• This record comes from PubMed

The Pancreatic β-Cell: The Perfect Redox System

. 2021 Jan 29 ; 10 (2) : . [epub] 20210129

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
20-00408S Grantová Agentura České Republiky

Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.

See more in PubMed

Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010. PubMed DOI PMC

Bell E.L., Klimova T.A., Eisenbart J., Moraes C.T., Murphy M.P., Budinger G.R., Chandel N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007;177:1029–1036. doi: 10.1083/jcb.200609074. PubMed DOI PMC

Briggs K.J., Koivunen P., Cao S., Backus K.M., Olenchock B.A., Patel H., Zhang Q., Signoretti S., Gerfen G.J., Richardson A.L., et al. Paracrine Induction of HIF by Glutamate in Breast Cancer: EglN1 Senses Cysteine. Cell. 2016;166:126–139. doi: 10.1016/j.cell.2016.05.042. PubMed DOI PMC

Plecita-Hlavata L., Jaburek M., Holendova B., Tauber J., Pavluch V., Berkova Z., Cahova M., Schroeder K., Brandes R.P., Siemen D., et al. Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4. Diabetes. 2020 doi: 10.2337/db19-1130. PubMed DOI

Sakaguchi R., Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic. Biol. Med. 2020;146:36–44. doi: 10.1016/j.freeradbiomed.2019.10.415. PubMed DOI

Kakei M., Yoshida M., Dezaki K., Ito K., Yamada H., Funazaki S., Kawakami M., Sugawara H., Yada T. Glucose and GTP-binding protein-coupled receptor cooperatively regulate transient receptor potential-channels to stimulate insulin secretion [Review] Endocr. J. 2016;63:867–876. doi: 10.1507/endocrj.EJ16-0262. PubMed DOI

Prentki M., Joly E., El-Assaad W., Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: Role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes. 2002;51(Suppl. 3):S405–S413. doi: 10.2337/diabetes.51.2007.S405. PubMed DOI

Lenzen S. Oxidative stress: The vulnerable beta-cell. Biochem. Soc. Trans. 2008;36:343–347. doi: 10.1042/BST0360343. PubMed DOI

Lenzen S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim. Et Biophys. Acta. Gen. Subj. 2017;1861:1929–1942. doi: 10.1016/j.bbagen.2017.05.013. PubMed DOI

Lenzen S., Drinkgern J., Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 1996;20:463–466. doi: 10.1016/0891-5849(96)02051-5. PubMed DOI

Welsh N., Margulis B., Borg L.A., Wiklund H.J., Saldeen J., Flodström M., Mello M.A., Andersson A., Pipeleers D.G., Hellerström C. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: Implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol. Med. (Camb. Mass.) 1995;1:806–820. doi: 10.1007/BF03401895. PubMed DOI PMC

Ivarsson R., Quintens R., Dejonghe S., Tsukamoto K., Veld P., Renström E., Schuit F.C. Redox control of exocytosis: Regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes. 2005;54:2132–2142. doi: 10.2337/diabetes.54.7.2132. PubMed DOI

Reinbothe T.M., Ivarsson R., Li D.-Q., Niazi O., Jing X., Zhang E., Stenson L., Bryborn U., Renström E. Glutaredoxin-1 Mediates NADPH-Dependent Stimulation of Calcium-Dependent Insulin Secretion. Mol. Endocrinol. 2009;23:893–900. doi: 10.1210/me.2008-0306. PubMed DOI PMC

Jezek P., Holendova B., Plecita-Hlavata L. Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules. 2020;10:93. doi: 10.3390/biom10010093. PubMed DOI PMC

Woo H.A., Yim S.H., Shin D.H., Kang D., Yu D.Y., Rhee S.G. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell. 2010;140:517–528. doi: 10.1016/j.cell.2010.01.009. PubMed DOI

Ježek P., Jabůrek M., Plecitá-Hlavatá L. Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxid. Redox Signal. 2019 doi: 10.1089/ars.2018.7656. PubMed DOI PMC

Swisa A., Glaser B., Dor Y. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Front. Genet. 2017;8:21. doi: 10.3389/fgene.2017.00021. PubMed DOI PMC

Ashcroft F.M., Rorsman P. Diabetes Mellitus and the β Cell: The Last Ten Years. Cell. 2012;148:1160–1171. doi: 10.1016/j.cell.2012.02.010. PubMed DOI PMC

Maechler P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013 doi: 10.1016/j.mce.2013.06.019. PubMed DOI

Prentki M., Matschinsky F.M., Madiraju S.R.M. Metabolic Signaling in Fuel-Induced Insulin Secretion. Cell Metab. 2013;18:162–185. doi: 10.1016/j.cmet.2013.05.018. PubMed DOI

Rutter G.A., Pullen T.J., Hodson D.J., Martinez-Sanchez A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 2015;466:203–218. doi: 10.1042/BJ20141384. PubMed DOI

Straub S.G., Sharp G.W. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes/Metab. Res. Rev. 2002;18:451–463. doi: 10.1002/dmrr.329. PubMed DOI

Henquin J.C. Regulation of insulin secretion: A matter of phase control and amplitude modulation. Diabetologia. 2009;52:739–751. doi: 10.1007/s00125-009-1314-y. PubMed DOI

Seino S., Sugawara K., Yokoi N., Takahashi H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. DiabetesObes. Metab. 2017;19(Suppl. 1):22–29. doi: 10.1111/dom.12995. PubMed DOI

Shibasaki T., Takahashi T., Takahashi H., Seino S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. DiabetesObes. Metab. 2014;16(Suppl. 1):118–125. doi: 10.1111/dom.12343. PubMed DOI

Seino S. Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55:2096–2108. doi: 10.1007/s00125-012-2562-9. PubMed DOI

Ježek P., Jabůrek M., Holendová B., Plecitá-Hlavatá L. Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity. Molecules. 2018;23:1483. doi: 10.3390/molecules23061483. PubMed DOI PMC

Leloup C., Tourrel-Cuzin C., Magnan C., Karaca M., Castel J., Carneiro L., Colombani A.-L., Ktorza A., Casteilla L., Penicaud L. Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion. Diabetes. 2009;58:673–681. doi: 10.2337/db07-1056. PubMed DOI PMC

Saadeh M., Ferrante T.C., Kane A., Shirihai O., Corkey B.E., Deeney J.T. Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol. PLoS ONE. 2012;7:e30200. doi: 10.1371/journal.pone.0030200. PubMed DOI PMC

Rebelato E., Abdulkader F., Curi R., Carpinelli A.R. Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism. PLoS ONE. 2011;6:e24507. doi: 10.1371/journal.pone.0024507. PubMed DOI PMC

Pi J., Bai Y., Zhang Q., Wong V., Floering L.M., Daniel K., Reece J.M., Deeney J.T., Andersen M.E., Corkey B.E., et al. Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes. 2007;56:1783–1791. doi: 10.2337/db06-1601. PubMed DOI

Morgan D., Rebelato E., Abdulkader F., Graciano M.F.R., Oliveira-Emilio H.R., Hirata A.E., Rocha M.S., Bordin S., Curi R., Carpinelli A.R. Association of NAD(P)H Oxidase with Glucose-Induced Insulin Secretion by Pancreatic β-Cells. Endocrinology. 2009;150:2197–2201. doi: 10.1210/en.2008-1149. PubMed DOI

Imoto H., Sasaki N., Iwase M., Nakamura U., Oku M., Sonoki K., Uchizono Y., Iida M. Impaired Insulin Secretion by Diphenyleneiodium Associated with Perturbation of Cytosolic Ca 2+ Dynamics in Pancreatic β-Cells. Endocrinology. 2008;149:5391–5400. doi: 10.1210/en.2008-0186. PubMed DOI

Syed I., Kyathanahalli C.N., Kowluru A. Phagocyte-like NADPH oxidase generates ROS in INS 832/13 cells and rat islets: Role of protein prenylation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R756–R762. doi: 10.1152/ajpregu.00786.2010. PubMed DOI PMC

Li N., Li B., Brun T., Deffert-Delbouille C., Mahiout Z., Daali Y., Ma X.-J., Krause K.-H., Maechler P. NADPH Oxidase NOX2 Defines a New Antagonistic Role for Reactive Oxygen Species and cAMP/PKA in the Regulation of Insulin Secretion. Diabetes. 2012;61:2842–2850. doi: 10.2337/db12-0009. PubMed DOI PMC

Bouzakri K., Veyrat-Durebex C., Holterman C., Arous C., Barbieux C., Bosco D., Altirriba J., Alibashe M., Tournier B.B., Gunton J.E., et al. Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxid. Redox Signal. 2020;32:618–635. doi: 10.1089/ars.2018.7579. PubMed DOI

Plecitá-Hlavatá L., Engstová H., Holendová B., Tauber J., Špaček T., Petrásková L., Křen V., Špačková J., Gotvaldová K., Ježek J., et al. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD(+) Ratio. Antioxid. Redox Signal. 2020 doi: 10.1089/ars.2019.7800. PubMed DOI PMC

Spégel P., Sharoyko V.V., Goehring I., Danielsson A.P., Malmgren S., Nagorny C.L., Andersson L.E., Koeck T., Sharp G.W., Straub S.G., et al. Time-resolved metabolomics analysis of β-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem. J. 2013;450:595–605. doi: 10.1042/BJ20121349. PubMed DOI

Bedard K., Krause K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI

Serrander L., Cartier L., Bedard K., Banfi B., Lardy B., Plastre O., Sienkiewicz A., Fórró L., Schlegel W., Krause K.-H. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem. J. 2007;406:105–114. doi: 10.1042/BJ20061903. PubMed DOI PMC

Di Fulvio M., Aguilar-Bryan L. Chloride transporters and channels in β-cell physiology: Revisiting a 40-year-old model. Biochem. Soc. Trans. 2019;47:1843–1855. doi: 10.1042/BST20190513. PubMed DOI PMC

Rao A., McBride E.L., Zhang G., Xu H., Cai T., Notkins A.L., Aronova M.A., Leapman R.D. Determination of secretory granule maturation times in pancreatic islet β-cells by serial block face scanning electron microscopy. J. Struct. Biol. 2020 doi: 10.1016/j.jsb.2020.107584. PubMed DOI PMC

Ma W., Chang J., Tong J., Ho U., Yau B., Kebede M.A., Thorn P. Arp2/3 nucleates F-actin coating of fusing insulin granules in pancreatic β cells to control insulin secretion. J. Cell Sci. 2020;133 doi: 10.1242/jcs.236794. PubMed DOI

Meda P., Bosco D., Chanson M., Giordano E., Vallar L., Wollheim C., Orci L. Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J. Clin. Investig. 1990;86:759–768. doi: 10.1172/JCI114772. PubMed DOI PMC

Meda P. The role of gap junction membrane channels in secretion and hormonal action. J. Bioenerg. Biomembr. 1996;28:369–377. doi: 10.1007/BF02110113. PubMed DOI

Ravier M.A., Güldenagel M., Charollais A., Gjinovci A., Caille D., Söhl G., Wollheim C.B., Willecke K., Henquin J.C., Meda P. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes. 2005;54:1798–1807. doi: 10.2337/diabetes.54.6.1798. PubMed DOI

Jacob S., Köhler M., Tröster P., Visa M., García-Prieto C.F., Alanentalo T., Moede T., Leibiger B., Leibiger I.B., Berggren P.O. In vivo Ca(2+) dynamics in single pancreatic β cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020;34:945–959. doi: 10.1096/fj.201901302RR. PubMed DOI

Johnston N.R., Mitchell R.K., Haythorne E., Pessoa M.P., Semplici F., Ferrer J., Piemonti L., Marchetti P., Bugliani M., Bosco D., et al. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell Metab. 2016;24:389–401. doi: 10.1016/j.cmet.2016.06.020. PubMed DOI PMC

Rutter G.A., Hodson D.J., Chabosseau P., Haythorne E., Pullen T.J., Leclerc I. Local and regional control of calcium dynamics in the pancreatic islet. DiabetesObes. Metab. 2017;19(Suppl. 1):30–41. doi: 10.1111/dom.12990. PubMed DOI

Leturque A., Brot-Laroche E., Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am. J. Physiol. Endocrinol. Metab. 2009;296:E985–E992. doi: 10.1152/ajpendo.00004.2009. PubMed DOI

Kaminski M.T., Lenzen S., Baltrusch S. Real-time analysis of intracellular glucose and calcium in pancreatic beta cells by fluorescence microscopy. Biochim. Et Biophys. Acta. 2012;1823:1697–1707. doi: 10.1016/j.bbamcr.2012.06.022. PubMed DOI

Park J.H., Kim S.J., Park S.H., Son D.G., Bae J.H., Kim H.K., Han J., Song D.K. Glucagon-like peptide-1 enhances glucokinase activity in pancreatic beta-cells through the association of Epac2 with Rim2 and Rab3A. Endocrinology. 2012;153:574–582. doi: 10.1210/en.2011-0259. PubMed DOI

Matschinsky F.M., Wilson D.F. The Central Role of Glucokinase in Glucose Homeostasis: A Perspective 50 Years After Demonstrating the Presence of the Enzyme in Islets of Langerhans. Front. Physiol. 2019;10:148. doi: 10.3389/fphys.2019.00148. PubMed DOI PMC

Schuit F., De Vos A., Farfari S., Moens K., Pipeleers D., Brun T., Prentki M. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J. Biol. Chem. 1997;272:18572–18579. doi: 10.1074/jbc.272.30.18572. PubMed DOI

Zhang Z., Liew C.W., Handy D.E., Zhang Y., Leopold J.A., Hu J., Guo L., Kulkarni R.N., Loscalzo J., Stanton R.C. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and beta-cell apoptosis. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:1497–1505. doi: 10.1096/fj.09-136572. PubMed DOI PMC

Huang M., Joseph J.W. Metabolomic analysis of pancreatic β-cell insulin release in response to glucose. Islets. 2012;4:210–222. doi: 10.4161/isl.20141. PubMed DOI PMC

Goehring I., Sauter N.S., Catchpole G., Assmann A., Shu L., Zien K.S., Moehlig M., Pfeiffer A.F.H., Oberholzer J., Willmitzer L., et al. Identification of an intracellular metabolic signature impairing beta cell function in the rat beta cell line INS-1E and human islets. Diabetologia. 2011;54:2584–2594. doi: 10.1007/s00125-011-2249-7. PubMed DOI

Ammon H.P., Steinke J. 6-Amnionicotinamide (6-AN) as a diabetogenic agent. In vitro and in vivo studies in the rat. Diabetes. 1972;21:143–148. doi: 10.2337/diab.21.3.143. PubMed DOI

Verspohl E.J., Händel M., Ammon H.P. Pentosephosphate shunt activity of rat pancreatic islets: Its dependence on glucose concentration. Endocrinology. 1979;105:1269–1274. doi: 10.1210/endo-105-5-1269. PubMed DOI

Monte Alegre S., Saad S.T., Delatre E., Saad M.J. Insulin secretion in patients deficient in glucose-6-phosphate dehydrogenase. Horm. Metab. Res. Horm. Und Stoffwechs. Horm. Et Metab. 1991;23:171–173. doi: 10.1055/s-2007-1003644. PubMed DOI

Akhmedov D., De Marchi U., Wollheim C.B., Wiederkehr A. Pyruvate dehydrogenase E1α phosphorylation is induced by glucose but does not control metabolism-secretion coupling in INS-1E clonal β-cells. Biochim. Et Biophys. Acta. 2012;1823:1815–1824. doi: 10.1016/j.bbamcr.2012.07.005. PubMed DOI

Lorenz M.A., El Azzouny M.A., Kennedy R.T., Burant C.F. Metabolome response to glucose in the β-cell line INS-1 832/13. J. Biol. Chem. 2013;288:10923–10935. doi: 10.1074/jbc.M112.414961. PubMed DOI PMC

Alves T.C., Pongratz R.L., Zhao X., Yarborough O., Sereda S., Shirihai O., Cline G.W., Mason G., Kibbey R.G. Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. Cell Metab. 2015;22:936–947. doi: 10.1016/j.cmet.2015.08.021. PubMed DOI PMC

Ouyang Q., Nakayama T., Baytas O., Davidson S.M., Yang C., Schmidt M., Lizarraga S.B., Mishra S., Ei-Quessny M., Niaz S., et al. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features. Proc. Natl. Acad. Sci. USA. 2016;113:E5598–E5607. doi: 10.1073/pnas.1609221113. PubMed DOI PMC

Yang R.Z., Park S., Reagan W.J., Goldstein R., Zhong S., Lawton M., Rajamohan F., Qian K., Liu L., Gong D.W. Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatol. (Baltim. Md.) 2009;49:598–607. doi: 10.1002/hep.22657. PubMed DOI PMC

Maechler P. Glutamate pathways of the beta-cell and the control of insulin secretion. Diabetes Res. Clin. Pract. 2017;131:149–153. doi: 10.1016/j.diabres.2017.07.009. PubMed DOI

Takahashi H., Yokoi N., Seino S. Glutamate as intracellular and extracellular signals in pancreatic islet functions. Proc. Jpn. Acad. Ser. BPhys. Biol. Sci. 2019;95:246–260. doi: 10.2183/pjab.95.017. PubMed DOI PMC

Hoang D.T., Hara M., Jo J. Design Principles of Pancreatic Islets: Glucose-Dependent Coordination of Hormone Pulses. PLoS ONE. 2016;11:e0152446. doi: 10.1371/journal.pone.0152446. PubMed DOI PMC

Kalwat M.A., Cobb M.H. Mechanisms of the amplifying pathway of insulin secretion in the β cell. Pharmacol. Ther. 2017;179:17–30. doi: 10.1016/j.pharmthera.2017.05.003. PubMed DOI PMC

Villard O., Brun J.F., Bories L., Molinari N., Benhamou P.Y., Berney T., Wojtusciszyn A. The Second Phase of Insulin Secretion in Nondiabetic Islet-Grafted Recipients Is Altered and Can Predict Graft Outcome. J. Clin. Endocrinol. Metab. 2018;103:1310–1319. doi: 10.1210/jc.2017-01342. PubMed DOI

Henquin J.C., Dufrane D., Kerr-Conte J., Nenquin M. Dynamics of glucose-induced insulin secretion in normal human islets. Am. J. Physiol. Endocrinol. Metab. 2015;309:E640–E650. doi: 10.1152/ajpendo.00251.2015. PubMed DOI

Gembal M., Detimary P., Gilon P., Gao Z.Y., Henquin J.C. Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J. Clin. Investig. 1993;91:871–880. doi: 10.1172/JCI116308. PubMed DOI PMC

Komatsu M., Takei M., Ishii H., Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig. 2013;4:511–516. doi: 10.1111/jdi.12094. PubMed DOI PMC

Pedersen M.G., Tagliavini A., Henquin J.C. Calcium signaling and secretory granule pool dynamics underlie biphasic insulin secretion and its amplification by glucose: Experiments and modeling. Am. J. Physiol. Endocrinol. Metab. 2019;316:E475–E486. doi: 10.1152/ajpendo.00380.2018. PubMed DOI

Rorsman P., Ashcroft F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018;98:117–214. doi: 10.1152/physrev.00008.2017. PubMed DOI PMC

Daniel S., Noda M., Straub S.G., Sharp G.W. Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes. 1999;48:1686–1690. doi: 10.2337/diabetes.48.9.1686. PubMed DOI

Rorsman P., Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46:1029–1045. doi: 10.1007/s00125-003-1153-1. PubMed DOI

Nagamatsu S., Ohara-Imaizumi M., Nakamichi Y., Kikuta T., Nishiwaki C. Imaging docking and fusion of insulin granules induced by antidiabetes agents: Sulfonylurea and glinide drugs preferentially mediate the fusion of newcomer, but not previously docked, insulin granules. Diabetes. 2006;55:2819–2825. doi: 10.2337/db06-0105. PubMed DOI

Ohara-Imaizumi M., Fujiwara T., Nakamichi Y., Okamura T., Akimoto Y., Kawai J., Matsushima S., Kawakami H., Watanabe T., Akagawa K., et al. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. J. Cell Biol. 2007;177:695–705. doi: 10.1083/jcb.200608132. PubMed DOI PMC

Kalwat M.A., Thurmond D.C. Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp. Mol. Med. 2013;45:e37. doi: 10.1038/emm.2013.73. PubMed DOI PMC

Mourad N.I., Nenquin M., Henquin J.C. Metabolic amplifying pathway increases both phases of insulin secretion independently of beta-cell actin microfilaments. Am. J. Physiol. Cell Physiol. 2010;299:C389–C398. doi: 10.1152/ajpcell.00138.2010. PubMed DOI

Wang Z., Thurmond D.C. Mechanisms of biphasic insulin-granule exocytosis-roles of the cytoskeleton, small GTPases and SNARE proteins. J. Cell Sci. 2009;122:893–903. doi: 10.1242/jcs.034355. PubMed DOI PMC

Mourad N.I., Nenquin M., Henquin J.C. cAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments. Endocrinology. 2012;153:4644–4654. doi: 10.1210/en.2012-1450. PubMed DOI

Mourad N.I., Nenquin M., Henquin J.C. Amplification of insulin secretion by acetylcholine or phorbol ester is independent of β-cell microfilaments and distinct from metabolic amplification. Mol. Cell. Endocrinol. 2013;367:11–20. doi: 10.1016/j.mce.2012.12.002. PubMed DOI

Shibasaki T., Takahashi H., Miki T., Sunaga Y., Matsumura K., Yamanaka M., Zhang C., Tamamoto A., Satoh T., Miyazaki J., et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. USA. 2007;104:19333–19338. doi: 10.1073/pnas.0707054104. PubMed DOI PMC

Leguina-Ruzzi A., Vodičková A., Holendová B., Pavluch V., Tauber J., Engstová H., Dlasková A., Ježek P. Glucose-Induced Expression of DAPIT in Pancreatic β-Cells. Biomolecules. 2020;10:1026. doi: 10.3390/biom10071026. PubMed DOI PMC

Bränström R., Leibiger I.B., Leibiger B., Corkey B.E., Berggren P.O., Larsson O. Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J. Biol. Chem. 1998;273:31395–31400. doi: 10.1074/jbc.273.47.31395. PubMed DOI

Bränström R., Corkey B.E., Berggren P.O., Larsson O. Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J. Biol. Chem. 1997;272:17390–17394. doi: 10.1074/jbc.272.28.17390. PubMed DOI

Gribble F.M., Proks P., Corkey B.E., Ashcroft F.M. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J. Biol. Chem. 1998;273:26383–26387. doi: 10.1074/jbc.273.41.26383. PubMed DOI

Prentki M., Vischer S., Glennon M.C., Regazzi R., Deeney J.T., Corkey B.E. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 1992;267:5802–5810. doi: 10.1016/S0021-9258(18)42624-5. PubMed DOI

Yang S.N., Shi Y., Yang G., Li Y., Yu J., Berggren P.O. Ionic mechanisms in pancreatic β cell signaling. Cell. Mol. Life Sci. Cmls. 2014;71:4149–4177. doi: 10.1007/s00018-014-1680-6. PubMed DOI PMC

Drews G., Krippeit-Drews P., Düfer M. Electrophysiology of Islet Cells. In: Islam M., editor. Advances in Experimental Medicine and Biology. Volume 654. Springer; Dordrecht, The Netherlands: 2010. pp. 115–163. PubMed DOI

Bennett K., James C., Hussain K. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia. Rev. Endocr. Metab. Disord. 2010;11:157–163. doi: 10.1007/s11154-010-9144-2. PubMed DOI

Szollosi A., Nenquin M., Henquin J. Pharmacological stimulation and inhibition of insulin secretion in mouse islets lacking ATP-sensitive K+ channels. Br. J. Pharmacol. 2010;159:669–677. doi: 10.1111/j.1476-5381.2009.00588.x. PubMed DOI PMC

Soty M., Visa M., Soriano S., del Carmen Carmona M., Nadal Á., Novials A. Involvement of ATP-sensitive Potassium (KATP) Channels in the Loss of Beta-cell Function Induced by Human Islet Amyloid Polypeptide. J. Biol. Chem. 2011;286:40857–40866. doi: 10.1074/jbc.M111.232801. PubMed DOI PMC

Rorsman P., Braun M., Zhang Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium. 2012;51:300–308. doi: 10.1016/j.ceca.2011.11.006. PubMed DOI PMC

MacDonald P.E. Signal integration at the level of ion channel and exocytotic function in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2011;301:E1065–E1069. doi: 10.1152/ajpendo.00426.2011. PubMed DOI

Zhang Q., Chibalina M.V., Bengtsson M., Groschner L.N., Ramracheya R., Rorsman N.J., Leiss V., Nassar M.A., Welling A., Gribble F.M., et al. Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression. J. Physiol. 2014;592:4677–4696. doi: 10.1113/jphysiol.2014.274209. PubMed DOI PMC

Tarasov A.I., Semplici F., Li D., Rizzuto R., Ravier M.A., Gilon P., Rutter G.A. Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic β cells. Pflug. Arch. Eur. J. Physiol. 2013;465:543–554. doi: 10.1007/s00424-012-1177-9. PubMed DOI PMC

Lewandowski S.L., Cardone R.L., Foster H.R., Ho T., Potapenko E., Poudel C., VanDeusen H.R., Sdao S.M., Alves T.C., Zhao X., et al. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab. 2020;32:736–750.e735. doi: 10.1016/j.cmet.2020.10.007. PubMed DOI PMC

Rorsman P., Braun M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 2013;75:155–179. doi: 10.1146/annurev-physiol-030212-183754. PubMed DOI

Smith P.A., Ashcroft F.M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. Febs Lett. 1990;261:187–190. doi: 10.1016/0014-5793(90)80667-8. PubMed DOI

Tarasov A.I., Girard C.A., Ashcroft F.M. ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes. 2006;55:2446–2454. doi: 10.2337/db06-0360. PubMed DOI

Catterall W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 2000;16:521–555. doi: 10.1146/annurev.cellbio.16.1.521. PubMed DOI

Schulla V., Renström E., Feil R., Feil S., Franklin I., Gjinovci A., Jing X.J., Laux D., Lundquist I., Magnuson M.A., et al. Impaired insulin secretion and glucose tolerance in beta cell-selective Ca(v)1.2 Ca2+ channel null mice. Embo J. 2003;22:3844–3854. doi: 10.1093/emboj/cdg389. PubMed DOI PMC

Jing X., Li D.Q., Olofsson C.S., Salehi A., Surve V.V., Caballero J., Ivarsson R., Lundquist I., Pereverzev A., Schneider T., et al. CaV2.3 calcium channels control second-phase insulin release. J. Clin. Investig. 2005;115:146–154. doi: 10.1172/JCI200522518. PubMed DOI PMC

Kanno T., Suga S., Wu J., Kimura M., Wakui M. Intracellular cAMP potentiates voltage-dependent activation of L-type Ca2+ channels in rat islet beta-cells. Pflug. Arch. Eur. J. Physiol. 1998;435:578–580. doi: 10.1007/s004240050556. PubMed DOI

Rorsman P., Eliasson L., Kanno T., Zhang Q., Gopel S. Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 2011;107:224–235. doi: 10.1016/j.pbiomolbio.2011.06.009. PubMed DOI

Best L. Glucose-induced electrical activity in rat pancreatic beta-cells: Dependence on intracellular chloride concentration. J. Physiol. 2005;568:137–144. doi: 10.1113/jphysiol.2005.093740. PubMed DOI PMC

Stuhlmann T., Planells-Cases R., Jentsch T.J. LRRC8/VRAC anion channels enhance β-cell glucose sensing and insulin secretion. Nat. Commun. 2018;9:1974. doi: 10.1038/s41467-018-04353-y. PubMed DOI PMC

Colsoul B., Schraenen A., Lemaire K., Quintens R., Van Lommel L., Segal A., Owsianik G., Talavera K., Voets T., Margolskee R.F., et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc. Natl. Acad. Sci. USA. 2010;107:5208–5213. doi: 10.1073/pnas.0913107107. PubMed DOI PMC

Sumoza-Toledo A., Penner R. TRPM2: A multifunctional ion channel for calcium signalling. J. Physiol. 2011;589:1515–1525. doi: 10.1113/jphysiol.2010.201855. PubMed DOI PMC

Masgrau R., Churchill G.C., Morgan A.J., Ashcroft S.J., Galione A. NAADP: A new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr. Biol. 2003;13:247–251. doi: 10.1016/S0960-9822(03)00041-1. PubMed DOI

Ostapchenko V.G., Chen M., Guzman M.S., Xie Y.F., Lavine N., Fan J., Beraldo F.H., Martyn A.C., Belrose J.C., Mori Y., et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J. Neurosci. Off. J. Soc. Neurosci. 2015;35:15157–15169. doi: 10.1523/JNEUROSCI.4081-14.2015. PubMed DOI PMC

Miyanohara J., Kakae M., Nagayasu K., Nakagawa T., Mori Y., Arai K., Shirakawa H., Kaneko S. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion. J. Neurosci. Off. J. Soc. Neurosci. 2018;38:3520–3533. doi: 10.1523/JNEUROSCI.2451-17.2018. PubMed DOI PMC

Macdonald M.J., Hasan N.M., Longacre M.J. Studies with leucine, beta-hydroxybutyrate and ATP citrate lyase-deficient beta cells support the acetoacetate pathway of insulin secretion. Biochim. Et Biophys. Acta. 2008;1780:966–972. doi: 10.1016/j.bbagen.2008.03.017. PubMed DOI PMC

Gilon P., Ravier M.A., Jonas J.C., Henquin J.C. Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes. 2002;51(Suppl. 1):S144–S151. doi: 10.2337/diabetes.51.2007.S144. PubMed DOI

Beauvois M.C., Merezak C., Jonas J.C., Ravier M.A., Henquin J.C., Gilon P. Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum. Am. J. Physiol Cell Physiol. 2006;290:C1503–C1511. doi: 10.1152/ajpcell.00400.2005. PubMed DOI

Sabourin J., Allagnat F. Store-operated Ca2+ entry: A key component of the insulin secretion machinery. J. Mol. Endocrinol. 2016;57:F35–F39. doi: 10.1530/JME-16-0106. PubMed DOI

Sabourin J., Le Gal L., Saurwein L., Haefliger J.A., Raddatz E., Allagnat F. Store-operated Ca2+ Entry Mediated by Orai1 and TRPC1 Participates to Insulin Secretion in Rat β-Cells. J. Biol. Chem. 2015;290:30530–30539. doi: 10.1074/jbc.M115.682583. PubMed DOI PMC

Rorsman P., Trube G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J. Physiol. 1986;374:531–550. doi: 10.1113/jphysiol.1986.sp016096. PubMed DOI PMC

Düfer M., Gier B., Wolpers D., Krippeit-Drews P., Ruth P., Drews G. Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes. 2009;58:1835–1843. doi: 10.2337/db08-1324. PubMed DOI PMC

Vierra N.C., Dadi P.K., Jeong I., Dickerson M., Powell D.R., Jacobson D.A. Type 2 Diabetes-Associated K+ Channel TALK-1 Modulates β-Cell Electrical Excitability, Second-Phase Insulin Secretion, and Glucose Homeostasis. Diabetes. 2015;64:3818–3828. doi: 10.2337/db15-0280. PubMed DOI PMC

Jacobson D.A., Kuznetsov A., Lopez J.P., Kash S., Ammälä C.E., Philipson L.H. Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 2007;6:229–235. doi: 10.1016/j.cmet.2007.07.010. PubMed DOI PMC

Rebelato E., Santos L.R., Carpinelli A.R., Rorsman P., Abdulkader F. Short-term high glucose culture potentiates pancreatic beta cell function. Sci. Rep. 2018;8:13061. doi: 10.1038/s41598-018-31325-5. PubMed DOI PMC

Miki T., Nagashima K., Tashiro F., Kotake K., Yoshitomi H., Tamamoto A., Gonoi T., Iwanaga T., Miyazaki J., Seino S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA. 1998;95:10402–10406. doi: 10.1073/pnas.95.18.10402. PubMed DOI PMC

Ravier M.A., Nenquin M., Miki T., Seino S., Henquin J.C. Glucose controls cytosolic Ca2+ and insulin secretion in mouse islets lacking adenosine triphosphate-sensitive K+ channels owing to a knockout of the pore-forming subunit Kir6.2. Endocrinology. 2009;150:33–45. doi: 10.1210/en.2008-0617. PubMed DOI

Yang Y.Y., Long R.K., Ferrara C.T., Gitelman S.E., German M.S., Yang S.B. A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in KCNJ11. Channels (AustinTex.) 2017;11:636–647. doi: 10.1080/19336950.2017.1393131. PubMed DOI PMC

Nenquin M., Szollosi A., Aguilar-Bryan L., Bryan J., Henquin J.C. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic beta-cells. J. Biol. Chem. 2004;279:32316–32324. doi: 10.1074/jbc.M402076200. PubMed DOI

Seghers V., Nakazaki M., DeMayo F., Aguilar-Bryan L., Bryan J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J. Biol. Chem. 2000;275:9270–9277. doi: 10.1074/jbc.275.13.9270. PubMed DOI

Nakazaki M., Crane A., Hu M., Seghers V., Ullrich S., Aguilar-Bryan L., Bryan J. cAMP-activated protein kinase-independent potentiation of insulin secretion by cAMP is impaired in SUR1 null islets. Diabetes. 2002;51:3440–3449. doi: 10.2337/diabetes.51.12.3440. PubMed DOI

Kikuta T., Ohara-Imaizumi M., Nakazaki M., Nishiwaki C., Nakamichi Y., Tei C., Aguilar-Bryan L., Bryan J., Nagamatsu S. Docking and fusion of insulin secretory granules in SUR1 knock out mouse beta-cells observed by total internal reflection fluorescence microscopy. Febs Lett. 2005;579:1602–1606. doi: 10.1016/j.febslet.2005.01.074. PubMed DOI

Li N., Wu J.X., Ding D., Cheng J., Gao N., Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell. 2017;168:101–110.e110. doi: 10.1016/j.cell.2016.12.028. PubMed DOI

Martin G.M., Yoshioka C., Rex E.A., Fay J.F., Xie Q., Whorton M.R., Chen J.Z., Shyng S.L. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife. 2017;6 doi: 10.7554/eLife.24149. PubMed DOI PMC

Mikhailov M.V., Campbell J.D., de Wet H., Shimomura K., Zadek B., Collins R.F., Sansom M.S., Ford R.C., Ashcroft F.M. 3-D structural and functional characterization of the purified KATP channel complex Kir6.2-SUR1. Embo J. 2005;24:4166–4175. doi: 10.1038/sj.emboj.7600877. PubMed DOI PMC

Nichols C.G. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440:470–476. doi: 10.1038/nature04711. PubMed DOI

Yang H.Q., Martinez-Ortiz W., Hwang J., Fan X., Cardozo T.J., Coetzee W.A. Palmitoylation of the K(ATP) channel Kir6.2 subunit promotes channel opening by regulating PIP(2) sensitivity. Proc. Natl. Acad. Sci. USA. 2020;117:10593–10602. doi: 10.1073/pnas.1918088117. PubMed DOI PMC

Shyng S., Ferrigni T., Nichols C.G. Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J. Gen. Physiol. 1997;110:643–654. doi: 10.1085/jgp.110.6.643. PubMed DOI PMC

Vedovato N., Rorsman O., Hennis K., Ashcroft F.M., Proks P. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac K(ATP) channels by MgADP and metabolism. J. Physiol. 2018;596:6205–6217. doi: 10.1113/jp276708. PubMed DOI PMC

Shyng S.L., Nichols C.G. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998;282:1138–1141. doi: 10.1126/science.282.5391.1138. PubMed DOI

Baukrowitz T., Schulte U., Oliver D., Herlitze S., Krauter T., Tucker S.J., Ruppersberg J.P., Fakler B. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science. 1998;282:1141–1144. doi: 10.1126/science.282.5391.1141. PubMed DOI

Lin Y.F., Jan Y.N., Jan L.Y. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. Embo J. 2000;19:942–955. doi: 10.1093/emboj/19.5.942. PubMed DOI PMC

Béguin P., Nagashima K., Nishimura M., Gonoi T., Seino S. PKA-mediated phosphorylation of the human K(ATP) channel: Separate roles of Kir6.2 and SUR1 subunit phosphorylation. Embo J. 1999;18:4722–4732. doi: 10.1093/emboj/18.17.4722. PubMed DOI PMC

Kline C.F., Wright P.J., Koval O.M., Zmuda E.J., Johnson B.L., Anderson M.E., Hai T., Hund T.J., Mohler P.J. βIV-Spectrin and CaMKII facilitate Kir6.2 regulation in pancreatic beta cells. Proc. Natl. Acad. Sci. USA. 2013;110:17576–17581. doi: 10.1073/pnas.1314195110. PubMed DOI PMC

Ashcroft F.M., Harrison D.E., Ashcroft S.J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature. 1984;312:446–448. doi: 10.1038/312446a0. PubMed DOI

Yasui S., Mawatari K., Morizumi R., Furukawa H., Shimohata T., Harada N., Takahashi A., Nakaya Y. Hydrogen peroxide inhibits insulin-induced ATP-sensitive potassium channel activation independent of insulin signaling pathway in cultured vascular smooth muscle cells. J. Med. Investig. JMI. 2012;59:36–44. doi: 10.2152/jmi.59.36. PubMed DOI

Finol-Urdaneta R.K., Remedi M.S., Raasch W., Becker S., Clark R.B., Strüver N., Pavlov E., Nichols C.G., French R.J., Terlau H. Block of Kv1.7 potassium currents increases glucose-stimulated insulin secretion. Embo Mol. Med. 2012;4:424–434. doi: 10.1002/emmm.201200218. PubMed DOI PMC

MacDonald P.E., Salapatek A.M., Wheeler M.B. Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic beta-cells. J. Physiol. 2003;546:647–653. doi: 10.1113/jphysiol.2002.035709. PubMed DOI PMC

Mittal M., Gu X.Q., Pak O., Pamenter M.E., Haag D., Fuchs D.B., Schermuly R.T., Ghofrani H.A., Brandes R.P., Seeger W., et al. Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic. Biol. Med. 2012;52:1033–1042. doi: 10.1016/j.freeradbiomed.2011.12.004. PubMed DOI

Grupe M., Myers G., Penner R., Fleig A. Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium. 2010;48:1–9. doi: 10.1016/j.ceca.2010.05.005. PubMed DOI PMC

Kashio M., Tominaga M. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets. J. Biol. Chem. 2015;290:12435–12442. doi: 10.1074/jbc.M115.649913. PubMed DOI PMC

Llanos P., Contreras-Ferrat A., Barrientos G., Valencia M., Mears D., Hidalgo C. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors. PLoS ONE. 2015;10:e0129238. doi: 10.1371/journal.pone.0129238. PubMed DOI PMC

Hara Y., Wakamori M., Ishii M., Maeno E., Nishida M., Yoshida T., Yamada H., Shimizu S., Mori E., Kudoh J., et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell. 2002;9:163–173. doi: 10.1016/S1097-2765(01)00438-5. PubMed DOI

Yosida M., Dezaki K., Uchida K., Kodera S., Lam N.V., Ito K., Rita R.S., Yamada H., Shimomura K., Ishikawa S.E., et al. Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion. Diabetes. 2014;63:3394–3403. doi: 10.2337/db13-1868. PubMed DOI

Xiao H., Jedrychowski M.P., Schweppe D.K., Huttlin E.L., Yu Q., Heppner D.E., Li J., Long J., Mills E.L., Szpyt J., et al. A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell. 2020;180:968–983.e924. doi: 10.1016/j.cell.2020.02.012. PubMed DOI PMC

Paulsen C.E., Carroll K.S. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 2013;113:4633–4679. doi: 10.1021/cr300163e. PubMed DOI PMC

Huang Y., Roth B., Lü W., Du J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. eLife. 2019;8 doi: 10.7554/eLife.50175. PubMed DOI PMC

Kahancová A., Sklenář F., Ježek P., Dlasková A. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1) Febs Lett. 2018;592:999–1009. doi: 10.1002/1873-3468.12991. PubMed DOI

Kahancová A., Sklenář F., Ježek P., Dlasková A. Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells. Sci. Rep. 2020;10:1551. doi: 10.1038/s41598-020-58411-x. PubMed DOI PMC

Gu J., Zhang L., Zong S., Guo R., Liu T., Yi J., Wang P., Zhuo W., Yang M. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 2019;364:1068–1075. doi: 10.1126/science.aaw4852. PubMed DOI

Gledhill J.R., Montgomery M.G., Leslie A.G., Walker J.E. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proc. Natl. Acad. Sci. USA. 2007;104:15671–15676. doi: 10.1073/pnas.0707326104. PubMed DOI PMC

Esparza-Moltó P.B., Cuezva J.M. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid. Redox Signal. 2020 doi: 10.1089/ars.2019.7988. PubMed DOI

Shen L., Zhi L., Hu W., Wu M.X. IEX-1 targets mitochondrial F1Fo-ATPase inhibitor for degradation. Cell Death Differ. 2009;16:603–612. doi: 10.1038/cdd.2008.184. PubMed DOI PMC

García-Aguilar A., Cuezva J.M. A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis. Front. Physiol. 2018;9:1322. doi: 10.3389/fphys.2018.01322. PubMed DOI PMC

Dlaskova A., Spacek T., Engstova H., Spackova J., Schrofel A., Holendova B., Smolkova K., Plecita-Hlavata L., Jezek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Et Biophys. Acta. Bioenerg. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI

Georgiadou E., Haythorne E., Dickerson M.T., Lopez-Noriega L., Pullen T.J., da Silva Xavier G., Davis S.P.X., Martinez-Sanchez A., Semplici F., Rizzuto R., et al. The pore-forming subunit MCU of the mitochondrial Ca(2+) uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia. 2020;63:1368–1381. doi: 10.1007/s00125-020-05148-x. PubMed DOI PMC

McCormack J.G., Halestrap A.P., Denton R.M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 1990;70:391–425. doi: 10.1152/physrev.1990.70.2.391. PubMed DOI

Drews G., Bauer C., Edalat A., Düfer M., Krippeit-Drews P. Evidence against a Ca(2+)-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflug. Arch. Eur. J. Physiol. 2015;467:2389–2397. doi: 10.1007/s00424-015-1707-3. PubMed DOI

Rutter G.A., Pralong W.F., Wollheim C.B. Regulation of mitochondrial glycerol-phosphate dehydrogenase by Ca2+ within electropermeabilized insulin-secreting cells (INS-1) Biochim. Et Biophys. Acta. 1992;1175:107–113. doi: 10.1016/0167-4889(92)90016-5. PubMed DOI

Alam M.R., Groschner L.N., Parichatikanond W., Kuo L., Bondarenko A.I., Rost R., Waldeck-Weiermair M., Malli R., Graier W.F. Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells. J. Biol. Chem. 2012;287:34445–34454. doi: 10.1074/jbc.M112.392084. PubMed DOI PMC

McKenna J.P., Ha J., Merrins M.J., Satin L.S., Sherman A., Bertram R. Ca2+ Effects on ATP Production and Consumption Have Regulatory Roles on Oscillatory Islet Activity. Biophys J. 2016;110:733–742. doi: 10.1016/j.bpj.2015.11.3526. PubMed DOI PMC

Tsuboi T., da Silva Xavier G., Holz G.G., Jouaville L.S., Thomas A.P., Rutter G.A. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochem. J. 2003;369:287–299. doi: 10.1042/bj20021288. PubMed DOI PMC

Hodson D.J., Tarasov A.I., Gimeno Brias S., Mitchell R.K., Johnston N.R., Haghollahi S., Cane M.C., Bugliani M., Marchetti P., Bosco D., et al. Incretin-modulated beta cell energetics in intact islets of Langerhans. Mol. Endocrinol. (Baltim. Md.) 2014;28:860–871. doi: 10.1210/me.2014-1038. PubMed DOI PMC

De Stefani D., Raffaello A., Teardo E., Szabò I., Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476:336–340. doi: 10.1038/nature10230. PubMed DOI PMC

De Marchi U., Galindo A.N., Thevenet J., Hermant A., Bermont F., Lassueur S., Domingo J.S., Kussmann M., Dayon L., Wiederkehr A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019;33:4660–4674. doi: 10.1096/fj.201801424R. PubMed DOI

Quan X., Nguyen T.T., Choi S.K., Xu S., Das R., Cha S.K., Kim N., Han J., Wiederkehr A., Wollheim C.B., et al. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 2015;290:4086–4096. doi: 10.1074/jbc.M114.632547. PubMed DOI PMC

Kennedy E.D., Rizzuto R., Theler J.M., Pralong W.F., Bastianutto C., Pozzan T., Wollheim C.B. Glucose-stimulated insulin secretion correlates with changes in mitochondrial and cytosolic Ca2+ in aequorin-expressing INS-1 cells. J. Clin. Investig. 1996;98:2524–2538. doi: 10.1172/JCI119071. PubMed DOI PMC

Tarasov A.I., Semplici F., Ravier M.A., Bellomo E.A., Pullen T.J., Gilon P., Sekler I., Rizzuto R., Rutter G.A. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic β-cells. PLoS ONE. 2012;7:e39722. doi: 10.1371/journal.pone.0039722. PubMed DOI PMC

Wiederkehr A., Szanda G., Akhmedov D., Mataki C., Heizmann C.W., Schoonjans K., Pozzan T., Spät A., Wollheim C.B. Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab. 2011;13:601–611. doi: 10.1016/j.cmet.2011.03.015. PubMed DOI

Müller T.D., Finan B., Bloom S.R., D’Alessio D., Drucker D.J., Flatt P.R., Fritsche A., Gribble F., Grill H.J., Habener J.F., et al. Glucagon-like peptide 1 (GLP-1) Mol. Metab. 2019;30:72–130. doi: 10.1016/j.molmet.2019.09.010. PubMed DOI PMC

Furman B., Ong W.K., Pyne N.J. Cyclic AMP signaling in pancreatic islets. Adv. Exp. Med. Biol. 2010;654:281–304. doi: 10.1007/978-90-481-3271-3_13. PubMed DOI

Lefkimmiatis K., Zaccolo M. cAMP signaling in subcellular compartments. Pharmacol. Ther. 2014;143:295–304. doi: 10.1016/j.pharmthera.2014.03.008. PubMed DOI PMC

Berridge M.J. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol. Rev. 2016;96:1261–1296. doi: 10.1152/physrev.00006.2016. PubMed DOI

Husted A.S., Trauelsen M., Rudenko O., Hjorth S.A., Schwartz T.W. GPCR-Mediated Signaling of Metabolites. Cell Metab. 2017;25:777–796. doi: 10.1016/j.cmet.2017.03.008. PubMed DOI

Salloum G., Jaafar L., El-Sibai M. Rho A and Rac1: Antagonists moving forward. Tissue Cell. 2020;65:101364. doi: 10.1016/j.tice.2020.101364. PubMed DOI

Dalle S., Ravier M.A., Bertrand G. Emerging roles for β-arrestin-1 in the control of the pancreatic β-cell function and mass: New therapeutic strategies and consequences for drug screening. Cell. Signal. 2011;23:522–528. doi: 10.1016/j.cellsig.2010.09.014. PubMed DOI

Chen Y., Cann M.J., Litvin T.N., Iourgenko V., Sinclair M.L., Levin L.R., Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289:625–628. doi: 10.1126/science.289.5479.625. PubMed DOI

Taylor S.S., Ilouz R., Zhang P., Kornev A.P. Assembly of allosteric macromolecular switches: Lessons from PKA. Nat. Rev. Mol. Cell Biol. 2012;13:646–658. doi: 10.1038/nrm3432. PubMed DOI PMC

Zhang F., Zhang L., Qi Y., Xu H. Mitochondrial cAMP signaling. Cell. Mol. Life Sci. Cmls. 2016;73:4577–4590. doi: 10.1007/s00018-016-2282-2. PubMed DOI PMC

Ould Amer Y., Hebert-Chatelain E. Mitochondrial cAMP-PKA signaling: What do we really know? Biochim. Et Biophys. Acta. Bioenerg. 2018;1859:868–877. doi: 10.1016/j.bbabio.2018.04.005. PubMed DOI

Härndahl L., Jing X.J., Ivarsson R., Degerman E., Ahrén B., Manganiello V.C., Renström E., Holst L.S. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J. Biol. Chem. 2002;277:37446–37455. doi: 10.1074/jbc.M205401200. PubMed DOI

Bünemann M., Gerhardstein B.L., Gao T., Hosey M.M. Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the beta(2) subunit. J. Biol. Chem. 1999;274:33851–33854. doi: 10.1074/jbc.274.48.33851. PubMed DOI

MacDonald P.E., Wang X., Xia F., El-kholy W., Targonsky E.D., Tsushima R.G., Wheeler M.B. Antagonism of rat beta-cell voltage-dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3-kinase signaling pathways. J. Biol. Chem. 2003;278:52446–52453. doi: 10.1074/jbc.M307612200. PubMed DOI

Song W.J., Seshadri M., Ashraf U., Mdluli T., Mondal P., Keil M., Azevedo M., Kirschner L.S., Stratakis C.A., Hussain M.A. Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab. 2011;13:308–319. doi: 10.1016/j.cmet.2011.02.002. PubMed DOI PMC

Somanath S., Partridge C.J., Marshall C., Rowe T., Turner M.D. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation. Biochem. Biophys. Res. Commun. 2016;473:403–407. doi: 10.1016/j.bbrc.2016.02.123. PubMed DOI

Holz G.G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes. 2004;53:5–13. doi: 10.2337/diabetes.53.1.5. PubMed DOI PMC

Kang G., Leech C.A., Chepurny O.G., Coetzee W.A., Holz G.G. Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells. J. Physiol. 2008;586:1307–1319. doi: 10.1113/jphysiol.2007.143818. PubMed DOI PMC

de Rooij J., Zwartkruis F.J., Verheijen M.H., Cool R.H., Nijman S.M., Wittinghofer A., Bos J.L. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–477. doi: 10.1038/24884. PubMed DOI

Gloerich M., Bos J.L. Epac: Defining a new mechanism for cAMP action. Annu. Rev. Pharmacol. Toxicol. 2010;50:355–375. doi: 10.1146/annurev.pharmtox.010909.105714. PubMed DOI

Holz G.G., Leech C.A., Heller R.S., Castonguay M., Habener J.F. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37) J. Biol. Chem. 1999;274:14147–14156. doi: 10.1074/jbc.274.20.14147. PubMed DOI PMC

Gilon P., Chae H.Y., Rutter G.A., Ravier M.A. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium. 2014;56:340–361. doi: 10.1016/j.ceca.2014.09.001. PubMed DOI

Kang G., Chepurny O.G., Holz G.G. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells. J. Physiol. 2001;536:375–385. doi: 10.1111/j.1469-7793.2001.0375c.xd. PubMed DOI PMC

Ozaki N., Shibasaki T., Kashima Y., Miki T., Takahashi K., Ueno H., Sunaga Y., Yano H., Matsuura Y., Iwanaga T., et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol. 2000;2:805–811. doi: 10.1038/35041046. PubMed DOI

Kashima Y., Miki T., Shibasaki T., Ozaki N., Miyazaki M., Yano H., Seino S. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J. Biol. Chem. 2001;276:46046–46053. doi: 10.1074/jbc.M108378200. PubMed DOI

Yasuda T., Shibasaki T., Minami K., Takahashi H., Mizoguchi A., Uriu Y., Numata T., Mori Y., Miyazaki J., Miki T., et al. Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab. 2010;12:117–129. doi: 10.1016/j.cmet.2010.05.017. PubMed DOI

Zhao X., León I.R., Bak S., Mogensen M., Wrzesinski K., Højlund K., Jensen O.N. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell. Proteom. Mcp. 2011;10:M110.000299. doi: 10.1074/mcp.M110.000299. PubMed DOI PMC

Grimsrud P.A., Carson J.J., Hebert A.S., Hubler S.L., Niemi N.M., Bailey D.J., Jochem A., Stapleton D.S., Keller M.P., Westphall M.S., et al. A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab. 2012;16:672–683. doi: 10.1016/j.cmet.2012.10.004. PubMed DOI PMC

De Rasmo D., Micelli L., Santeramo A., Signorile A., Lattanzio P., Papa S. cAMP regulates the functional activity, coupling efficiency and structural organization of mammalian FOF1 ATP synthase. Biochim. Et Biophys. Acta. 2016;1857:350–358. doi: 10.1016/j.bbabio.2016.01.006. PubMed DOI

Acin-Perez R., Russwurm M., Günnewig K., Gertz M., Zoidl G., Ramos L., Buck J., Levin L.R., Rassow J., Manfredi G., et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 2011;286:30423–30432. doi: 10.1074/jbc.M111.266379. PubMed DOI PMC

Zhang F., Qi Y., Zhou K., Zhang G., Linask K., Xu H. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. Embo Rep. 2015;16:520–527. doi: 10.15252/embr.201439636. PubMed DOI PMC

García-Bermúdez J., Sánchez-Aragó M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., Cuezva J.M. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. Cell Rep. 2015;12:2143–2155. doi: 10.1016/j.celrep.2015.08.052. PubMed DOI

DiPilato L.M., Cheng X., Zhang J. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA. 2004;101:16513–16518. doi: 10.1073/pnas.0405973101. PubMed DOI PMC

Di Benedetto G., Scalzotto E., Mongillo M., Pozzan T. Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 2013;17:965–975. doi: 10.1016/j.cmet.2013.05.003. PubMed DOI

Lefkimmiatis K., Leronni D., Hofer A.M. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J. Cell Biol. 2013;202:453–462. doi: 10.1083/jcb.201303159. PubMed DOI PMC

Agnes R.S., Jernigan F., Shell J.R., Sharma V., Lawrence D.S. Suborganelle sensing of mitochondrial cAMP-dependent protein kinase activity. J. Am. Chem. Soc. 2010;132:6075–6080. doi: 10.1021/ja909652q. PubMed DOI PMC

Srinivasan S., Spear J., Chandran K., Joseph J., Kalyanaraman B., Avadhani N.G. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS ONE. 2013;8:e77129. doi: 10.1371/journal.pone.0077129. PubMed DOI PMC

Rosca M., Minkler P., Hoppel C.L. Cardiac mitochondria in heart failure: Normal cardiolipin profile and increased threonine phosphorylation of complex IV. Biochim. Et Biophys. Acta. 2011;1807:1373–1382. doi: 10.1016/j.bbabio.2011.02.003. PubMed DOI

Parkkila A.K., Scarim A.L., Parkkila S., Waheed A., Corbett J.A., Sly W.S. Expression of carbonic anhydrase V in pancreatic beta cells suggests role for mitochondrial carbonic anhydrase in insulin secretion. J. Biol. Chem. 1998;273:24620–24623. doi: 10.1074/jbc.273.38.24620. PubMed DOI

Shigeto M., Ramracheya R., Tarasov A.I., Cha C.Y., Chibalina M.V., Hastoy B., Philippaert K., Reinbothe T., Rorsman N., Salehi A., et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Investig. 2015;125:4714–4728. doi: 10.1172/JCI81975. PubMed DOI PMC

Barker C.J., Berggren P.O. New horizons in cellular regulation by inositol polyphosphates: Insights from the pancreatic β-cell. Pharm. Rev. 2013;65:641–669. doi: 10.1124/pr.112.006775. PubMed DOI

Warwar N., Efendic S., Ostenson C.G., Haber E.P., Cerasi E., Nesher R. Dynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: Diabetes-related changes in the GK rat. Diabetes. 2006;55:590–599. doi: 10.2337/diabetes.55.03.06.db05-0001. PubMed DOI

Seed Ahmed M., Pelletier J., Leumann H., Gu H.F., Östenson C.G. Expression of Protein Kinase C Isoforms in Pancreatic Islets and Liver of Male Goto-Kakizaki Rats, a Model of Type 2 Diabetes. PLoS ONE. 2015;10:e0135781. doi: 10.1371/journal.pone.0141292. PubMed DOI PMC

Wuttke A., Yu Q., Tengholm A. Autocrine Signaling Underlies Fast Repetitive Plasma Membrane Translocation of Conventional and Novel Protein Kinase C Isoforms in β Cells. J. Biol. Chem. 2016;291:14986–14995. doi: 10.1074/jbc.M115.698456. PubMed DOI PMC

Hashimoto T., Mogami H., Tsuriya D., Morita H., Sasaki S., Kumada T., Suzuki Y., Urano T., Oki Y., Suda T. G-protein-coupled receptor 40 agonist GW9508 potentiates glucose-stimulated insulin secretion through activation of protein kinase Cα and ε in INS-1 cells. PLoS ONE. 2019;14:e0222179. doi: 10.1371/journal.pone.0222179. PubMed DOI PMC

Newton A.C. Protein kinase C: Perfectly balanced. Crit. Rev. Biochem. Mol. Biol. 2018;53:208–230. doi: 10.1080/10409238.2018.1442408. PubMed DOI PMC

Gallegos L.L., Kunkel M.T., Newton A.C. Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. J. Biol. Chem. 2006;281:30947–30956. doi: 10.1074/jbc.M603741200. PubMed DOI

Santo-Domingo J., Chareyron I., Dayon L., Núñez Galindo A., Cominetti O., Pilar Giner Giménez M., De Marchi U., Canto C., Kussmann M., Wiederkehr A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic β cells. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017;31:1028–1045. doi: 10.1096/fj.201600837R. PubMed DOI

Antico Arciuch V.G., Alippe Y., Carreras M.C., Poderoso J.J. Mitochondrial kinases in cell signaling: Facts and perspectives. Adv. Drug Deliv. Rev. 2009;61:1234–1249. doi: 10.1016/j.addr.2009.04.025. PubMed DOI

Straub S.G., Shanmugam G., Sharp G.W. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes. 2004;53:3179–3183. doi: 10.2337/diabetes.53.12.3179. PubMed DOI

Vakilian M., Tahamtani Y., Ghaedi K. A review on insulin trafficking and exocytosis. Gene. 2019;706:52–61. doi: 10.1016/j.gene.2019.04.063. PubMed DOI

Hutton J.C., Penn E.J., Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 1983;210:297–305. doi: 10.1042/bj2100297. PubMed DOI PMC

Mitchell K.J., Lai F.A., Rutter G.A. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6) J. Biol. Chem. 2003;278:11057–11064. doi: 10.1074/jbc.M210257200. PubMed DOI

Itoh N., Okamoto H. Translational control of proinsulin synthesis by glucose. Nature. 1980;283:100–102. doi: 10.1038/283100a0. PubMed DOI

Dodson G., Steiner D. The role of assembly in insulin’s biosynthesis. Curr. Opin. Struct. Biol. 1998;8:189–194. doi: 10.1016/S0959-440X(98)80037-7. PubMed DOI

Orci L., Halban P., Perrelet A., Amherdt M., Ravazzola M., Anderson R.G. pH-independent and -dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol. 1994;126:1149–1156. doi: 10.1083/jcb.126.5.1149. PubMed DOI PMC

Li Y.V. Zinc and insulin in pancreatic beta-cells. Endocrine. 2014;45:178–189. doi: 10.1007/s12020-013-0032-x. PubMed DOI

Trogden K.P., Zhu X., Lee J.S., Wright C.V.E., Gu G., Kaverina I. Regulation of Glucose-Dependent Golgi-Derived Microtubules by cAMP/EPAC2 Promotes Secretory Vesicle Biogenesis in Pancreatic β Cells. Curr. Biol. 2019;29:2339–2350.e2335. doi: 10.1016/j.cub.2019.06.032. PubMed DOI PMC

Li M., Du W., Zhou M., Zheng L., Song E., Hou J. Proteomic analysis of insulin secretory granules in INS-1 cells by protein correlation profiling. Biophys. Rep. 2018;4:329–338. doi: 10.1007/s41048-018-0061-3. PubMed DOI PMC

Davidson H.W., Wenzlau J.M., O’Brien R.M. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol. Metab. Tem. 2014;25:415–424. doi: 10.1016/j.tem.2014.03.008. PubMed DOI PMC

Geng X., Li L., Watkins S., Robbins P.D., Drain P. The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes. 2003;52:767–776. doi: 10.2337/diabetes.52.3.767. PubMed DOI

Geng X., Lou H., Wang J., Li L., Swanson A.L., Sun M., Beers-Stolz D., Watkins S., Perez R.G., Drain P. α-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2011;300:E276–E286. doi: 10.1152/ajpendo.00262.2010. PubMed DOI PMC

Colsoul B., Nilius B., Vennekens R. Transient receptor potential (TRP) cation channels in diabetes. Curr. Top. Med. Chem. 2013;13:258–269. doi: 10.2174/1568026611313030004. PubMed DOI

Mitchell K.J., Pinton P., Varadi A., Tacchetti C., Ainscow E.K., Pozzan T., Rizzuto R., Rutter G.A. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 2001;155:41–51. doi: 10.1083/jcb.200103145. PubMed DOI PMC

Blondel O., Moody M.M., Depaoli A.M., Sharp A.H., Ross C.A., Swift H., Bell G.I. Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc. Natl. Acad. Sci. USA. 1994;91:7777–7781. doi: 10.1073/pnas.91.16.7777. PubMed DOI PMC

Dai F.F., Bhattacharjee A., Liu Y., Batchuluun B., Zhang M., Wang X.S., Huang X., Luu L., Zhu D., Gaisano H., et al. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells. J. Biol. Chem. 2015;290:25045–25061. doi: 10.1074/jbc.M115.648592. PubMed DOI PMC

Boland B.B., Rhodes C.J., Grimsby J.S. The dynamic plasticity of insulin production in β-cells. Mol. Metab. 2017;6:958–973. doi: 10.1016/j.molmet.2017.04.010. PubMed DOI PMC

Song S.H., McIntyre S.S., Shah H., Veldhuis J.D., Hayes P.C., Butler P.C. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab. 2000;85:4491–4499. doi: 10.1210/jc.85.12.4491. PubMed DOI

Kasai K., Fujita T., Gomi H., Izumi T. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules. Traffic (Cph. Den.) 2008;9:1191–1203. doi: 10.1111/j.1600-0854.2008.00744.x. PubMed DOI

Lai Y., Choi U.B., Leitz J., Rhee H.J., Lee C., Altas B., Zhao M., Pfuetzner R.A., Wang A.L., Brose N., et al. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron. 2017;95:591–607.e510. doi: 10.1016/j.neuron.2017.07.004. PubMed DOI PMC

Rizo J., Xu J. The Synaptic Vesicle Release Machinery. Annu. Rev. Biophys. 2015;44:339–367. doi: 10.1146/annurev-biophys-060414-034057. PubMed DOI

Wang S., Choi U.B., Gong J., Yang X., Li Y., Wang A.L., Yang X., Brunger A.T., Ma C. Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis. Embo J. 2017;36:816–829. doi: 10.15252/embj.201695775. PubMed DOI PMC

Huang C., Walker E.M., Dadi P.K., Hu R., Xu Y., Zhang W., Sanavia T., Mun J., Liu J., Nair G.G., et al. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca(2+) Sensitivity of Insulin Secretion Vesicles. Dev. Cell. 2018;45:347–361.e345. doi: 10.1016/j.devcel.2018.03.013. PubMed DOI PMC

Maechler P., Wollheim C.B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature. 1999;402:685–689. doi: 10.1038/45280. PubMed DOI

Høy M., Maechler P., Efanov A.M., Wollheim C.B., Berggren P.O., Gromada J. Increase in cellular glutamate levels stimulates exocytosis in pancreatic beta-cells. Febs Lett. 2002;531:199–203. doi: 10.1016/S0014-5793(02)03500-7. PubMed DOI

Casimir M., Lasorsa F.M., Rubi B., Caille D., Palmieri F., Meda P., Maechler P. Mitochondrial glutamate carrier GC1 as a newly identified player in the control of glucose-stimulated insulin secretion. J. Biol. Chem. 2009;284:25004–25014. doi: 10.1074/jbc.M109.015495. PubMed DOI PMC

MacDonald M.J., Fahien L.A. Glutamate is not a messenger in insulin secretion. J. Biol. Chem. 2000;275:34025–34027. doi: 10.1074/jbc.C000411200. PubMed DOI

Bertrand G., Ishiyama N., Nenquin M., Ravier M.A., Henquin J.C. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J. Biol. Chem. 2002;277:32883–32891. doi: 10.1074/jbc.M205326200. PubMed DOI

Gheni G., Ogura M., Iwasaki M., Yokoi N., Minami K., Nakayama Y., Harada K., Hastoy B., Wu X., Takahashi H., et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661–673. doi: 10.1016/j.celrep.2014.09.030. PubMed DOI PMC

Aspinwall C.A., Brooks S.A., Kennedy R.T., Lakey J.R. Effects of intravesicular H+ and extracellular H+ and Zn2+ on insulin secretion in pancreatic beta cells. J. Biol. Chem. 1997;272:31308–31314. doi: 10.1074/jbc.272.50.31308. PubMed DOI

Gammelsaeter R., Coppola T., Marcaggi P., Storm-Mathisen J., Chaudhry F.A., Attwell D., Regazzi R., Gundersen V. A role for glutamate transporters in the regulation of insulin secretion. PLoS ONE. 2011;6:e22960. doi: 10.1371/journal.pone.0022960. PubMed DOI PMC

Hashim M., Yokoi N., Takahashi H., Gheni G., Okechi O.S., Hayami T., Murao N., Hidaka S., Minami K., Mizoguchi A., et al. Inhibition of SNAT5 Induces Incretin-Responsive State From Incretin-Unresponsive State in Pancreatic β-Cells: Study of β-Cell Spheroid Clusters as a Model. Diabetes. 2018;67:1795–1806. doi: 10.2337/db17-1486. PubMed DOI

Elrick H., Stimmler L., Hlad C.J., Jr., Arai Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 1964;24:1076–1082. doi: 10.1210/jcem-24-10-1076. PubMed DOI

Ebert R., Unger H., Creutzfeldt W. Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from rat gut extracts by immunoadsorption. Diabetologia. 1983;24:449–454. doi: 10.1007/BF00257346. PubMed DOI

Scrocchi L.A., Brown T.J., MaClusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 1996;2:1254–1258. doi: 10.1038/nm1196-1254. PubMed DOI

Scrocchi L.A., Marshall B.A., Cook S.M., Brubaker P.L., Drucker D.J. Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes. 1998;47:632–639. doi: 10.2337/diabetes.47.4.632. PubMed DOI

Moon M.J., Park S., Kim D.K., Cho E.B., Hwang J.I., Vaudry H., Seong J.Y. Structural and molecular conservation of glucagon-like Peptide-1 and its receptor confers selective ligand-receptor interaction. Front. Endocrinol. 2012;3:141. doi: 10.3389/fendo.2012.00141. PubMed DOI PMC

Kuhre R.E., Wewer Albrechtsen N.J., Hartmann B., Deacon C.F., Holst J.J. Measurement of the incretin hormones: Glucagon-like peptide-1 and glucose-dependent insulinotropic peptide. J. Diabetes Its Complicat. 2015;29:445–450. doi: 10.1016/j.jdiacomp.2014.12.006. PubMed DOI

Teraoku H., Lenzen S. Dynamics of Insulin Secretion from EndoC-βH1 β-Cell Pseudoislets in Response to Glucose and Other Nutrient and Nonnutrient Secretagogues. J. Diabetes Res. 2017;2017:2309630. doi: 10.1155/2017/2309630. PubMed DOI PMC

Graaf C.d., Donnelly D., Wootten D., Lau J., Sexton P.M., Miller L.J., Ahn J.-M., Liao J., Fletcher M.M., Yang D., et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016;68:954–1013. doi: 10.1124/pr.115.011395. PubMed DOI PMC

Moran B.M., Abdel-Wahab Y.H., Flatt P.R., McKillop A.M. Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice. Biol. Chem. 2014;395:453–464. doi: 10.1515/hsz-2013-0255. PubMed DOI

Drucker D.J., Philippe J., Mojsov S., Chick W.L., Habener J.F. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc. Natl. Acad. Sci. USA. 1987;84:3434–3438. doi: 10.1073/pnas.84.10.3434. PubMed DOI PMC

Weir G.C., Mojsov S., Hendrick G.K., Habener J.F. Glucagonlike peptide I (7-37) actions on endocrine pancreas. Diabetes. 1989;38:338–342. doi: 10.2337/diab.38.3.338. PubMed DOI

Hjøllund K.R., Deacon C.F., Holst J.J. Dipeptidyl peptidase-4 inhibition increases portal concentrations of intact glucagon-like peptide-1 (GLP-1) to a greater extent than peripheral concentrations in anaesthetised pigs. Diabetologia. 2011;54:2206–2208. doi: 10.1007/s00125-011-2168-7. PubMed DOI

Herrmann C., Göke R., Richter G., Fehmann H.C., Arnold R., Göke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion. 1995;56:117–126. doi: 10.1159/000201231. PubMed DOI

Wootten D., Reynolds C.A., Smith K.J., Mobarec J.C., Koole C., Savage E.E., Pabreja K., Simms J., Sridhar R., Furness S.G.B., et al. The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell. 2016;165:1632–1643. doi: 10.1016/j.cell.2016.05.023. PubMed DOI PMC

Sonoda N., Imamura T., Yoshizaki T., Babendure J.L., Lu J.C., Olefsky J.M. Beta-Arrestin-1 mediates glucagon-like peptide-1 signaling to insulin secretion in cultured pancreatic beta cells. Proc. Natl. Acad. Sci. USA. 2008;105:6614–6619. doi: 10.1073/pnas.0710402105. PubMed DOI PMC

Montrose-Rafizadeh C., Avdonin P., Garant M.J., Rodgers B.D., Kole S., Yang H., Levine M.A., Schwindinger W., Bernier M. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology. 1999;140:1132–1140. doi: 10.1210/endo.140.3.6550. PubMed DOI

Light P.E., Manning Fox J.E., Riedel M.J., Wheeler M.B. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol. Endocrinol. (Baltim. Md.) 2002;16:2135–2144. doi: 10.1210/me.2002-0084. PubMed DOI

Kang G., Joseph J.W., Chepurny O.G., Monaco M., Wheeler M.B., Bos J.L., Schwede F., Genieser H.G., Holz G.G. Epac-selective cAMP analog 8-pCPT-2’-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J. Biol. Chem. 2003;278:8279–8285. doi: 10.1074/jbc.M211682200. PubMed DOI PMC

Thompson A., Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway. Biochem. Pharm. 2015;93:72–84. doi: 10.1016/j.bcp.2014.10.015. PubMed DOI

MacDonald P.E., Salapatek A.M., Wheeler M.B. Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: A possible glucose-dependent insulinotropic mechanism. Diabetes. 2002;51(Suppl. 3):S443–S447. doi: 10.2337/diabetes.51.2007.S443. PubMed DOI

Vierra N.C., Dickerson M.T., Philipson L.H., Jacobson D.A. Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca(2+) Influx to Assess the Role of Potassium Channels on β-Cell Function. Methods Mol. Biol. (CliftonN.J.) 2018;1684:73–84. doi: 10.1007/978-1-4939-7362-0_7. PubMed DOI PMC

Fernandez J., Valdeolmillos M. Glucose-dependent stimulatory effect of glucagon-like peptide 1(7-36) amide on the electrical activity of pancreatic beta-cells recorded in vivo. Diabetes. 1999;48:754–757. doi: 10.2337/diabetes.48.4.754. PubMed DOI

Fernandez J., Valdeolmillos M. Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo. Febs Lett. 2000;477:33–36. doi: 10.1016/s0014-5793(00)01631-8. PubMed DOI

Liu T., Li H., Gounko N.V., Zhou Z., Xu A., Hong W., Han W. Detection of insulin granule exocytosis by an electrophysiology method with high temporal resolution reveals enlarged insulin granule pool in BIG3-knockout mice. Am. J. Physiol. Endocrinol. Metab. 2014;307:E611–E618. doi: 10.1152/ajpendo.00208.2014. PubMed DOI

Dupre J., Ross S.A., Watson D., Brown J.C. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 1973;37:826–828. doi: 10.1210/jcem-37-5-826. PubMed DOI

Hinke S.A., Pauly R.P., Ehses J., Kerridge P., Demuth H.U., McIntosh C.H., Pederson R.A. Role of glucose in chronic desensitization of isolated rat islets and mouse insulinoma (betaTC-3) cells to glucose-dependent insulinotropic polypeptide. J. Endocrinol. 2000;165:281–291. doi: 10.1677/joe.0.1650281. PubMed DOI

Ehses J.A., Pelech S.L., Pederson R.A., McIntosh C.H. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J. Biol. Chem. 2002;277:37088–37097. doi: 10.1074/jbc.M205055200. PubMed DOI

McIntosh C.H., Widenmaier S., Kim S.J. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J. Diabetes Investig. 2012;3:96–106. doi: 10.1111/j.2040-1124.2012.00196.x. PubMed DOI PMC

Jitrapakdee S., Wutthisathapornchai A., Wallace J.C., MacDonald M.J. Regulation of insulin secretion: Role of mitochondrial signalling. Diabetologia. 2010;53:1019–1032. doi: 10.1007/s00125-010-1685-0. PubMed DOI PMC

Joseph J.W., Jensen M.V., Ilkayeva O., Palmieri F., Alárcon C., Rhodes C.J., Newgard C.B. The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion. J. Biol. Chem. 2006;281:35624–35632. doi: 10.1074/jbc.M602606200. PubMed DOI

Odegaard M.L., Joseph J.W., Jensen M.V., Lu D., Ilkayeva O., Ronnebaum S.M., Becker T.C., Newgard C.B. The Mitochondrial 2-Oxoglutarate Carrier Is Part of a Metabolic Pathway That Mediates Glucose- and Glutamine-stimulated Insulin Secretion. J. Biol. Chem. 2010;285:16530–16537. doi: 10.1074/jbc.M109.092593. PubMed DOI PMC

Ronnebaum S.M., Ilkayeva O., Burgess S.C., Joseph J.W., Lu D., Stevens R.D., Becker T.C., Sherry A.D., Newgard C.B., Jensen M.V. A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion. J. Biol. Chem. 2006;281:30593–30602. doi: 10.1074/jbc.M511908200. PubMed DOI

Lu D., Mulder H., Zhao P., Burgess S.C., Jensen M.V., Kamzolova S., Newgard C.B., Sherry A.D. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS) Proc. Natl. Acad. Sci. USA. 2002;99:2708–2713. doi: 10.1073/pnas.052005699. PubMed DOI PMC

Guay C., Madiraju S.R., Aumais A., Joly E., Prentki M. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. J. Biol. Chem. 2007;282:35657–35665. doi: 10.1074/jbc.M707294200. PubMed DOI

Pongratz R.L., Kibbey R.G., Shulman G.I., Cline G.W. Cytosolic and mitochondrial malic enzyme isoforms differentially control insulin secretion. J. Biol. Chem. 2007;282:200–207. doi: 10.1074/jbc.M602954200. PubMed DOI

Farfari S., Schulz V., Corkey B., Prentki M. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: Possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes. 2000;49:718–726. doi: 10.2337/diabetes.49.5.718. PubMed DOI

El Azzouny M., Longacre M.J., Ansari I.H., Kennedy R.T., Burant C.F., MacDonald M.J. Knockdown of ATP citrate lyase in pancreatic beta cells does not inhibit insulin secretion or glucose flux and implicates the acetoacetate pathway in insulin secretion. Mol. Metab. 2016;5:980–987. doi: 10.1016/j.molmet.2016.07.011. PubMed DOI PMC

Chen W.W., Freinkman E., Wang T., Birsoy K., Sabatini D.M. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell. 2016;166:1324–1337.e1311. doi: 10.1016/j.cell.2016.07.040. PubMed DOI PMC

Rydström J. Mitochondrial NADPH, transhydrogenase and disease. Biochim. Et Biophys. Acta. 2006;1757:721–726. doi: 10.1016/j.bbabio.2006.03.010. PubMed DOI

Santos L.R.B., Muller C., de Souza A.H., Takahashi H.K., Spégel P., Sweet I.R., Chae H., Mulder H., Jonas J.-C. NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic β-cells. Mol. Metab. 2017;6:535–547. doi: 10.1016/j.molmet.2017.04.004. PubMed DOI PMC

Freeman H.C., Hugill A., Dear N.T., Ashcroft F.M., Cox R.D. Deletion of nicotinamide nucleotide transhydrogenase: A new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes. 2006;55:2153–2156. doi: 10.2337/db06-0358. PubMed DOI

Toye A.A., Lippiat J.D., Proks P., Shimomura K., Bentley L., Hugill A., Mijat V., Goldsworthy M., Moir L., Haynes A., et al. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675–686. doi: 10.1007/s00125-005-1680-z. PubMed DOI

Freeman H., Shimomura K., Cox R.D., Ashcroft F.M. Nicotinamide nucleotide transhydrogenase: A link between insulin secretion, glucose metabolism and oxidative stress. Biochem. Soc. Trans. 2006;34:806–810. doi: 10.1042/BST0340806. PubMed DOI

Wong N., Blair A.R., Morahan G., Andrikopoulos S. The deletion variant of nicotinamide nucleotide transhydrogenase (Nnt) does not affect insulin secretion or glucose tolerance. Endocrinology. 2010;151:96–102. doi: 10.1210/en.2009-0887. PubMed DOI

Hasan N.M., Longacre M.J., Stoker S.W., Kendrick M.A., MacDonald M.J. Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol. Endocrinol. (Baltim. Md.) 2015;29:396–410. doi: 10.1210/me.2014-1249. PubMed DOI PMC

Spégel P., Mulder H. Metabolomics Analysis of Nutrient Metabolism in β-Cells. J. Mol. Biol. 2020;432:1429–1445. doi: 10.1016/j.jmb.2019.07.020. PubMed DOI

El-Azzouny M., Evans C.R., Treutelaar M.K., Kennedy R.T., Burant C.F. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J. Biol. Chem. 2014;289:13575–13588. doi: 10.1074/jbc.M113.531970. PubMed DOI PMC

Ježek J., Dlasková A., Zelenka J., Jabůrek M., Ježek P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxid. Redox Signal. 2015;23:958–972. doi: 10.1089/ars.2014.6195. PubMed DOI PMC

Bränström R., Aspinwall C.A., Välimäki S., Ostensson C.G., Tibell A., Eckhard M., Brandhorst H., Corkey B.E., Berggren P.O., Larsson O. Long-chain CoA esters activate human pancreatic beta-cell KATP channels: Potential role in Type 2 diabetes. Diabetologia. 2004;47:277–283. doi: 10.1007/s00125-003-1299-x. PubMed DOI

Joseph J.W., Odegaard M.L., Ronnebaum S.M., Burgess S.C., Muehlbauer J., Sherry A.D., Newgard C.B. Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. J. Biol. Chem. 2007;282:31592–31600. doi: 10.1074/jbc.M706080200. PubMed DOI

Bender K., Maechler P., McClenaghan N.H., Flatt P.R., Newsholme P. Overexpression of the malate-aspartate NADH shuttle member Aralar1 in the clonal beta-cell line BRIN-BD11 enhances amino-acid-stimulated insulin secretion and cell metabolism. Clin. Sci. 2009;117:321–330. doi: 10.1042/CS20090126. PubMed DOI PMC

Rubi B., del Arco A., Bartley C., Satrustegui J., Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J. Biol. Chem. 2004;279:55659–55666. doi: 10.1074/jbc.M409303200. PubMed DOI

Newman J.C., Verdin E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017;37:51–76. doi: 10.1146/annurev-nutr-071816-064916. PubMed DOI PMC

Mitok K.A., Freiberger E.C., Schueler K.L., Rabaglia M.E., Stapleton D.S., Kwiecien N.W., Malec P.A., Hebert A.S., Broman A.T., Kennedy R.T., et al. Islet proteomics reveals genetic variation in dopamine production resulting in altered insulin secretion. J. Biol. Chem. 2018;293:5860–5877. doi: 10.1074/jbc.RA117.001102. PubMed DOI PMC

Abulizi A., Cardone R.L., Stark R., Lewandowski S.L., Zhao X., Hillion J., Ma L., Sehgal R., Alves T.C., Thomas C., et al. Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metab. 2020;32:751–766.e711. doi: 10.1016/j.cmet.2020.10.006. PubMed DOI PMC

Ashcroft F.M., Ashcroft S.J., Harrison D.E. Effects of 2-ketoisocaproate on insulin release and single potassium channel activity in dispersed rat pancreatic beta-cells. J. Physiol. 1987;385:517–529. doi: 10.1113/jphysiol.1987.sp016505. PubMed DOI PMC

Panten U., Früh E., Reckers K., Rustenbeck I. Acute metabolic amplification of insulin secretion in mouse islets: Role of cytosolic acetyl-CoA. Metab. Clin. Exp. 2016;65:1225–1229. doi: 10.1016/j.metabol.2016.05.001. PubMed DOI

Panten U., Willenborg M., Schumacher K., Hamada A., Ghaly H., Rustenbeck I. Acute metabolic amplification of insulin secretion in mouse islets is mediated by mitochondrial export of metabolites, but not by mitochondrial energy generation. Metab. Clin. Exp. 2013;62:1375–1386. doi: 10.1016/j.metabol.2013.05.006. PubMed DOI

McClenaghan N.H., Flatt P.R. Glucose and non-glucidic nutrients exert permissive effects on 2-keto acid regulation of pancreatic beta-cell function. Biochim. Et Biophys. Acta. 1999;1426:110–118. doi: 10.1016/s0304-4165(98)00144-5. PubMed DOI

Heissig H., Urban K.A., Hastedt K., Zünkler B.J., Panten U. Mechanism of the insulin-releasing action of alpha-ketoisocaproate and related alpha-keto acid anions. Mol. Pharmacol. 2005;68:1097–1105. doi: 10.1124/mol.105.015388. PubMed DOI

Gurgul-Convey E., Kaminski M.T., Lenzen S. Physiological characterization of the human EndoC-βH1 β-cell line. Biochem. Biophys. Res. Commun. 2015;464:13–19. doi: 10.1016/j.bbrc.2015.05.072. PubMed DOI

Bunik V.I. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid. Redox Signal. 2019;30:1911–1947. doi: 10.1089/ars.2017.7311. PubMed DOI

Zhang J., Frerman F.E., Kim J.J. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proc. Natl. Acad. Sci. USA. 2006;103:16212–16217. doi: 10.1073/pnas.0604567103. PubMed DOI PMC

Watmough N.J., Frerman F.E. The electron transfer flavoprotein: Ubiquinone oxidoreductases. Biochim. Et Biophys. Acta. 2010;1797:1910–1916. doi: 10.1016/j.bbabio.2010.10.007. PubMed DOI

Husen P., Nielsen C., Martino C.F., Solov’yov I.A. Molecular Oxygen Binding in the Mitochondrial Electron Transfer Flavoprotein. J. Chem. Inf. Modeling. 2019;59:4868–4879. doi: 10.1021/acs.jcim.9b00702. PubMed DOI

Brand M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016;100:14–31. doi: 10.1016/j.freeradbiomed.2016.04.001. PubMed DOI

Hull J., Hindy M.E., Kehoe P.G., Chalmers K., Love S., Conway M.E. Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J. Neurochem. 2012;123:997–1009. doi: 10.1111/jnc.12044. PubMed DOI

Gao Z., Young R.A., Li G., Najafi H., Buettger C., Sukumvanich S.S., Wong R.K., Wolf B.A., Matschinsky F.M. Distinguishing features of leucine and alpha-ketoisocaproate sensing in pancreatic beta-cells. Endocrinology. 2003;144:1949–1957. doi: 10.1210/en.2002-0072. PubMed DOI

Cheng Q., Beltran V.D., Chan S.M., Brown J.R., Bevington A., Herbert T.P. System-L amino acid transporters play a key role in pancreatic β-cell signalling and function. J. Mol. Endocrinol. 2016;56:175–187. doi: 10.1530/JME-15-0212. PubMed DOI

Giroix M.H., Saulnier C., Portha B. Decreased pancreatic islet response to L-leucine in the spontaneously diabetic GK rat: Enzymatic, metabolic and secretory data. Diabetologia. 1999;42:965–977. doi: 10.1007/s001250051255. PubMed DOI

Denton R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Et Biophys. Acta. 2009;1787:1309–1316. doi: 10.1016/j.bbabio.2009.01.005. PubMed DOI

Ævarsson A., Chuang J.L., Wynn R.M., Turley S., Chuang D.T., Hol W.G. Crystal structure of human branched-chain alpha-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure. 2000;8:277–291. doi: 10.1016/s0969-2126(00)00105-2. PubMed DOI

Noguchi S., Kondo Y., Ito R., Katayama T., Kazama S., Kadota Y., Kitaura Y., Harris R.A., Shimomura Y. Ca(2+)-dependent inhibition of branched-chain α-ketoacid dehydrogenase kinase by thiamine pyrophosphate. Biochem. Biophys. Res. Commun. 2018;504:916–920. doi: 10.1016/j.bbrc.2018.09.038. PubMed DOI

Manders R.J., Little J.P., Forbes S.C., Candow D.G. Insulinotropic and muscle protein synthetic effects of branched-chain amino acids: Potential therapy for type 2 diabetes and sarcopenia. Nutrients. 2012;4:1664–1678. doi: 10.3390/nu4111664. PubMed DOI PMC

Yang J., Chi Y., Burkhardt B.R., Guan Y., Wolf B.A. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr. Rev. 2010;68:270–279. doi: 10.1111/j.1753-4887.2010.00282.x. PubMed DOI PMC

Stein D.T., Stevenson B.E., Chester M.W., Basit M., Daniels M.B., Turley S.D., McGarry J.D. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J. Clin. Investig. 1997;100:398–403. doi: 10.1172/JCI119546. PubMed DOI PMC

Nyrén R., Chang C.L., Lindström P., Barmina A., Vorrsjö E., Ali Y., Juntti-Berggren L., Bensadoun A., Young S.G., Olivecrona T., et al. Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: Effects of diet and leptin deficiency. BMC Physiol. 2012;12:14. doi: 10.1186/1472-6793-12-14. PubMed DOI PMC

Cen J., Sargsyan E., Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr. Metab. 2016;13:59. doi: 10.1186/s12986-016-0119-5. PubMed DOI PMC

Fernandez J., Valdeolmillos M. Increased levels of free fatty acids in fasted mice stimulate in vivo beta-cell electrical activity. Diabetes. 1998;47:1707–1712. doi: 10.2337/diabetes.47.11.1707. PubMed DOI

Frayn K.N. Metabolic Regulation: A Human Perspective. John Wiley & Sons; Hoboken, NJ, USA: 2009.

Ee L.C., Zheng S., Yao L., Tso P. Lymphatic absorption of fatty acids and cholesterol in the neonatal rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;279:G325–G331. doi: 10.1152/ajpgi.2000.279.2.G325. PubMed DOI

Nauli A.M., Nassir F., Zheng S., Yang Q., Lo C.M., Vonlehmden S.B., Lee D., Jandacek R.J., Abumrad N.A., Tso P. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine. Gastroenterology. 2006;131:1197–1207. doi: 10.1053/j.gastro.2006.08.012. PubMed DOI PMC

Moss C.E., Glass L.L., Diakogiannaki E., Pais R., Lenaghan C., Smith D.M., Wedin M., Bohlooly Y.M., Gribble F.M., Reimann F. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides. 2016;77:16–20. doi: 10.1016/j.peptides.2015.06.012. PubMed DOI PMC

Itoh K., Moriguchi R., Yamada Y., Fujita M., Yamato T., Oumi M., Holst J.J., Seino Y. High saturated fatty acid intake induces insulin secretion by elevating gastric inhibitory polypeptide levels in healthy individuals. Nutr. Res. 2014;34:653–660. doi: 10.1016/j.nutres.2014.07.013. PubMed DOI

Winzell M.S., Ström K., Holm C., Ahrén B. Glucose-stimulated insulin secretion correlates with beta-cell lipolysis. Nutr. Metab. Cardiovasc. Dis. Nmcd. 2006;16(Suppl. 1):S11–S16. doi: 10.1016/j.numecd.2005.11.006. PubMed DOI

Cruz W.S., Kwon G., Marshall C.A., McDaniel M.L., Semenkovich C.F. Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and beta-cell dysfunction. J. Biol. Chem. 2001;276:12162–12168. doi: 10.1074/jbc.M010707200. PubMed DOI

Marshall B.A., Tordjman K., Host H.H., Ensor N.J., Kwon G., Marshall C.A., Coleman T., McDaniel M.L., Semenkovich C.F. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J. Biol. Chem. 1999;274:27426–27432. doi: 10.1074/jbc.274.39.27426. PubMed DOI

Peyot M.L., Guay C., Latour M.G., Lamontagne J., Lussier R., Pineda M., Ruderman N.B., Haemmerle G., Zechner R., Joly E., et al. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion. J. Biol. Chem. 2009;284:16848–16859. doi: 10.1074/jbc.M109.006650. PubMed DOI PMC

Fujiwara K., Maekawa F., Yada T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab. 2005;289:E670–E677. doi: 10.1152/ajpendo.00035.2005. PubMed DOI

Khan S., Kowluru A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem. Biophys. Res. Commun. 2018;495:2221–2226. doi: 10.1016/j.bbrc.2017.12.111. PubMed DOI PMC

Veprik A., Laufer D., Weiss S., Rubins N., Walker M.D. GPR41 modulates insulin secretion and gene expression in pancreatic β-cells and modifies metabolic homeostasis in fed and fasting states. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2016;30:3860–3869. doi: 10.1096/fj.201500030R. PubMed DOI

Pujol J.B., Christinat N., Ratinaud Y., Savoia C., Mitchell S.E., Dioum E.H.M. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018;10:473. doi: 10.3390/nu10040473. PubMed DOI PMC

Moran B.M., Abdel-Wahab Y.H., Flatt P.R., McKillop A.M. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. DiabetesObes. Metab. 2014;16:1128–1139. doi: 10.1111/dom.12330. PubMed DOI

Hauge M., Vestmar M.A., Husted A.S., Ekberg J.P., Wright M.J., Di Salvo J., Weinglass A.B., Engelstoft M.S., Madsen A.N., Luckmann M., et al. GPR40 (FFAR1)-Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol. Metab. 2015;4:3–14. doi: 10.1016/j.molmet.2014.10.002. PubMed DOI PMC

Mancini A.D., Bertrand G., Vivot K., Carpentier É., Tremblay C., Ghislain J., Bouvier M., Poitout V. β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1. J. Biol. Chem. 2015;290:21131–21140. doi: 10.1074/jbc.M115.644450. PubMed DOI PMC

Graciano M.F., Valle M.M., Curi R., Carpinelli A.R. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets. 2013;5:139–148. doi: 10.4161/isl.25459. PubMed DOI

Sabrautzki S., Kaiser G., Przemeck G.K.H., Gerst F., Lorza-Gil E., Panse M., Sartorius T., Hoene M., Marschall S., Haring H.U., et al. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol. Metab. 2017;6:1304–1312. doi: 10.1016/j.molmet.2017.07.007. PubMed DOI PMC

Yamada H., Yoshida M., Ito K., Dezaki K., Yada T., Ishikawa S.E., Kakei M. Potentiation of Glucose-stimulated Insulin Secretion by the GPR40-PLC-TRPC Pathway in Pancreatic β-Cells. Sci. Rep. 2016;6:25912. doi: 10.1038/srep25912. PubMed DOI PMC

Qian J., Gu Y., Wu C., Yu F., Chen Y., Zhu J., Yao X., Bei C., Zhu Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell. Mol. Biol. Lett. 2017;22:13. doi: 10.1186/s11658-017-0043-3. PubMed DOI PMC

Kristinsson H., Bergsten P., Sargsyan E. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim. Et Biophys. Acta. 2015;1853:3248–3257. doi: 10.1016/j.bbamcr.2015.09.022. PubMed DOI

Tomita T., Hosoda K., Fujikura J., Inagaki N., Nakao K. The G-Protein-Coupled Long-Chain Fatty Acid Receptor GPR40 and Glucose Metabolism. Front. Endocrinol. 2014;5:152. doi: 10.3389/fendo.2014.00152. PubMed DOI PMC

Vilas-Boas E.A., Karabacz N., Marsiglio-Librais G.N., Valle M.M.R., Nalbach L., Ampofo E., Morgan B., Carpinelli A.R., Roma L.P. Chronic activation of GPR40 does not negatively impact upon BRIN-BD11 pancreatic β-cell physiology and function. Pharmacol. Rep. 2020;72:1725–1737. doi: 10.1007/s43440-020-00101-6. PubMed DOI PMC

Bergeron V., Ghislain J., Poitout V. The P21-activated kinase PAK4 is implicated in fatty-acid potentiation of insulin secretion downstream of free fatty acid receptor 1. Islets. 2016;8:157–164. doi: 10.1080/19382014.2016.1243191. PubMed DOI PMC

Ferdaoussi M., Bergeron V., Zarrouki B., Kolic J., Cantley J., Fielitz J., Olson E.N., Prentki M., Biden T., MacDonald P.E., et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia. 2012;55:2682–2692. doi: 10.1007/s00125-012-2650-x. PubMed DOI PMC

Ribas G.S., Vargas C.R. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell. Mol. Neurobiol. 2020 doi: 10.1007/s10571-020-00955-7. PubMed DOI PMC

Nunes Marsiglio-Librais G., Aparecida Vilas-Boas E., Carlein C., Hoffmann M.D.A., Roma L.P., Carpinelli A.R. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep. Commun. Free Radic. Res. 2020;25:41–50. doi: 10.1080/13510002.2020.1757877. PubMed DOI PMC

Masiello P., Novelli M., Bombara M., Fierabracci V., Vittorini S., Prentki M., Bergamini E. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metab. Clin. Exp. 2002;51:110–114. doi: 10.1053/meta.2002.28969. PubMed DOI

Mulder H., Yang S., Winzell M.S., Holm C., Ahrén B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes. 2004;53:122–128. doi: 10.2337/diabetes.53.1.122. PubMed DOI

Fex M., Haemmerle G., Wierup N., Dekker-Nitert M., Rehn M., Ristow M., Zechner R., Sundler F., Holm C., Eliasson L., et al. A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis. Diabetologia. 2009;52:271–280. doi: 10.1007/s00125-008-1191-9. PubMed DOI

Mugabo Y., Zhao S., Seifried A., Gezzar S., Al-Mass A., Zhang D., Lamontagne J., Attane C., Poursharifi P., Iglesias J., et al. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. Natl. Acad. Sci. USA. 2016;113:E430–E439. doi: 10.1073/pnas.1514375113. PubMed DOI PMC

Zhao S., Mugabo Y., Iglesias J., Xie L., Delghingaro-Augusto V., Lussier R., Peyot M.L., Joly E., Taïb B., Davis M.A., et al. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion. Cell Metab. 2014;19:993–1007. doi: 10.1016/j.cmet.2014.04.003. PubMed DOI

Mugabo Y., Zhao S., Lamontagne J., Al-Mass A., Peyot M.L., Corkey B.E., Joly E., Madiraju S.R.M., Prentki M. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells. J. Biol. Chem. 2017;292:7407–7422. doi: 10.1074/jbc.M116.763060. PubMed DOI PMC

Guay C., Joly E., Pepin E., Barbeau A., Hentsch L., Pineda M., Madiraju S.R., Brunengraber H., Prentki M. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells. PLoS ONE. 2013;8:e77097. doi: 10.1371/journal.pone.0077097. PubMed DOI PMC

Jensen M.D., Nielsen S. Insulin dose response analysis of free fatty acid kinetics. Metab. Clin. Exp. 2007;56:68–76. doi: 10.1016/j.metabol.2006.08.022. PubMed DOI

van der Vusse G.J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 2009;24:300–307. doi: 10.2133/dmpk.24.300. PubMed DOI

Rossmeisl M., Flachs P., Brauner P., Sponarova J., Matejkova O., Prazak T., Ruzickova J., Bardova K., Kuda O., Kopecky J. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2004;28(Suppl. 4):S38–S44. doi: 10.1038/sj.ijo.0802855. PubMed DOI

Thams P., Capito K. L-arginine stimulation of glucose-induced insulin secretion through membrane depolarization and independent of nitric oxide. Eur. J. Endocrinol. 1999;140:87–93. doi: 10.1530/eje.0.1400087. PubMed DOI

Pi M., Wu Y., Lenchik N.I., Gerling I., Quarles L.D. GPRC6A Mediates the Effects of l-Arginine on Insulin Secretion in Mouse Pancreatic Islets. Endocrinology. 2012;153:4608–4615. doi: 10.1210/en.2012-1301. PubMed DOI PMC

Gooding J.R., Jensen M.V., Dai X., Wenner B.R., Lu D., Arumugam R., Ferdaoussi M., MacDonald P.E., Newgard C.B. Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism. Cell Rep. 2015;13:157–167. doi: 10.1016/j.celrep.2015.08.072. PubMed DOI PMC

Ferdaoussi M., Dai X., Jensen M.V., Wang R., Peterson B.S., Huang C., Ilkayeva O., Smith N., Miller N., Hajmrle C., et al. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Investig. 2015;125:3847–3860. doi: 10.1172/JCI82498. PubMed DOI PMC

Stocker S., Van Laer K., Mijuskovic A., Dick T.P. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs. Antioxid. Redox Signal. 2018;28:558–573. doi: 10.1089/ars.2017.7162. PubMed DOI

Rhee S.G., Woo H.A., Kang D. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. Antioxid. Redox Signal. 2018;28:537–557. doi: 10.1089/ars.2017.7167. PubMed DOI

Sobotta M.C., Liou W., Stocker S., Talwar D., Oehler M., Ruppert T., Scharf A.N., Dick T.P. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 2015;11:64–70. doi: 10.1038/nchembio.1695. PubMed DOI

Jarvis R.M., Hughes S.M., Ledgerwood E.C. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 2012;53:1522–1530. doi: 10.1016/j.freeradbiomed.2012.08.001. PubMed DOI

Stancill J.S., Broniowska K.A., Oleson B.J., Naatz A., Corbett J.A. Pancreatic beta-cells detoxify H2O2 through the peroxiredoxin/thioredoxin antioxidant system. J. Biol. Chem. 2019;294:4843–4853. doi: 10.1074/jbc.RA118.006219. PubMed DOI PMC

Stancill J.S., Happ J.T., Broniowska K.A., Hogg N., Corbett J.A. Peroxiredoxin 1 plays a primary role in protecting pancreatic β-cells from hydrogen peroxide and peroxynitrite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020;318:R1004–R1013. doi: 10.1152/ajpregu.00011.2020. PubMed DOI PMC

Grankvist K., Marklund S.L., Täljedal I.B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981;199:393–398. doi: 10.1042/bj1990393. PubMed DOI PMC

Wood Z.A., Schröder E., Robin Harris J., Poole L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003;28:32–40. doi: 10.1016/S0968-0004(02)00003-8. PubMed DOI

Li N., Stojanovski S., Maechler P. Mitochondrial hormesis in pancreatic β cells: Does uncoupling protein 2 play a role? Oxidative Med. Cell. Longev. 2012;2012:740849. doi: 10.1155/2012/740849. PubMed DOI PMC

Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64:663–672. doi: 10.2337/db14-0874. PubMed DOI PMC

García-Martínez B.I., Ruiz-Ramos M., Pedraza-Chaverri J., Santiago-Osorio E., Mendoza-Núñez V.M. Hypoglycemic Effect of Resveratrol: A Systematic Review and Meta-Analysis. Antioxidants. 2021;10:69. doi: 10.3390/antiox10010069. PubMed DOI PMC

Bagetta D., Maruca A., Lupia A., Mesiti F., Catalano R., Romeo I., Moraca F., Ambrosio F.A., Costa G., Artese A., et al. Mediterranean products as promising source of multi-target agents in the treatment of metabolic syndrome. Eur. J. Med. Chem. 2020;186:111903. doi: 10.1016/j.ejmech.2019.111903. PubMed DOI

Meng J.M., Cao S.Y., Wei X.L., Gan R.Y., Wang Y.F., Cai S.X., Xu X.Y., Zhang P.Z., Li H.B. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants. 2019;8:170. doi: 10.3390/antiox8060170. PubMed DOI PMC

Alkhatib A., Tsang C., Tuomilehto J. Olive Oil Nutraceuticals in the Prevention and Management of Diabetes: From Molecules to Lifestyle. Int. J. Mol. Sci. 2018;19:2024. doi: 10.3390/ijms19072024. PubMed DOI PMC

Roma L.P., Jonas J.C. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and beta-Cells. J. Mol. Biol. 2019 doi: 10.1016/j.jmb.2019.10.012. PubMed DOI

Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC

Ursini F., Maiorino M., Forman H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016;8:205–215. doi: 10.1016/j.redox.2016.01.010. PubMed DOI PMC

Smolková K., Mikó E., Kovács T., Leguina-Ruzzi A., Sipos A., Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid. Redox Signal. 2020;33:966–997. doi: 10.1089/ars.2020.8024. PubMed DOI PMC

Las G., Oliveira M.F., Shirihai O.S. Emerging roles of β-cell mitochondria in type-2-diabetes. Mol. Asp. Med. 2020;71:100843. doi: 10.1016/j.mam.2019.100843. PubMed DOI

Mirabelli M., Russo D., Brunetti A. The Role of Diet on Insulin Sensitivity. Nutrients. 2020;12:3042. doi: 10.3390/nu12103042. PubMed DOI PMC

Cremonini E., Fraga C.G., Oteiza P.I. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radic. Biol. Med. 2019;130:478–488. doi: 10.1016/j.freeradbiomed.2018.11.010. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...