopel S. Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 2011;107:224–235. doi: 10.1016/j.pbiomolbio.2011.06.009. PubMed DOI
Best L. Glucose-induced electrical activity in rat pancreatic beta-cells: Dependence on intracellular chloride concentration. J. Physiol. 2005;568:137–144. doi: 10.1113/jphysiol.2005.093740. PubMed DOI PMC
Stuhlmann T., Planells-Cases R., Jentsch T.J. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat. Commun. 2018;9:1974. doi: 10.1038/s41467-018-04353-y. PubMed DOI PMC
Colsoul B., Schraenen A., Lemaire K., Quintens R., Van Lommel L., Segal A., Owsianik G., Talavera K., Voets T., Margolskee R.F., et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc. Natl. Acad. Sci. USA. 2010;107:5208–5213. doi: 10.1073/pnas.0913107107. PubMed DOI PMC
Sumoza-Toledo A., Penner R. TRPM2: A multifunctional ion channel for calcium signalling. J. Physiol. 2011;589:1515–1525. doi: 10.1113/jphysiol.2010.201855. PubMed DOI PMC
Masgrau R., Churchill G.C., Morgan A.J., Ashcroft S.J., Galione A. NAADP: A new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr. Biol. 2003;13:247–251. doi: 10.1016/S0960-9822(03)00041-1. PubMed DOI
Ostapchenko V.G., Chen M., Guzman M.S., Xie Y.F., Lavine N., Fan J., Beraldo F.H., Martyn A.C., Belrose J.C., Mori Y., et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J. Neurosci. Off. J. Soc. Neurosci. 2015;35:15157–15169. doi: 10.1523/JNEUROSCI.4081-14.2015. PubMed DOI PMC
Miyanohara J., Kakae M., Nagayasu K., Nakagawa T., Mori Y., Arai K., Shirakawa H., Kaneko S. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. J. Neurosci. Off. J. Soc. Neurosci. 2018;38:3520–3533. doi: 10.1523/JNEUROSCI.2451-17.2018. PubMed DOI PMC
Macdonald M.J., Hasan N.M., Longacre M.J. Studies with leucine, beta-hydroxybutyrate and ATP citrate lyase-deficient beta cells support the acetoacetate pathway of insulin secretion. Biochim. Et Biophys. Acta. 2008;1780:966–972. doi: 10.1016/j.bbagen.2008.03.017. PubMed DOI PMC
Gilon P., Ravier M.A., Jonas J.C., Henquin J.C. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes. 2002;51(Suppl. 1):S144–S151. doi: 10.2337/diabetes.51.2007.S144. PubMed DOI
Beauvois M.C., Merezak C., Jonas J.C., Ravier M.A., Henquin J.C., Gilon P. Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am. J. Physiol Cell Physiol. 2006;290:C1503–C1511. doi: 10.1152/ajpcell.00400.2005. PubMed DOI
Sabourin J., Allagnat F. Store-operated Ca2+ entry: A key component of the insulin secretion machinery. J. Mol. Endocrinol. 2016;57:F35–F39. doi: 10.1530/JME-16-0106. PubMed DOI
Sabourin J., Le Gal L., Saurwein L., Haefliger J.A., Raddatz E., Allagnat F. Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat β-Cells. J. Biol. Chem. 2015;290:30530–30539. doi: 10.1074/jbc.M115.682583. PubMed DOI PMC
Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J. Physiol. 1986;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. PubMed DOI PMC
Düfer M., Gier B., Wolpers D., Krippeit-Drews P., Ruth P., Drews G. Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes. 2009;58:1835–1843. doi: 10.2337/db08-1324. PubMed DOI PMC
Vierra N.C., Dadi P.K., Jeong I., Dickerson M., Powell D.R., Jacobson D.A. Type 2 Diabetes-Associated K+ Channel TALK-1 Modulates β-Cell Electrical Excitability, Second-Phase Insulin Secretion, and Glucose Homeostasis. Diabetes. 2015;64:3818–3828. doi: 10.2337/db15-0280. PubMed DOI PMC
Jacobson D.A., Kuznetsov A., Lopez J.P., Kash S., Ammälä C.E., Philipson L.H. Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 2007;6:229–235. doi: 10.1016/j.cmet.2007.07.010. PubMed DOI PMC
Rebelato E., Santos L.R., Carpinelli A.R., Rorsman P., Abdulkader F. Short-term high glucose culture potentiates pancreatic beta cell function. Sci. Rep. 2018;8:13061. doi: 10.1038/s41598-018-31325-5. PubMed DOI PMC
Miki T., Nagashima K., Tashiro F., Kotake K., Yoshitomi H., Tamamoto A., Gonoi T., Iwanaga T., Miyazaki J., Seino S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA. 1998;95:10402–10406. doi: 10.1073/pnas.95.18.10402. PubMed DOI PMC
Ravier M.A., Nenquin M., Miki T., Seino S., Henquin J.C. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology. 2009;150:33–45. doi: 10.1210/en.2008-0617. PubMed DOI
Yang Y.Y., Long R.K., Ferrara C.T., Gitelman S.E., German M.S., Yang S.B. A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels (AustinTex.) 2017;11:636–647. doi: 10.1080/19336950.2017.1393131. PubMed DOI PMC
Nenquin M., Szollosi A., Aguilar-Bryan L., Bryan J., Henquin J.C. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic beta-cells. J. Biol. Chem. 2004;279:32316–32324. doi: 10.1074/jbc.M402076200. PubMed DOI
Seghers V., Nakazaki M., DeMayo F., Aguilar-Bryan L., Bryan J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J. Biol. Chem. 2000;275:9270–9277. doi: 10.1074/jbc.275.13.9270. PubMed DOI
Nakazaki M., Crane A., Hu M., Seghers V., Ullrich S., Aguilar-Bryan L., Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002;51:3440–3449. doi: 10.2337/diabetes.51.12.3440. PubMed DOI
Kikuta T., Ohara-Imaizumi M., Nakazaki M., Nishiwaki C., Nakamichi Y., Tei C., Aguilar-Bryan L., Bryan J., Nagamatsu S. Docking and fusion of insulin secretory granules in SUR1 knock out mouse beta-cells observed by total internal reflection fluorescence microscopy. Febs Lett. 2005;579:1602–1606. doi: 10.1016/j.febslet.2005.01.074. PubMed DOI
Li N., Wu J.X., Ding D., Cheng J., Gao N., Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell. 2017;168:101–110.e110. doi: 10.1016/j.cell.2016.12.028. PubMed DOI
Martin G.M., Yoshioka C., Rex E.A., Fay J.F., Xie Q., Whorton M.R., Chen J.Z., Shyng S.L. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife. 2017;6 doi: 10.7554/eLife.24149. PubMed DOI PMC
Mikhailov M.V., Campbell J.D., de Wet H., Shimomura K., Zadek B., Collins R.F., Sansom M.S., Ford R.C., Ashcroft F.M. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. Embo J. 2005;24:4166–4175. doi: 10.1038/sj.emboj.7600877. PubMed DOI PMC
Nichols C.G. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440:470–476. doi: 10.1038/nature04711. PubMed DOI
Yang H.Q., Martinez-Ortiz W., Hwang J., Fan X., Cardozo T.J., Coetzee W.A. Palmitoylation of the K(ATP) channel Kir6.2 subunit promotes channel opening by regulating PIP(2) sensitivity. Proc. Natl. Acad. Sci. USA. 2020;117:10593–10602. doi: 10.1073/pnas.1918088117. PubMed DOI PMC
Shyng S., Ferrigni T., Nichols C.G. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J. Gen. Physiol. 1997;110:643–654. doi: 10.1085/jgp.110.6.643. PubMed DOI PMC
Vedovato N., Rorsman O., Hennis K., Ashcroft F.M., Proks P. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac K(ATP) channels by MgADP and metabolism. J. Physiol. 2018;596:6205–6217. doi: 10.1113/jp276708. PubMed DOI PMC
Shyng S.L., Nichols C.G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998;282:1138–1141. doi: 10.1126/science.282.5391.1138. PubMed DOI
Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science. 1998;282:1141–1144. doi: 10.1126/science.282.5391.1141. PubMed DOI
Lin Y.F., Jan Y.N., Jan L.Y. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. Embo J. 2000;19:942–955. doi: 10.1093/emboj/19.5.942. PubMed DOI PMC
Béguin P., Nagashima K., Nishimura M., Gonoi T., Seino S. PKA-mediated phosphorylation of the human K(ATP) channel: Separate roles of Kir6.2 and SUR1 subunit phosphorylation. Embo J. 1999;18:4722–4732. doi: 10.1093/emboj/18.17.4722. PubMed DOI PMC
Kline C.F., Wright P.J., Koval O.M., Zmuda E.J., Johnson B.L., Anderson M.E., Hai T., Hund T.J., Mohler P.J. βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells. Proc. Natl. Acad. Sci. USA. 2013;110:17576–17581. doi: 10.1073/pnas.1314195110. PubMed DOI PMC
Ashcroft F.M., Harrison D.E., Ashcroft S.J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature. 1984;312:446–448. doi: 10.1038/312446a0. PubMed DOI
Yasui S., Mawatari K., Morizumi R., Furukawa H., Shimohata T., Harada N., Takahashi A., Nakaya Y. Hydrogen peroxide inhibits insulin-induced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J. Med. Investig. JMI. 2012;59:36–44. doi: 10.2152/jmi.59.36. PubMed DOI
Finol-Urdaneta R.K., Remedi M.S., Raasch W., Becker S., Clark R.B., Strüver N., Pavlov E., Nichols C.G., French R.J., Terlau H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. Embo Mol. Med. 2012;4:424–434. doi: 10.1002/emmm.201200218. PubMed DOI PMC
MacDonald P.E., Salapatek A.M., Wheeler M.B. Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic beta-cells. J. Physiol. 2003;546:647–653. doi: 10.1113/jphysiol.2002.035709. PubMed DOI PMC
Mittal M., Gu X.Q., Pak O., Pamenter M.E., Haag D., Fuchs D.B., Schermuly R.T., Ghofrani H.A., Brandes R.P., Seeger W., et al. Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic. Biol. Med. 2012;52:1033–1042. doi: 10.1016/j.freeradbiomed.2011.12.004. PubMed DOI
Grupe M., Myers G., Penner R., Fleig A. Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium. 2010;48:1–9. doi: 10.1016/j.ceca.2010.05.005. PubMed DOI PMC
Kashio M., Tominaga M. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets. J. Biol. Chem. 2015;290:12435–12442. doi: 10.1074/jbc.M115.649913. PubMed DOI PMC
Llanos P., Contreras-Ferrat A., Barrientos G., Valencia M., Mears D., Hidalgo C. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors. PLoS ONE. 2015;10:e0129238. doi: 10.1371/journal.pone.0129238. PubMed DOI PMC
Hara Y., Wakamori M., Ishii M., Maeno E., Nishida M., Yoshida T., Yamada H., Shimizu S., Mori E., Kudoh J., et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 2002;9:163–173. doi: 10.1016/S1097-2765(01)00438-5. PubMed DOI
Yosida M., Dezaki K., Uchida K., Kodera S., Lam N.V., Ito K., Rita R.S., Yamada H., Shimomura K., Ishikawa S.E., et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion. Diabetes. 2014;63:3394–3403. doi: 10.2337/db13-1868. PubMed DOI
Xiao H., Jedrychowski M.P., Schweppe D.K., Huttlin E.L., Yu Q., Heppner D.E., Li J., Long J., Mills E.L., Szpyt J., et al. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell. 2020;180:968–983.e924. doi: 10.1016/j.cell.2020.02.012. PubMed DOI PMC
Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 2013;113:4633–4679. doi: 10.1021/cr300163e. PubMed DOI PMC
Huang Y., Roth B., Lü W., Du J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. eLife. 2019;8 doi: 10.7554/eLife.50175. PubMed DOI PMC
Kahancová A., Sklenář F., Ježek P., Dlasková A. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1) Febs Lett. 2018;592:999–1009. doi: 10.1002/1873-3468.12991. PubMed DOI
Kahancová A., Sklenář F., Ježek P., Dlasková A. Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells. Sci. Rep. 2020;10:1551. doi: 10.1038/s41598-020-58411-x. PubMed DOI PMC
Gu J., Zhang L., Zong S., Guo R., Liu T., Yi J., Wang P., Zhuo W., Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364:1068–1075. doi: 10.1126/science.aaw4852. PubMed DOI
Gledhill J.R., Montgomery M.G., Leslie A.G., Walker J.E. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proc. Natl. Acad. Sci. USA. 2007;104:15671–15676. doi: 10.1073/pnas.0707326104. PubMed DOI PMC
Esparza-Moltó P.B., Cuezva J.M. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid. Redox Signal. 2020 doi: 10.1089/ars.2019.7988. PubMed DOI
Shen L., Zhi L., Hu W., Wu M.X. IEX-1 targets mitochondrial F1Fo-ATPase inhibitor for degradation. Cell Death Differ. 2009;16:603–612. doi: 10.1038/cdd.2008.184. PubMed DOI PMC
García-Aguilar A., Cuezva J.M. A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis. Front. Physiol. 2018;9:1322. doi: 10.3389/fphys.2018.01322. PubMed DOI PMC
Dlaskova A., Spacek T., Engstova H., Spackova J., Schrofel A., Holendova B., Smolkova K., Plecita-Hlavata L., Jezek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Et Biophys. Acta. Bioenerg. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Georgiadou E., Haythorne E., Dickerson M.T., Lopez-Noriega L., Pullen T.J., da Silva Xavier G., Davis S.P.X., Martinez-Sanchez A., Semplici F., Rizzuto R., et al. The pore-forming subunit MCU of the mitochondrial Ca(2+) uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia. 2020;63:1368–1381. doi: 10.1007/s00125-020-05148-x. PubMed DOI PMC
McCormack J.G., Halestrap A.P., Denton R.M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 1990;70:391–425. doi: 10.1152/physrev.1990.70.2.391. PubMed DOI
Drews G., Bauer C., Edalat A., Düfer M., Krippeit-Drews P. Evidence against a Ca(2+)-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflug. Arch. Eur. J. Physiol. 2015;467:2389–2397. doi: 10.1007/s00424-015-1707-3. PubMed DOI
Rutter G.A., Pralong W.F., Wollheim C.B. Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1) Biochim. Et Biophys. Acta. 1992;1175:107–113. doi: 10.1016/0167-4889(92)90016-5. PubMed DOI
Alam M.R., Groschner L.N., Parichatikanond W., Kuo L., Bondarenko A.I., Rost R., Waldeck-Weiermair M., Malli R., Graier W.F. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J. Biol. Chem. 2012;287:34445–34454. doi: 10.1074/jbc.M112.392084. PubMed DOI PMC
McKenna J.P., Ha J., Merrins M.J., Satin L.S., Sherman A., Bertram R. Ca2+ Effects on ATP Production and Consumption Have Regulatory Roles on Oscillatory Islet Activity. Biophys J. 2016;110:733–742. doi: 10.1016/j.bpj.2015.11.3526. PubMed DOI PMC
Tsuboi T., da Silva Xavier G., Holz G.G., Jouaville L.S., Thomas A.P., Rutter G.A. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem. J. 2003;369:287–299. doi: 10.1042/bj20021288. PubMed DOI PMC
Hodson D.J., Tarasov A.I., Gimeno Brias S., Mitchell R.K., Johnston N.R., Haghollahi S., Cane M.C., Bugliani M., Marchetti P., Bosco D., et al. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol. Endocrinol. (Baltim. Md.) 2014;28:860–871. doi: 10.1210/me.2014-1038. PubMed DOI PMC
De Stefani D., Raffaello A., Teardo E., Szabò I., Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476:336–340. doi: 10.1038/nature10230. PubMed DOI PMC
De Marchi U., Galindo A.N., Thevenet J., Hermant A., Bermont F., Lassueur S., Domingo J.S., Kussmann M., Dayon L., Wiederkehr A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019;33:4660–4674. doi: 10.1096/fj.201801424R. PubMed DOI
Quan X., Nguyen T.T., Choi S.K., Xu S., Das R., Cha S.K., Kim N., Han J., Wiederkehr A., Wollheim C.B., et al. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 2015;290:4086–4096. doi: 10.1074/jbc.M114.632547. PubMed DOI PMC
Kennedy E.D., Rizzuto R., Theler J.M., Pralong W.F., Bastianutto C., Pozzan T., Wollheim C.B. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J. Clin. Investig. 1996;98:2524–2538. doi: 10.1172/JCI119071. PubMed DOI PMC
Tarasov A.I., Semplici F., Ravier M.A., Bellomo E.A., Pullen T.J., Gilon P., Sekler I., Rizzuto R., Rutter G.A. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS ONE. 2012;7:e39722. doi: 10.1371/journal.pone.0039722. PubMed DOI PMC
Wiederkehr A., Szanda G., Akhmedov D., Mataki C., Heizmann C.W., Schoonjans K., Pozzan T., Spät A., Wollheim C.B. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab. 2011;13:601–611. doi: 10.1016/j.cmet.2011.03.015. PubMed DOI
Müller T.D., Finan B., Bloom S.R., D’Alessio D., Drucker D.J., Flatt P.R., Fritsche A., Gribble F., Grill H.J., Habener J.F., et al. Glucagon-like peptide 1 (GLP-1) Mol. Metab. 2019;30:72–130. doi: 10.1016/j.molmet.2019.09.010. PubMed DOI PMC
Furman B., Ong W.K., Pyne N.J. Cyclic AMP signaling in pancreatic islets. Adv. Exp. Med. Biol. 2010;654:281–304. doi: 10.1007/978-90-481-3271-3_13. PubMed DOI
Lefkimmiatis K., Zaccolo M. cAMP signaling in subcellular compartments. Pharmacol. Ther. 2014;143:295–304. doi: 10.1016/j.pharmthera.2014.03.008. PubMed DOI PMC
Berridge M.J. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol. Rev. 2016;96:1261–1296. doi: 10.1152/physrev.00006.2016. PubMed DOI
Husted A.S., Trauelsen M., Rudenko O., Hjorth S.A., Schwartz T.W. GPCR-Mediated Signaling of Metabolites. Cell Metab. 2017;25:777–796. doi: 10.1016/j.cmet.2017.03.008. PubMed DOI
Salloum G., Jaafar L., El-Sibai M. Rho A and Rac1: Antagonists moving forward. Tissue Cell. 2020;65:101364. doi: 10.1016/j.tice.2020.101364. PubMed DOI
Dalle S., Ravier M.A., Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell. Signal. 2011;23:522–528. doi: 10.1016/j.cellsig.2010.09.014. PubMed DOI
Chen Y., Cann M.J., Litvin T.N., Iourgenko V., Sinclair M.L., Levin L.R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289:625–628. doi: 10.1126/science.289.5479.625. PubMed DOI
Taylor S.S., Ilouz R., Zhang P., Kornev A.P. Assembly of allosteric macromolecular switches: Lessons from PKA. Nat. Rev. Mol. Cell Biol. 2012;13:646–658. doi: 10.1038/nrm3432. PubMed DOI PMC
Zhang F., Zhang L., Qi Y., Xu H. Mitochondrial cAMP signaling. Cell. Mol. Life Sci. Cmls. 2016;73:4577–4590. doi: 10.1007/s00018-016-2282-2. PubMed DOI PMC
Ould Amer Y., Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim. Et Biophys. Acta. Bioenerg. 2018;1859:868–877. doi: 10.1016/j.bbabio.2018.04.005. PubMed DOI
Härndahl L., Jing X.J., Ivarsson R., Degerman E., Ahrén B., Manganiello V.C., Renström E., Holst L.S. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J. Biol. Chem. 2002;277:37446–37455. doi: 10.1074/jbc.M205401200. PubMed DOI
Bünemann M., Gerhardstein B.L., Gao T., Hosey M.M. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J. Biol. Chem. 1999;274:33851–33854. doi: 10.1074/jbc.274.48.33851. PubMed DOI
MacDonald P.E., Wang X., Xia F., El-kholy W., Targonsky E.D., Tsushima R.G., Wheeler M.B. Antagonism of rat beta-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J. Biol. Chem. 2003;278:52446–52453. doi: 10.1074/jbc.M307612200. PubMed DOI
Song W.J., Seshadri M., Ashraf U., Mdluli T., Mondal P., Keil M., Azevedo M., Kirschner L.S., Stratakis C.A., Hussain M.A. Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab. 2011;13:308–319. doi: 10.1016/j.cmet.2011.02.002. PubMed DOI PMC
Somanath S., Partridge C.J., Marshall C., Rowe T., Turner M.D. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation. Biochem. Biophys. Res. Commun. 2016;473:403–407. doi: 10.1016/j.bbrc.2016.02.123. PubMed DOI
Holz G.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes. 2004;53:5–13. doi: 10.2337/diabetes.53.1.5. PubMed DOI PMC
Kang G., Leech C.A., Chepurny O.G., Coetzee W.A., Holz G.G. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J. Physiol. 2008;586:1307–1319. doi: 10.1113/jphysiol.2007.143818. PubMed DOI PMC
de Rooij J., Zwartkruis F.J., Verheijen M.H., Cool R.H., Nijman S.M., Wittinghofer A., Bos J.L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–477. doi: 10.1038/24884. PubMed DOI
Gloerich M., Bos J.L. Epac: Defining a new mechanism for cAMP action. Annu. Rev. Pharmacol. Toxicol. 2010;50:355–375. doi: 10.1146/annurev.pharmtox.010909.105714. PubMed DOI
Holz G.G., Leech C.A., Heller R.S., Castonguay M., Habener J.F. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37) J. Biol. Chem. 1999;274:14147–14156. doi: 10.1074/jbc.274.20.14147. PubMed DOI PMC
Gilon P., Chae H.Y., Rutter G.A., Ravier M.A. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium. 2014;56:340–361. doi: 10.1016/j.ceca.2014.09.001. PubMed DOI
Kang G., Chepurny O.G., Holz G.G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J. Physiol. 2001;536:375–385. doi: 10.1111/j.1469-7793.2001.0375c.xd. PubMed DOI PMC
Ozaki N., Shibasaki T., Kashima Y., Miki T., Takahashi K., Ueno H., Sunaga Y., Yano H., Matsuura Y., Iwanaga T., et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2000;2:805–811. doi: 10.1038/35041046. PubMed DOI
Kashima Y., Miki T., Shibasaki T., Ozaki N., Miyazaki M., Yano H., Seino S. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem. 2001;276:46046–46053. doi: 10.1074/jbc.M108378200. PubMed DOI
Yasuda T., Shibasaki T., Minami K., Takahashi H., Mizoguchi A., Uriu Y., Numata T., Mori Y., Miyazaki J., Miki T., et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab. 2010;12:117–129. doi: 10.1016/j.cmet.2010.05.017. PubMed DOI
Zhao X., León I.R., Bak S., Mogensen M., Wrzesinski K., Højlund K., Jensen O.N. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell. Proteom. Mcp. 2011;10:M110.000299. doi: 10.1074/mcp.M110.000299. PubMed DOI PMC
Grimsrud P.A., Carson J.J., Hebert A.S., Hubler S.L., Niemi N.M., Bailey D.J., Jochem A., Stapleton D.S., Keller M.P., Westphall M.S., et al. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab. 2012;16:672–683. doi: 10.1016/j.cmet.2012.10.004. PubMed DOI PMC
De Rasmo D., Micelli L., Santeramo A., Signorile A., Lattanzio P., Papa S. cAMP regulates the functional activity, coupling efficiency and structural organization of mammalian FOF1 ATP synthase. Biochim. Et Biophys. Acta. 2016;1857:350–358. doi: 10.1016/j.bbabio.2016.01.006. PubMed DOI
Acin-Perez R., Russwurm M., Günnewig K., Gertz M., Zoidl G., Ramos L., Buck J., Levin L.R., Rassow J., Manfredi G., et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 2011;286:30423–30432. doi: 10.1074/jbc.M111.266379. PubMed DOI PMC
Zhang F., Qi Y., Zhou K., Zhang G., Linask K., Xu H. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. Embo Rep. 2015;16:520–527. doi: 10.15252/embr.201439636. PubMed DOI PMC
García-Bermúdez J., Sánchez-Aragó M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., Cuezva J.M. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. Cell Rep. 2015;12:2143–2155. doi: 10.1016/j.celrep.2015.08.052. PubMed DOI
DiPilato L.M., Cheng X., Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA. 2004;101:16513–16518. doi: 10.1073/pnas.0405973101. PubMed DOI PMC
Di Benedetto G., Scalzotto E., Mongillo M., Pozzan T. Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 2013;17:965–975. doi: 10.1016/j.cmet.2013.05.003. PubMed DOI
Lefkimmiatis K., Leronni D., Hofer A.M. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 2013;202:453–462. doi: 10.1083/jcb.201303159. PubMed DOI PMC
Agnes R.S., Jernigan F., Shell J.R., Sharma V., Lawrence D.S. Suborganelle sensing of mitochondrial cAMP-dependent protein kinase activity. J. Am. Chem. Soc. 2010;132:6075–6080. doi: 10.1021/ja909652q. PubMed DOI PMC
Srinivasan S., Spear J., Chandran K., Joseph J., Kalyanaraman B., Avadhani N.G. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS ONE. 2013;8:e77129. doi: 10.1371/journal.pone.0077129. PubMed DOI PMC
Rosca M., Minkler P., Hoppel C.L. Cardiac mitochondria in heart failure: Normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim. Et Biophys. Acta. 2011;1807:1373–1382. doi: 10.1016/j.bbabio.2011.02.003. PubMed DOI
Parkkila A.K., Scarim A.L., Parkkila S., Waheed A., Corbett J.A., Sly W.S. Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J. Biol. Chem. 1998;273:24620–24623. doi: 10.1074/jbc.273.38.24620. PubMed DOI
Shigeto M., Ramracheya R., Tarasov A.I., Cha C.Y., Chibalina M.V., Hastoy B., Philippaert K., Reinbothe T., Rorsman N., Salehi A., et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Investig. 2015;125:4714–4728. doi: 10.1172/JCI81975. PubMed DOI PMC
Barker C.J., Berggren P.O. New horizons in cellular regulation by inositol polyphosphates: Insights from the pancreatic β-cell. Pharm. Rev. 2013;65:641–669. doi: 10.1124/pr.112.006775. PubMed DOI
Warwar N., Efendic S., Ostenson C.G., Haber E.P., Cerasi E., Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: Diabetes-related changes in the GK rat. Diabetes. 2006;55:590–599. doi: 10.2337/diabetes.55.03.06.db05-0001. PubMed DOI
Seed Ahmed M., Pelletier J., Leumann H., Gu H.F., Östenson C.G. Expression of Protein Kinase C Isoforms in Pancreatic Islets and Liver of Male Goto-Kakizaki Rats, a Model of Type 2 Diabetes. PLoS ONE. 2015;10:e0135781. doi: 10.1371/journal.pone.0141292. PubMed DOI PMC
Wuttke A., Yu Q., Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J. Biol. Chem. 2016;291:14986–14995. doi: 10.1074/jbc.M115.698456. PubMed DOI PMC
Hashimoto T., Mogami H., Tsuriya D., Morita H., Sasaki S., Kumada T., Suzuki Y., Urano T., Oki Y., Suda T. G-protein-coupled receptor 40 agonist GW9508 potentiates glucose-stimulated insulin secretion through activation of protein kinase Cα and ε in INS-1 cells. PLoS ONE. 2019;14:e0222179. doi: 10.1371/journal.pone.0222179. PubMed DOI PMC
Newton A.C. Protein kinase C: Perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018;53:208–230. doi: 10.1080/10409238.2018.1442408. PubMed DOI PMC
Gallegos L.L., Kunkel M.T., Newton A.C. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 2006;281:30947–30956. doi: 10.1074/jbc.M603741200. PubMed DOI
Santo-Domingo J., Chareyron I., Dayon L., Núñez Galindo A., Cominetti O., Pilar Giner Giménez M., De Marchi U., Canto C., Kussmann M., Wiederkehr A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017;31:1028–1045. doi: 10.1096/fj.201600837R. PubMed DOI
Antico Arciuch V.G., Alippe Y., Carreras M.C., Poderoso J.J. Mitochondrial kinases in cell signaling: Facts and perspectives. Adv. Drug Deliv. Rev. 2009;61:1234–1249. doi: 10.1016/j.addr.2009.04.025. PubMed DOI
Straub S.G., Shanmugam G., Sharp G.W. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes. 2004;53:3179–3183. doi: 10.2337/diabetes.53.12.3179. PubMed DOI
Vakilian M., Tahamtani Y., Ghaedi K. A review on insulin trafficking and exocytosis. Gene. 2019;706:52–61. doi: 10.1016/j.gene.2019.04.063. PubMed DOI
Hutton J.C., Penn E.J., Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 1983;210:297–305. doi: 10.1042/bj2100297. PubMed DOI PMC
Mitchell K.J., Lai F.A., Rutter G.A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6) J. Biol. Chem. 2003;278:11057–11064. doi: 10.1074/jbc.M210257200. PubMed DOI
Itoh N., Okamoto H. Translational control of proinsulin synthesis by glucose. Nature. 1980;283:100–102. doi: 10.1038/283100a0. PubMed DOI
Dodson G., Steiner D. The role of assembly in insulin’s biosynthesis. Curr. Opin. Struct. Biol. 1998;8:189–194. doi: 10.1016/S0959-440X(98)80037-7. PubMed DOI
Orci L., Halban P., Perrelet A., Amherdt M., Ravazzola M., Anderson R.G. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol. 1994;126:1149–1156. doi: 10.1083/jcb.126.5.1149. PubMed DOI PMC
Li Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine. 2014;45:178–189. doi: 10.1007/s12020-013-0032-x. PubMed DOI
Trogden K.P., Zhu X., Lee J.S., Wright C.V.E., Gu G., Kaverina I. Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells. Curr. Biol. 2019;29:2339–2350.e2335. doi: 10.1016/j.cub.2019.06.032. PubMed DOI PMC
Li M., Du W., Zhou M., Zheng L., Song E., Hou J. Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. Biophys. Rep. 2018;4:329–338. doi: 10.1007/s41048-018-0061-3. PubMed DOI PMC
Davidson H.W., Wenzlau J.M., O’Brien R.M. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol. Metab. Tem. 2014;25:415–424. doi: 10.1016/j.tem.2014.03.008. PubMed DOI PMC
Geng X., Li L., Watkins S., Robbins P.D., Drain P. The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes. 2003;52:767–776. doi: 10.2337/diabetes.52.3.767. PubMed DOI
Geng X., Lou H., Wang J., Li L., Swanson A.L., Sun M., Beers-Stolz D., Watkins S., Perez R.G., Drain P. α-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2011;300:E276–E286. doi: 10.1152/ajpendo.00262.2010. PubMed DOI PMC
Colsoul B., Nilius B., Vennekens R. Transient receptor potential (TRP) cation channels in diabetes. Curr. Top. Med. Chem. 2013;13:258–269. doi: 10.2174/1568026611313030004. PubMed DOI
Mitchell K.J., Pinton P., Varadi A., Tacchetti C., Ainscow E.K., Pozzan T., Rizzuto R., Rutter G.A. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 2001;155:41–51. doi: 10.1083/jcb.200103145. PubMed DOI PMC
Blondel O., Moody M.M., Depaoli A.M., Sharp A.H., Ross C.A., Swift H., Bell G.I. Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc. Natl. Acad. Sci. USA. 1994;91:7777–7781. doi: 10.1073/pnas.91.16.7777. PubMed DOI PMC
Dai F.F., Bhattacharjee A., Liu Y., Batchuluun B., Zhang M., Wang X.S., Huang X., Luu L., Zhu D., Gaisano H., et al. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells. J. Biol. Chem. 2015;290:25045–25061. doi: 10.1074/jbc.M115.648592. PubMed DOI PMC
Boland B.B., Rhodes C.J., Grimsby J.S. The dynamic plasticity of insulin production in β-cells. Mol. Metab. 2017;6:958–973. doi: 10.1016/j.molmet.2017.04.010. PubMed DOI PMC
Song S.H., McIntyre S.S., Shah H., Veldhuis J.D., Hayes P.C., Butler P.C. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 2000;85:4491–4499. doi: 10.1210/jc.85.12.4491. PubMed DOI
Kasai K., Fujita T., Gomi H., Izumi T. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic (Cph. Den.) 2008;9:1191–1203. doi: 10.1111/j.1600-0854.2008.00744.x. PubMed DOI
Lai Y., Choi U.B., Leitz J., Rhee H.J., Lee C., Altas B., Zhao M., Pfuetzner R.A., Wang A.L., Brose N., et al. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron. 2017;95:591–607.e510. doi: 10.1016/j.neuron.2017.07.004. PubMed DOI PMC
Rizo J., Xu J. The Synaptic Vesicle Release Machinery. Annu. Rev. Biophys. 2015;44:339–367. doi: 10.1146/annurev-biophys-060414-034057. PubMed DOI
Wang S., Choi U.B., Gong J., Yang X., Li Y., Wang A.L., Yang X., Brunger A.T., Ma C. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. Embo J. 2017;36:816–829. doi: 10.15252/embj.201695775. PubMed DOI PMC
Huang C., Walker E.M., Dadi P.K., Hu R., Xu Y., Zhang W., Sanavia T., Mun J., Liu J., Nair G.G., et al. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca(2+) Sensitivity of Insulin Secretion Vesicles. Dev. Cell. 2018;45:347–361.e345. doi: 10.1016/j.devcel.2018.03.013. PubMed DOI PMC
Maechler P., Wollheim C.B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402:685–689. doi: 10.1038/45280. PubMed DOI
Høy M., Maechler P., Efanov A.M., Wollheim C.B., Berggren P.O., Gromada J. Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. Febs Lett. 2002;531:199–203. doi: 10.1016/S0014-5793(02)03500-7. PubMed DOI
Casimir M., Lasorsa F.M., Rubi B., Caille D., Palmieri F., Meda P., Maechler P. Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion. J. Biol. Chem. 2009;284:25004–25014. doi: 10.1074/jbc.M109.015495. PubMed DOI PMC
MacDonald M.J., Fahien L.A. Glutamate is not a messenger in insulin secretion. J. Biol. Chem. 2000;275:34025–34027. doi: 10.1074/jbc.C000411200. PubMed DOI
Bertrand G., Ishiyama N., Nenquin M., Ravier M.A., Henquin J.C. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J. Biol. Chem. 2002;277:32883–32891. doi: 10.1074/jbc.M205326200. PubMed DOI
Gheni G., Ogura M., Iwasaki M., Yokoi N., Minami K., Nakayama Y., Harada K., Hastoy B., Wu X., Takahashi H., et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661–673. doi: 10.1016/j.celrep.2014.09.030. PubMed DOI PMC
Aspinwall C.A., Brooks S.A., Kennedy R.T., Lakey J.R. Effects of intravesicular H+ and extracellular H+ and Zn2+ on insulin secretion in pancreatic beta cells. J. Biol. Chem. 1997;272:31308–31314. doi: 10.1074/jbc.272.50.31308. PubMed DOI
Gammelsaeter R., Coppola T., Marcaggi P., Storm-Mathisen J., Chaudhry F.A., Attwell D., Regazzi R., Gundersen V. A role for glutamate transporters in the regulation of insulin secretion. PLoS ONE. 2011;6:e22960. doi: 10.1371/journal.pone.0022960. PubMed DOI PMC
Hashim M., Yokoi N., Takahashi H., Gheni G., Okechi O.S., Hayami T., Murao N., Hidaka S., Minami K., Mizoguchi A., et al. Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic β-Cells: Study of β-Cell Spheroid Clusters as a Model. Diabetes. 2018;67:1795–1806. doi: 10.2337/db17-1486. PubMed DOI
Elrick H., Stimmler L., Hlad C.J., Jr., Arai Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 1964;24:1076–1082. doi: 10.1210/jcem-24-10-1076. PubMed DOI
Ebert R., Unger H., Creutzfeldt W. Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from rat gut extracts by immunoadsorption. Diabetologia. 1983;24:449–454. doi: 10.1007/BF00257346. PubMed DOI
Scrocchi L.A., Brown T.J., MaClusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 1996;2:1254–1258. doi: 10.1038/nm1196-1254. PubMed DOI
Scrocchi L.A., Marshall B.A., Cook S.M., Brubaker P.L., Drucker D.J. Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes. 1998;47:632–639. doi: 10.2337/diabetes.47.4.632. PubMed DOI
Moon M.J., Park S., Kim D.K., Cho E.B., Hwang J.I., Vaudry H., Seong J.Y. Structural and molecular conservation of glucagon-like Peptide-1 and its receptor confers selective ligand-receptor interaction. Front. Endocrinol. 2012;3:141. doi: 10.3389/fendo.2012.00141. PubMed DOI PMC
Kuhre R.E., Wewer Albrechtsen N.J., Hartmann B., Deacon C.F., Holst J.J. Measurement of the incretin hormones: Glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. J. Diabetes Its Complicat. 2015;29:445–450. doi: 10.1016/j.jdiacomp.2014.12.006. PubMed DOI
Teraoku H., Lenzen S. Dynamics of Insulin Secretion from EndoC-βH1 β-Cell Pseudoislets in Response to Glucose and Other Nutrient and Nonnutrient Secretagogues. J. Diabetes Res. 2017;2017:2309630. doi: 10.1155/2017/2309630. PubMed DOI PMC
Graaf C.d., Donnelly D., Wootten D., Lau J., Sexton P.M., Miller L.J., Ahn J.-M., Liao J., Fletcher M.M., Yang D., et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016;68:954–1013. doi: 10.1124/pr.115.011395. PubMed DOI PMC
Moran B.M., Abdel-Wahab Y.H., Flatt P.R., McKillop A.M. Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice. Biol. Chem. 2014;395:453–464. doi: 10.1515/hsz-2013-0255. PubMed DOI
Drucker D.J., Philippe J., Mojsov S., Chick W.L., Habener J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA. 1987;84:3434–3438. doi: 10.1073/pnas.84.10.3434. PubMed DOI PMC
Weir G.C., Mojsov S., Hendrick G.K., Habener J.F. Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes. 1989;38:338–342. doi: 10.2337/diab.38.3.338. PubMed DOI
Hjøllund K.R., Deacon C.F., Holst J.J. Dipeptidyl peptidase-4 inhibition increases portal concentrations of intact glucagon-like peptide-1 (GLP-1) to a greater extent than peripheral concentrations in anaesthetised pigs. Diabetologia. 2011;54:2206–2208. doi: 10.1007/s00125-011-2168-7. PubMed DOI
Herrmann C., Göke R., Richter G., Fehmann H.C., Arnold R., Göke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–126. doi: 10.1159/000201231. PubMed DOI
Wootten D., Reynolds C.A., Smith K.J., Mobarec J.C., Koole C., Savage E.E., Pabreja K., Simms J., Sridhar R., Furness S.G.B., et al. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell. 2016;165:1632–1643. doi: 10.1016/j.cell.2016.05.023. PubMed DOI PMC
Sonoda N., Imamura T., Yoshizaki T., Babendure J.L., Lu J.C., Olefsky J.M. Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc. Natl. Acad. Sci. USA. 2008;105:6614–6619. doi: 10.1073/pnas.0710402105. PubMed DOI PMC
Montrose-Rafizadeh C., Avdonin P., Garant M.J., Rodgers B.D., Kole S., Yang H., Levine M.A., Schwindinger W., Bernier M. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology. 1999;140:1132–1140. doi: 10.1210/endo.140.3.6550. PubMed DOI
Light P.E., Manning Fox J.E., Riedel M.J., Wheeler M.B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol. Endocrinol. (Baltim. Md.) 2002;16:2135–2144. doi: 10.1210/me.2002-0084. PubMed DOI
Kang G., Joseph J.W., Chepurny O.G., Monaco M., Wheeler M.B., Bos J.L., Schwede F., Genieser H.G., Holz G.G. Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J. Biol. Chem. 2003;278:8279–8285. doi: 10.1074/jbc.M211682200. PubMed DOI PMC
Thompson A., Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway. Biochem. Pharm. 2015;93:72–84. doi: 10.1016/j.bcp.2014.10.015. PubMed DOI
MacDonald P.E., Salapatek A.M., Wheeler M.B. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: A possible glucose-dependent insulinotropic mechanism. Diabetes. 2002;51(Suppl. 3):S443–S447. doi: 10.2337/diabetes.51.2007.S443. PubMed DOI
Vierra N.C., Dickerson M.T., Philipson L.H., Jacobson D.A. Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca(2+) Influx to Assess the Role of Potassium Channels on β-Cell Function. Methods Mol. Biol. (CliftonN.J.) 2018;1684:73–84. doi: 10.1007/978-1-4939-7362-0_7. PubMed DOI PMC
Fernandez J., Valdeolmillos M. Glucose-dependent stimulatory effect of glucagon-like peptide 1(7-36) amide on the electrical activity of pancreatic beta-cells recorded in vivo. Diabetes. 1999;48:754–757. doi: 10.2337/diabetes.48.4.754. PubMed DOI
Fernandez J., Valdeolmillos M. Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo. Febs Lett. 2000;477:33–36. doi: 10.1016/s0014-5793(00)01631-8. PubMed DOI
Liu T., Li H., Gounko N.V., Zhou Z., Xu A., Hong W., Han W. Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice. Am. J. Physiol. Endocrinol. Metab. 2014;307:E611–E618. doi: 10.1152/ajpendo.00208.2014. PubMed DOI
Dupre J., Ross S.A., Watson D., Brown J.C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 1973;37:826–828. doi: 10.1210/jcem-37-5-826. PubMed DOI
Hinke S.A., Pauly R.P., Ehses J., Kerridge P., Demuth H.U., McIntosh C.H., Pederson R.A. Role of glucose in chronic desensitization of isolated rat islets and mouse insulinoma (betaTC-3) cells to glucose-dependent insulinotropic polypeptide. J. Endocrinol. 2000;165:281–291. doi: 10.1677/joe.0.1650281. PubMed DOI
Ehses J.A., Pelech S.L., Pederson R.A., McIntosh C.H. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J. Biol. Chem. 2002;277:37088–37097. doi: 10.1074/jbc.M205055200. PubMed DOI
McIntosh C.H., Widenmaier S., Kim S.J. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J. Diabetes Investig. 2012;3:96–106. doi: 10.1111/j.2040-1124.2012.00196.x. PubMed DOI PMC
Jitrapakdee S., Wutthisathapornchai A., Wallace J.C., MacDonald M.J. Regulation of insulin secretion: Role of mitochondrial signalling. Diabetologia. 2010;53:1019–1032. doi: 10.1007/s00125-010-1685-0. PubMed DOI PMC
Joseph J.W., Jensen M.V., Ilkayeva O., Palmieri F., Alárcon C., Rhodes C.J., Newgard C.B. The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion. J. Biol. Chem. 2006;281:35624–35632. doi: 10.1074/jbc.M602606200. PubMed DOI
Odegaard M.L., Joseph J.W., Jensen M.V., Lu D., Ilkayeva O., Ronnebaum S.M., Becker T.C., Newgard C.B. The Mitochondrial 2-Oxoglutarate Carrier Is Part of a Metabolic Pathway That Mediates Glucose- and Glutamine-stimulated Insulin Secretion. J. Biol. Chem. 2010;285:16530–16537. doi: 10.1074/jbc.M109.092593. PubMed DOI PMC
Ronnebaum S.M., Ilkayeva O., Burgess S.C., Joseph J.W., Lu D., Stevens R.D., Becker T.C., Sherry A.D., Newgard C.B., Jensen M.V. A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion. J. Biol. Chem. 2006;281:30593–30602. doi: 10.1074/jbc.M511908200. PubMed DOI
Lu D., Mulder H., Zhao P., Burgess S.C., Jensen M.V., Kamzolova S., Newgard C.B., Sherry A.D. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS) Proc. Natl. Acad. Sci. USA. 2002;99:2708–2713. doi: 10.1073/pnas.052005699. PubMed DOI PMC
Guay C., Madiraju S.R., Aumais A., Joly E., Prentki M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J. Biol. Chem. 2007;282:35657–35665. doi: 10.1074/jbc.M707294200. PubMed DOI
Pongratz R.L., Kibbey R.G., Shulman G.I., Cline G.W. Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. J. Biol. Chem. 2007;282:200–207. doi: 10.1074/jbc.M602954200. PubMed DOI
Farfari S., Schulz V., Corkey B., Prentki M. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: Possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes. 2000;49:718–726. doi: 10.2337/diabetes.49.5.718. PubMed DOI
El Azzouny M., Longacre M.J., Ansari I.H., Kennedy R.T., Burant C.F., MacDonald M.J. Knockdown of ATP citrate lyase in pancreatic beta cells does not inhibit insulin secretion or glucose flux and implicates the acetoacetate pathway in insulin secretion. Mol. Metab. 2016;5:980–987. doi: 10.1016/j.molmet.2016.07.011. PubMed DOI PMC
Chen W.W., Freinkman E., Wang T., Birsoy K., Sabatini D.M. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell. 2016;166:1324–1337.e1311. doi: 10.1016/j.cell.2016.07.040. PubMed DOI PMC
Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim. Et Biophys. Acta. 2006;1757:721–726. doi: 10.1016/j.bbabio.2006.03.010. PubMed DOI
Santos L.R.B., Muller C., de Souza A.H., Takahashi H.K., Spégel P., Sweet I.R., Chae H., Mulder H., Jonas J.-C. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol. Metab. 2017;6:535–547. doi: 10.1016/j.molmet.2017.04.004. PubMed DOI PMC
Freeman H.C., Hugill A., Dear N.T., Ashcroft F.M., Cox R.D. Deletion of nicotinamide nucleotide transhydrogenase: A new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes. 2006;55:2153–2156. doi: 10.2337/db06-0358. PubMed DOI
Toye A.A., Lippiat J.D., Proks P., Shimomura K., Bentley L., Hugill A., Mijat V., Goldsworthy M., Moir L., Haynes A., et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675–686. doi: 10.1007/s00125-005-1680-z. PubMed DOI
Freeman H., Shimomura K., Cox R.D., Ashcroft F.M. Nicotinamide nucleotide transhydrogenase: A link between insulin secretion, glucose metabolism and oxidative stress. Biochem. Soc. Trans. 2006;34:806–810. doi: 10.1042/BST0340806. PubMed DOI
Wong N., Blair A.R., Morahan G., Andrikopoulos S. The deletion variant of nicotinamide nucleotide transhydrogenase (Nnt) does not affect insulin secretion or glucose tolerance. Endocrinology. 2010;151:96–102. doi: 10.1210/en.2009-0887. PubMed DOI
Hasan N.M., Longacre M.J., Stoker S.W., Kendrick M.A., MacDonald M.J. Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol. Endocrinol. (Baltim. Md.) 2015;29:396–410. doi: 10.1210/me.2014-1249. PubMed DOI PMC
Spégel P., Mulder H. Metabolomics Analysis of Nutrient Metabolism in β-Cells. J. Mol. Biol. 2020;432:1429–1445. doi: 10.1016/j.jmb.2019.07.020. PubMed DOI
El-Azzouny M., Evans C.R., Treutelaar M.K., Kennedy R.T., Burant C.F. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J. Biol. Chem. 2014;289:13575–13588. doi: 10.1074/jbc.M113.531970. PubMed DOI PMC
Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC
Bränström R., Aspinwall C.A., Välimäki S., Ostensson C.G., Tibell A., Eckhard M., Brandhorst H., Corkey B.E., Berggren P.O., Larsson O. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: Potential role in Type 2 diabetes. Diabetologia. 2004;47:277–283. doi: 10.1007/s00125-003-1299-x. PubMed DOI
Joseph J.W., Odegaard M.L., Ronnebaum S.M., Burgess S.C., Muehlbauer J., Sherry A.D., Newgard C.B. Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. J. Biol. Chem. 2007;282:31592–31600. doi: 10.1074/jbc.M706080200. PubMed DOI
Bender K., Maechler P., McClenaghan N.H., Flatt P.R., Newsholme P. Overexpression of the malate-aspartate NADH shuttle member Aralar1 in the clonal beta-cell line BRIN-BD11 enhances amino-acid-stimulated insulin secretion and cell metabolism. Clin. Sci. 2009;117:321–330. doi: 10.1042/CS20090126. PubMed DOI PMC
Rubi B., del Arco A., Bartley C., Satrustegui J., Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J. Biol. Chem. 2004;279:55659–55666. doi: 10.1074/jbc.M409303200. PubMed DOI
Newman J.C., Verdin E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017;37:51–76. doi: 10.1146/annurev-nutr-071816-064916. PubMed DOI PMC
Mitok K.A., Freiberger E.C., Schueler K.L., Rabaglia M.E., Stapleton D.S., Kwiecien N.W., Malec P.A., Hebert A.S., Broman A.T., Kennedy R.T., et al. Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J. Biol. Chem. 2018;293:5860–5877. doi: 10.1074/jbc.RA117.001102. PubMed DOI PMC
Abulizi A., Cardone R.L., Stark R., Lewandowski S.L., Zhao X., Hillion J., Ma L., Sehgal R., Alves T.C., Thomas C., et al. Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metab. 2020;32:751–766.e711. doi: 10.1016/j.cmet.2020.10.006. PubMed DOI PMC
Ashcroft F.M., Ashcroft S.J., Harrison D.E. Effects of 2-ketoisocaproate on insulin release and single potassium channel activity in dispersed rat pancreatic beta-cells. J. Physiol. 1987;385:517–529. doi: 10.1113/jphysiol.1987.sp016505. PubMed DOI PMC
Panten U., Früh E., Reckers K., Rustenbeck I. Acute metabolic amplification of insulin secretion in mouse islets: Role of cytosolic acetyl-CoA. Metab. Clin. Exp. 2016;65:1225–1229. doi: 10.1016/j.metabol.2016.05.001. PubMed DOI
Panten U., Willenborg M., Schumacher K., Hamada A., Ghaly H., Rustenbeck I. Acute metabolic amplification of insulin secretion in mouse islets is mediated by mitochondrial export of metabolites, but not by mitochondrial energy generation. Metab. Clin. Exp. 2013;62:1375–1386. doi: 10.1016/j.metabol.2013.05.006. PubMed DOI
McClenaghan N.H., Flatt P.R. Glucose and non-glucidic nutrients exert permissive effects on 2-keto acid regulation of pancreatic beta-cell function. Biochim. Et Biophys. Acta. 1999;1426:110–118. doi: 10.1016/s0304-4165(98)00144-5. PubMed DOI
Heissig H., Urban K.A., Hastedt K., Zünkler B.J., Panten U. Mechanism of the insulin-releasing action of alpha-ketoisocaproate and related alpha-keto acid anions. Mol. Pharmacol. 2005;68:1097–1105. doi: 10.1124/mol.105.015388. PubMed DOI
Gurgul-Convey E., Kaminski M.T., Lenzen S. Physiological characterization of the human EndoC-βH1 β-cell line. Biochem. Biophys. Res. Commun. 2015;464:13–19. doi: 10.1016/j.bbrc.2015.05.072. PubMed DOI
Bunik V.I. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid. Redox Signal. 2019;30:1911–1947. doi: 10.1089/ars.2017.7311. PubMed DOI
Zhang J., Frerman F.E., Kim J.J. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc. Natl. Acad. Sci. USA. 2006;103:16212–16217. doi: 10.1073/pnas.0604567103. PubMed DOI PMC
Watmough N.J., Frerman F.E. The electron transfer flavoprotein: Ubiquinone oxidoreductases. Biochim. Et Biophys. Acta. 2010;1797:1910–1916. doi: 10.1016/j.bbabio.2010.10.007. PubMed DOI
Husen P., Nielsen C., Martino C.F., Solov’yov I.A. Molecular Oxygen Binding in the Mitochondrial Electron Transfer Flavoprotein. J. Chem. Inf. Modeling. 2019;59:4868–4879. doi: 10.1021/acs.jcim.9b00702. PubMed DOI
Brand M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016;100:14–31. doi: 10.1016/j.freeradbiomed.2016.04.001. PubMed DOI
Hull J., Hindy M.E., Kehoe P.G., Chalmers K., Love S., Conway M.E. Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J. Neurochem. 2012;123:997–1009. doi: 10.1111/jnc.12044. PubMed DOI
Gao Z., Young R.A., Li G., Najafi H., Buettger C., Sukumvanich S.S., Wong R.K., Wolf B.A., Matschinsky F.M. Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology. 2003;144:1949–1957. doi: 10.1210/en.2002-0072. PubMed DOI
Cheng Q., Beltran V.D., Chan S.M., Brown J.R., Bevington A., Herbert T.P. System-L amino acid transporters play a key role in pancreatic β-cell signalling and function. J. Mol. Endocrinol. 2016;56:175–187. doi: 10.1530/JME-15-0212. PubMed DOI
Giroix M.H., Saulnier C., Portha B. Decreased pancreatic islet response to L-leucine in the spontaneously diabetic GK rat: Enzymatic, metabolic and secretory data. Diabetologia. 1999;42:965–977. doi: 10.1007/s001250051255. PubMed DOI
Denton R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Et Biophys. Acta. 2009;1787:1309–1316. doi: 10.1016/j.bbabio.2009.01.005. PubMed DOI
Ævarsson A., Chuang J.L., Wynn R.M., Turley S., Chuang D.T., Hol W.G. Crystal structure of human branched-chain alpha-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure. 2000;8:277–291. doi: 10.1016/s0969-2126(00)00105-2. PubMed DOI
Noguchi S., Kondo Y., Ito R., Katayama T., Kazama S., Kadota Y., Kitaura Y., Harris R.A., Shimomura Y. Ca(2+)-dependent inhibition of branched-chain α-ketoacid dehydrogenase kinase by thiamine pyrophosphate. Biochem. Biophys. Res. Commun. 2018;504:916–920. doi: 10.1016/j.bbrc.2018.09.038. PubMed DOI
Manders R.J., Little J.P., Forbes S.C., Candow D.G. Insulinotropic and muscle protein synthetic effects of branched-chain amino acids: Potential therapy for type 2 diabetes and sarcopenia. Nutrients. 2012;4:1664–1678. doi: 10.3390/nu4111664. PubMed DOI PMC
Yang J., Chi Y., Burkhardt B.R., Guan Y., Wolf B.A. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr. Rev. 2010;68:270–279. doi: 10.1111/j.1753-4887.2010.00282.x. PubMed DOI PMC
Stein D.T., Stevenson B.E., Chester M.W., Basit M., Daniels M.B., Turley S.D., McGarry J.D. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J. Clin. Investig. 1997;100:398–403. doi: 10.1172/JCI119546. PubMed DOI PMC
Nyrén R., Chang C.L., Lindström P., Barmina A., Vorrsjö E., Ali Y., Juntti-Berggren L., Bensadoun A., Young S.G., Olivecrona T., et al. Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: Effects of diet and leptin deficiency. BMC Physiol. 2012;12:14. doi: 10.1186/1472-6793-12-14. PubMed DOI PMC
Cen J., Sargsyan E., Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr. Metab. 2016;13:59. doi: 10.1186/s12986-016-0119-5. PubMed DOI PMC
Fernandez J., Valdeolmillos M. Increased levels of free fatty acids in fasted mice stimulate in vivo beta-cell electrical activity. Diabetes. 1998;47:1707–1712. doi: 10.2337/diabetes.47.11.1707. PubMed DOI
Frayn K.N. Metabolic Regulation: A Human Perspective. John Wiley & Sons; Hoboken, NJ, USA: 2009.
Ee L.C., Zheng S., Yao L., Tso P. Lymphatic absorption of fatty acids and cholesterol in the neonatal rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G325–G331. doi: 10.1152/ajpgi.2000.279.2.G325. PubMed DOI
Nauli A.M., Nassir F., Zheng S., Yang Q., Lo C.M., Vonlehmden S.B., Lee D., Jandacek R.J., Abumrad N.A., Tso P. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 2006;131:1197–1207. doi: 10.1053/j.gastro.2006.08.012. PubMed DOI PMC
Moss C.E., Glass L.L., Diakogiannaki E., Pais R., Lenaghan C., Smith D.M., Wedin M., Bohlooly Y.M., Gribble F.M., Reimann F. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides. 2016;77:16–20. doi: 10.1016/j.peptides.2015.06.012. PubMed DOI PMC
Itoh K., Moriguchi R., Yamada Y., Fujita M., Yamato T., Oumi M., Holst J.J., Seino Y. High saturated fatty acid intake induces insulin secretion by elevating gastric inhibitory polypeptide levels in healthy individuals. Nutr. Res. 2014;34:653–660. doi: 10.1016/j.nutres.2014.07.013. PubMed DOI
Winzell M.S., Ström K., Holm C., Ahrén B. Glucose-stimulated insulin secretion correlates with beta-cell lipolysis. Nutr. Metab. Cardiovasc. Dis. Nmcd. 2006;16(Suppl. 1):S11–S16. doi: 10.1016/j.numecd.2005.11.006. PubMed DOI
Cruz W.S., Kwon G., Marshall C.A., McDaniel M.L., Semenkovich C.F. Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J. Biol. Chem. 2001;276:12162–12168. doi: 10.1074/jbc.M010707200. PubMed DOI
Marshall B.A., Tordjman K., Host H.H., Ensor N.J., Kwon G., Marshall C.A., Coleman T., McDaniel M.L., Semenkovich C.F. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J. Biol. Chem. 1999;274:27426–27432. doi: 10.1074/jbc.274.39.27426. PubMed DOI
Peyot M.L., Guay C., Latour M.G., Lamontagne J., Lussier R., Pineda M., Ruderman N.B., Haemmerle G., Zechner R., Joly E., et al. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J. Biol. Chem. 2009;284:16848–16859. doi: 10.1074/jbc.M109.006650. PubMed DOI PMC
Fujiwara K., Maekawa F., Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab. 2005;289:E670–E677. doi: 10.1152/ajpendo.00035.2005. PubMed DOI
Khan S., Kowluru A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem. Biophys. Res. Commun. 2018;495:2221–2226. doi: 10.1016/j.bbrc.2017.12.111. PubMed DOI PMC
Veprik A., Laufer D., Weiss S., Rubins N., Walker M.D. GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016;30:3860–3869. doi: 10.1096/fj.201500030R. PubMed DOI
Pujol J.B., Christinat N., Ratinaud Y., Savoia C., Mitchell S.E., Dioum E.H.M. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018;10:473. doi: 10.3390/nu10040473. PubMed DOI PMC
Moran B.M., Abdel-Wahab Y.H., Flatt P.R., McKillop A.M. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. DiabetesObes. Metab. 2014;16:1128–1139. doi: 10.1111/dom.12330. PubMed DOI
Hauge M., Vestmar M.A., Husted A.S., Ekberg J.P., Wright M.J., Di Salvo J., Weinglass A.B., Engelstoft M.S., Madsen A.N., Luckmann M., et al. GPR40 (FFAR1)-Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol. Metab. 2015;4:3–14. doi: 10.1016/j.molmet.2014.10.002. PubMed DOI PMC
Mancini A.D., Bertrand G., Vivot K., Carpentier É., Tremblay C., Ghislain J., Bouvier M., Poitout V. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1. J. Biol. Chem. 2015;290:21131–21140. doi: 10.1074/jbc.M115.644450. PubMed DOI PMC
Graciano M.F., Valle M.M., Curi R., Carpinelli A.R. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets. 2013;5:139–148. doi: 10.4161/isl.25459. PubMed DOI
Sabrautzki S., Kaiser G., Przemeck G.K.H., Gerst F., Lorza-Gil E., Panse M., Sartorius T., Hoene M., Marschall S., Haring H.U., et al. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol. Metab. 2017;6:1304–1312. doi: 10.1016/j.molmet.2017.07.007. PubMed DOI PMC
Yamada H., Yoshida M., Ito K., Dezaki K., Yada T., Ishikawa S.E., Kakei M. Potentiation of Glucose-stimulated Insulin Secretion by the GPR40-PLC-TRPC Pathway in Pancreatic β-Cells. Sci. Rep. 2016;6:25912. doi: 10.1038/srep25912. PubMed DOI PMC
Qian J., Gu Y., Wu C., Yu F., Chen Y., Zhu J., Yao X., Bei C., Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell. Mol. Biol. Lett. 2017;22:13. doi: 10.1186/s11658-017-0043-3. PubMed DOI PMC
Kristinsson H., Bergsten P., Sargsyan E. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim. Et Biophys. Acta. 2015;1853:3248–3257. doi: 10.1016/j.bbamcr.2015.09.022. PubMed DOI
Tomita T., Hosoda K., Fujikura J., Inagaki N., Nakao K. The G-Protein-Coupled Long-Chain Fatty Acid Receptor GPR40 and Glucose Metabolism. Front. Endocrinol. 2014;5:152. doi: 10.3389/fendo.2014.00152. PubMed DOI PMC
Vilas-Boas E.A., Karabacz N., Marsiglio-Librais G.N., Valle M.M.R., Nalbach L., Ampofo E., Morgan B., Carpinelli A.R., Roma L.P. Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacol. Rep. 2020;72:1725–1737. doi: 10.1007/s43440-020-00101-6. PubMed DOI PMC
Bergeron V., Ghislain J., Poitout V. The P21-activated kinase PAK4 is implicated in fatty-acid potentiation of insulin secretion downstream of free fatty acid receptor 1. Islets. 2016;8:157–164. doi: 10.1080/19382014.2016.1243191. PubMed DOI PMC
Ferdaoussi M., Bergeron V., Zarrouki B., Kolic J., Cantley J., Fielitz J., Olson E.N., Prentki M., Biden T., MacDonald P.E., et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682–2692. doi: 10.1007/s00125-012-2650-x. PubMed DOI PMC
Ribas G.S., Vargas C.R. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell. Mol. Neurobiol. 2020 doi: 10.1007/s10571-020-00955-7. PubMed DOI PMC
Nunes Marsiglio-Librais G., Aparecida Vilas-Boas E., Carlein C., Hoffmann M.D.A., Roma L.P., Carpinelli A.R. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep. Commun. Free Radic. Res. 2020;25:41–50. doi: 10.1080/13510002.2020.1757877. PubMed DOI PMC
Masiello P., Novelli M., Bombara M., Fierabracci V., Vittorini S., Prentki M., Bergamini E. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metab. Clin. Exp. 2002;51:110–114. doi: 10.1053/meta.2002.28969. PubMed DOI
Mulder H., Yang S., Winzell M.S., Holm C., Ahrén B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes. 2004;53:122–128. doi: 10.2337/diabetes.53.1.122. PubMed DOI
Fex M., Haemmerle G., Wierup N., Dekker-Nitert M., Rehn M., Ristow M., Zechner R., Sundler F., Holm C., Eliasson L., et al. A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia. 2009;52:271–280. doi: 10.1007/s00125-008-1191-9. PubMed DOI
Mugabo Y., Zhao S., Seifried A., Gezzar S., Al-Mass A., Zhang D., Lamontagne J., Attane C., Poursharifi P., Iglesias J., et al. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. Natl. Acad. Sci. USA. 2016;113:E430–E439. doi: 10.1073/pnas.1514375113. PubMed DOI PMC
Zhao S., Mugabo Y., Iglesias J., Xie L., Delghingaro-Augusto V., Lussier R., Peyot M.L., Joly E., Taïb B., Davis M.A., et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 2014;19:993–1007. doi: 10.1016/j.cmet.2014.04.003. PubMed DOI
Mugabo Y., Zhao S., Lamontagne J., Al-Mass A., Peyot M.L., Corkey B.E., Joly E., Madiraju S.R.M., Prentki M. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells. J. Biol. Chem. 2017;292:7407–7422. doi: 10.1074/jbc.M116.763060. PubMed DOI PMC
Guay C., Joly E., Pepin E., Barbeau A., Hentsch L., Pineda M., Madiraju S.R., Brunengraber H., Prentki M. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells. PLoS ONE. 2013;8:e77097. doi: 10.1371/journal.pone.0077097. PubMed DOI PMC
Jensen M.D., Nielsen S. Insulin dose response analysis of free fatty acid kinetics. Metab. Clin. Exp. 2007;56:68–76. doi: 10.1016/j.metabol.2006.08.022. PubMed DOI
van der Vusse G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009;24:300–307. doi: 10.2133/dmpk.24.300. PubMed DOI
Rossmeisl M., Flachs P., Brauner P., Sponarova J., Matejkova O., Prazak T., Ruzickova J., Bardova K., Kuda O., Kopecky J. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2004;28(Suppl. 4):S38–S44. doi: 10.1038/sj.ijo.0802855. PubMed DOI
Thams P., Capito K. L-arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur. J. Endocrinol. 1999;140:87–93. doi: 10.1530/eje.0.1400087. PubMed DOI
Pi M., Wu Y., Lenchik N.I., Gerling I., Quarles L.D. GPRC6A Mediates the Effects of l-Arginine on Insulin Secretion in Mouse Pancreatic Islets. Endocrinology. 2012;153:4608–4615. doi: 10.1210/en.2012-1301. PubMed DOI PMC
Gooding J.R., Jensen M.V., Dai X., Wenner B.R., Lu D., Arumugam R., Ferdaoussi M., MacDonald P.E., Newgard C.B. Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism. Cell Rep. 2015;13:157–167. doi: 10.1016/j.celrep.2015.08.072. PubMed DOI PMC
Ferdaoussi M., Dai X., Jensen M.V., Wang R., Peterson B.S., Huang C., Ilkayeva O., Smith N., Miller N., Hajmrle C., et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Investig. 2015;125:3847–3860. doi: 10.1172/JCI82498. PubMed DOI PMC
Stocker S., Van Laer K., Mijuskovic A., Dick T.P. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 2018;28:558–573. doi: 10.1089/ars.2017.7162. PubMed DOI
Rhee S.G., Woo H.A., Kang D. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. Antioxid. Redox Signal. 2018;28:537–557. doi: 10.1089/ars.2017.7167. PubMed DOI
Sobotta M.C., Liou W., Stocker S., Talwar D., Oehler M., Ruppert T., Scharf A.N., Dick T.P. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 2015;11:64–70. doi: 10.1038/nchembio.1695. PubMed DOI
Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI
Stancill J.S., Broniowska K.A., Oleson B.J., Naatz A., Corbett J.A. Pancreatic beta-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. J. Biol. Chem. 2019;294:4843–4853. doi: 10.1074/jbc.RA118.006219. PubMed DOI PMC
Stancill J.S., Happ J.T., Broniowska K.A., Hogg N., Corbett J.A. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020;318:R1004–R1013. doi: 10.1152/ajpregu.00011.2020. PubMed DOI PMC
Grankvist K., Marklund S.L., Täljedal I.B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981;199:393–398. doi: 10.1042/bj1990393. PubMed DOI PMC
Wood Z.A., Schröder E., Robin Harris J., Poole L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003;28:32–40. doi: 10.1016/S0968-0004(02)00003-8. PubMed DOI
Li N., Stojanovski S., Maechler P. Mitochondrial hormesis in pancreatic β cells: Does uncoupling protein 2 play a role? Oxidative Med. Cell. Longev. 2012;2012:740849. doi: 10.1155/2012/740849. PubMed DOI PMC
Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64:663–672. doi: 10.2337/db14-0874. PubMed DOI PMC
García-Martínez B.I., Ruiz-Ramos M., Pedraza-Chaverri J., Santiago-Osorio E., Mendoza-Núñez V.M. Hypoglycemic Effect of Resveratrol: A Systematic Review and Meta-Analysis. Antioxidants. 2021;10:69. doi: 10.3390/antiox10010069. PubMed DOI PMC
Bagetta D., Maruca A., Lupia A., Mesiti F., Catalano R., Romeo I., Moraca F., Ambrosio F.A., Costa G., Artese A., et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur. J. Med. Chem. 2020;186:111903. doi: 10.1016/j.ejmech.2019.111903. PubMed DOI
Meng J.M., Cao S.Y., Wei X.L., Gan R.Y., Wang Y.F., Cai S.X., Xu X.Y., Zhang P.Z., Li H.B. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants. 2019;8:170. doi: 10.3390/antiox8060170. PubMed DOI PMC
Alkhatib A., Tsang C., Tuomilehto J. Olive Oil Nutraceuticals in the Prevention and Management of Diabetes: From Molecules to Lifestyle. Int. J. Mol. Sci. 2018;19:2024. doi: 10.3390/ijms19072024. PubMed DOI PMC
Roma L.P., Jonas J.C. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and beta-Cells. J. Mol. Biol. 2019 doi: 10.1016/j.jmb.2019.10.012. PubMed DOI
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC
Ursini F., Maiorino M., Forman H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205–215. doi: 10.1016/j.redox.2016.01.010. PubMed DOI PMC
Smolková K., Mikó E., Kovács T., Leguina-Ruzzi A., Sipos A., Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid. Redox Signal. 2020;33:966–997. doi: 10.1089/ars.2020.8024. PubMed DOI PMC
Las G., Oliveira M.F., Shirihai O.S. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol. Asp. Med. 2020;71:100843. doi: 10.1016/j.mam.2019.100843. PubMed DOI
Mirabelli M., Russo D., Brunetti A. The Role of Diet on Insulin Sensitivity. Nutrients. 2020;12:3042. doi: 10.3390/nu12103042. PubMed DOI PMC
Cremonini E., Fraga C.G., Oteiza P.I. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic. Biol. Med. 2019;130:478–488. doi: 10.1016/j.freeradbiomed.2018.11.010. PubMed DOI
Mitochondrial Physiology of Cellular Redox Regulations
Pitfalls of Mitochondrial Redox Signaling Research
Deficiency of transcription factor Nkx6.1 does not prevent insulin secretion in INS-1E cells
Contribution of Mitochondria to Insulin Secretion by Various Secretagogues
Mitochondrial Redox Regulations and Redox Biology of Mitochondria