Biocatalysis in the Chemistry of Lupane Triterpenoids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868)
European Regional Development Fund
IGA_PrF_2021_024
Palacky University
PubMed
33919839
PubMed Central
PMC8070785
DOI
10.3390/molecules26082271
PII: molecules26082271
Knihovny.cz E-zdroje
- Klíčová slova
- betulin, betulinic acid, biocatalysis, biotransformation, enzyme, extraction, lupane, lupeol, prodrugs, synthesis,
- MeSH
- biokatalýza * MeSH
- hydrolýza MeSH
- objevování léků MeSH
- oxidace-redukce MeSH
- triterpeny chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lupane MeSH Prohlížeč
- triterpeny MeSH
Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by biocatalysts and highlights a large space for the future development of biocatalysis in this field. The results of this study may serve as a summary of the current state of research and demonstrate the potential of the method in future applications.
Zobrazit více v PubMed
Yao C.-L., Zhang J.-Q., Li J.-Y., Wei W.-L., Wu S.-F., Guo D.-A. Traditional Chinese Medicine (TCM) as a Source of New Anticancer Drugs. Nat. Prod. Rep. 2021 doi: 10.1039/D0NP00057D. PubMed DOI
Devi J., Kumar R., Singh K., Gehlot A., Bhushan S., Kumar S. In Vitro Adventitious Roots: A Non-Disruptive Technology for the Production of Phytoconstituents on the Industrial Scale. Crit. Rev. Biotechnol. 2021:1–25. doi: 10.1080/07388551.2020.1869690. PubMed DOI
Lu Y., An T., Tian H., Gao X., Wang F., Wang S., Ma K. Depression with Comorbid Diabetes: What Evidence Exists for Treatments Using Traditional Chinese Medicine and Natural Products? Front. Pharm. Ther. 2020;11:596362. doi: 10.3389/fphar.2020.596362. PubMed DOI PMC
Sun C.-P., Jia Z.-L., Huo X.-K., Tian X.-G., Feng L., Wang C., Zhang B.-J., Zhao W.-Y., Ma X.-C. Medicinal Inula Species: Phytochemistry, Biosynthesis, and Bioactivities. Am. J. Chin. Med. 2021:1–44. doi: 10.1142/S0192415X21500166. PubMed DOI
Zhang L., Song J., Kong L., Yuan T., Li W., Zhang W., Hou B., Lu Y., Du G. The Strategies and Techniques of Drug Discovery from Natural Products. Pharm. Ther. 2020;216:107686. doi: 10.1016/j.pharmthera.2020.107686. PubMed DOI
Wohnsland F., Faller B. High-Throughput Permeability PH Profile and High-Throughput Alkane/Water Log P with Artificial Membranes. J. Med. Chem. 2001;44:923–930. doi: 10.1021/jm001020e. PubMed DOI
Hiemstra S., Ramaiahgari S.C., Wink S., Callegaro G., Coonen M., Meerman J., Jennen D., van den Nieuwendijk K., Dankers A., Snoeys J., et al. High-Throughput Confocal Imaging of Differentiated 3D Liver-like Spheroid Cellular Stress Response Reporters for Identification of Drug-Induced Liver Injury Liability. Arch. Toxicol. 2019;93:2895–2911. doi: 10.1007/s00204-019-02552-0. PubMed DOI
Wei Z., Xie Z., Kuvelkar R., Shah V., Bateman K., McLaren D.G., Cooks R.G. High-Throughput Bioassays Using “Dip-and-Go” Multiplexed Electrospray Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2019;58:17594–17598. doi: 10.1002/anie.201909047. PubMed DOI
Aldewachi H., Al-Zidan R.N., Conner M.T., Salman M.M. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering (Basel) 2021;8:30. doi: 10.3390/bioengineering8020030. PubMed DOI PMC
David B., Wolfender J.-L., Dias D.A. The Pharmaceutical Industry and Natural Products: Historical Status and New Trends. Phytochem. Rev. 2015;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI
Davison E.K., Brimble M.A. Natural Product Derived Privileged Scaffolds in Drug Discovery. Curr. Opin. Chem. Biol. 2019;52:1–8. doi: 10.1016/j.cbpa.2018.12.007. PubMed DOI
Hill R.A., Connolly J.D. Triterpenoids. Nat. Prod. Rep. 2020;37:962–998. doi: 10.1039/C9NP00067D. PubMed DOI
Hill R., Connolly J. Triterpenoids. Nat. Prod. Rep. 2018;35:1294–1329. doi: 10.1039/C8NP00029H. PubMed DOI
Gershenzon J., Dudareva N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007;3:408–414. doi: 10.1038/nchembio.2007.5. PubMed DOI
Keeling C.I., Bohlmann J. Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers against Insects and Pathogens. New Phytol. 2006;170:657–675. doi: 10.1111/j.1469-8137.2006.01716.x. PubMed DOI
Tetali S.D. Terpenes and Isoprenoids: A Wealth of Compounds for Global Use. Planta. 2019;249:1–8. doi: 10.1007/s00425-018-3056-x. PubMed DOI
Patočka J. Biologically Active Pentacyclic Triterpenes and Their Current Medicine Signification. J. Appl. Biomed. 2003;1:7–12. doi: 10.32725/jab.2003.002. DOI
Luchnikova N.A., Grishko V.V., Ivshina I.B. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules. 2020;25:5526. doi: 10.3390/molecules25235526. PubMed DOI PMC
Cichewicz R.H., Kouzi S.A. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection. Med. Res. Rev. 2004;24:90–114. doi: 10.1002/med.10053. PubMed DOI
Zhang D.-M., Xu H.-G., Wang L., Li Y.-J., Sun P.-H., Wu X.-M., Wang G.-J., Chen W.-M., Ye W.-C. Betulinic Acid and Its Derivatives as Potential Antitumor Agents. Med. Res. Rev. 2015;35:1127–1155. doi: 10.1002/med.21353. PubMed DOI
Zhang X., Hu J., Chen Y. Betulinic Acid and the Pharmacological Effects of Tumor Suppression (Review) Mol. Med. Rep. 2016;14:4489–4495. doi: 10.3892/mmr.2016.5792. PubMed DOI
Hussain H., Green I.R., Ali I., Khan I.A., Ali Z., Al-Sadi A.M., Ahmed I. Ursolic Acid Derivatives for Pharmaceutical Use: A Patent Review (2012-2016) Expert. Opin. Ther. Pat. 2017;27:1061–1072. doi: 10.1080/13543776.2017.1344219. PubMed DOI
Fontanay S., Grare M., Mayer J., Finance C., Duval R.E. Ursolic, Oleanolic and Betulinic Acids: Antibacterial Spectra and Selectivity Indexes. J. Ethnopharmacol. 2008;120:272–276. doi: 10.1016/j.jep.2008.09.001. PubMed DOI
Kashyap D., Tuli H.S., Sharma A.K. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016;146:201–213. doi: 10.1016/j.lfs.2016.01.017. PubMed DOI
Lin C., Wen X., Sun H. Oleanolic Acid Derivatives for Pharmaceutical Use: A Patent Review. Expert Opin. Ther. Pat. 2016;26:643–655. doi: 10.1080/13543776.2016.1182988. PubMed DOI
Pollier J., Goossens A. Oleanolic Acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI
Rodríguez J.A., Astudillo L., Schmeda-Hirschmann G. Oleanolic Acid Promotes Healing of Acetic Acid-Induced Chronic Gastric Lesions in Rats. Pharmacol. Res. 2003;48:291–294. doi: 10.1016/S1043-6618(03)00155-5. PubMed DOI
Urban M., Kvasnica M., Dickinson N.J., Sarek J. Biologically Active Triterpenoids Usable As Prodrugs. In: Bates A.R., editor. Terpenoids and Squalene: Biosynthesis, Functions and Health Implications. Volume 2015. Nova Science Publishers; New York, NY, USA: 2015.
Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of Triterpenoids and Their Derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI
Ríos J.L., Máñez S. New Pharmacological Opportunities for Betulinic Acid. Planta Med. 2018;84:8–19. doi: 10.1055/s-0043-123472. PubMed DOI
Żwawiak J., Pawełczyk A., Olender D., Zaprutko L. Structure and Activity of Pentacyclic Triterpenes Codrugs. A Review. Mini Rev. Med. Chem. 2021 doi: 10.2174/1389557521666210105110848. PubMed DOI
Retzlaff F. Ueber Herba Gratiolae. Arch. Der Pharm. 1902;240:561–568. doi: 10.1002/ardp.19022400802. DOI
Trumbull E.R., Bianchi E., Eckert D.J., Wiedhopf R.M., Cole J.R. Tumor Inhibitory Agents from Vauquelinia Corymbosa (Rosaceae) J. Pharm. Sci. 1976;65:1407–1408. doi: 10.1002/jps.2600650938. PubMed DOI
Fujioka T., Kashiwada Y., Kilkuskie R.E., Cosentino L.M., Ballas L.M., Jiang J.B., Janzen W.P., Chen I.-S., Lee K.-H. Anti-AIDS Agents, 11. Betulinic Acid and Platanic Acid as Anti-HIV Principles from Syzigium Claviflorum, and the Anti-HIV Activity of Structurally Related Triterpenoids. J. Nat. Prod. 1994;57:243–247. doi: 10.1021/np50104a008. PubMed DOI
Pisha E., Chai H., Lee I.S., Chagwedera T.E., Farnsworth N.R., Cordell G.A., Beecher C.W., Fong H.H., Kinghorn A.D., Brown D.M. Discovery of Betulinic Acid as a Selective Inhibitor of Human Melanoma That Functions by Induction of Apoptosis. Nat. Med. 1995;1:1046–1051. doi: 10.1038/nm1095-1046. PubMed DOI
Schmidt M.L., Kuzmanoff K.L., Ling-Indeck L., Pezzuto J.M. Betulinic Acid Induces Apoptosis in Human Neuroblastoma Cell Lines. Eur. J. Cancer. 1997;33:2007–2010. doi: 10.1016/S0959-8049(97)00294-3. PubMed DOI
Freire C.S.R., Silvestre A.J.D., Neto C.P., Cavaleiro J.S. Lipophilic Extractives of the Inner and Outer Barks of Eucalyptus Globulus. Holzforschung (HF) 2002;56:372–379. doi: 10.1515/HF.2002.059. DOI
Abe F., Yamauchi T., Nagao T., Kinjo J., Okabe H., Higo H., Akahane H. Ursolic Acid as a Trypanocidal Constituent in Rosemary. Biol. Pharm. Bull. 2002;25:1485–1487. doi: 10.1248/bpb.25.1485. PubMed DOI
Zhao F., Mai Q., Ma J., Xu M., Wang X., Cui T., Qiu F., Han G. Triterpenoids from Inonotus Obliquus and Their Antitumor Activities. Fitoterapia. 2015;101:34–40. doi: 10.1016/j.fitote.2014.12.005. PubMed DOI
Cunha A.B., Batista R., Castro M.Á., David J.M. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Molecules. 2021;26:1081. doi: 10.3390/molecules26041081. PubMed DOI PMC
Liu J., Chen P., Yao W., Wang J., Wang L., Deng L., He J., Zhang G., Lei J. Subcritical Water Extraction of Betulinic Acid from Birch Bark. Ind. Crop. Prod. 2015;74:557–565. doi: 10.1016/j.indcrop.2015.05.064. DOI
Zhao G., Yan W., Cao D. Simultaneous Determination of Betulin and Betulinic Acid in White Birch Bark Using RP-HPLC. J. Pharm. Biomed. Anal. 2007;43:959–962. doi: 10.1016/j.jpba.2006.09.026. PubMed DOI
Ren H., Omori S. A Simple Preparation of Betulinic Acid from Sycamore Bark. J. Wood Sci. 2012;58:169–173. doi: 10.1007/s10086-011-1227-5. DOI
Urban M., Sarek J., Klinot J., Korinkova G., Hajduch M. Synthesis of A-Seco Derivatives of Betulinic Acid with Cytotoxic Activity. J. Nat. Prod. 2004;67:1100–1105. doi: 10.1021/np049938m. PubMed DOI
Mullally M., Kramp K., Cayer C., Saleem A., Ahmed F., McRae C., Baker J., Goulah A., Otorola M., Sanchez P., et al. Anxiolytic Activity of a Supercritical Carbon Dioxide Extract of Souroubea Sympetala (Marcgraviaceae) Phytother. Res. 2011;25:264–270. doi: 10.1002/ptr.3246. PubMed DOI
Patinha D.J.S., Domingues R.M.A., Villaverde J.J., Silva A.M.S., Silva C.M., Freire C.S.R., Neto C.P., Silvestre A.J.D. Lipophilic Extractives from the Bark of Eucalyptus Grandis x Globulus, a Rich Source of Methyl Morolate: Selective Extraction with Supercritical CO2. Ind. Crop. Prod. 2013;43:340–348. doi: 10.1016/j.indcrop.2012.06.056. DOI
Silva N.H.C.S., Morais E.S., Freire C.S.R., Freire M.G., Silvestre A.J.D. Extraction of High Value Triterpenic Acids from Eucalyptus Globulus Biomass Using Hydrophobic Deep Eutectic Solvents. Molecules. 2020;25:210. doi: 10.3390/molecules25010210. PubMed DOI PMC
Kuznetsova S.A., Skvortsova G.P., Maliar I.N., Skurydina E.S., Veselova O.F. Extraction of Betulin from Birch Bark and Study of Its Physico-Chemical and Pharmacological Properties. Russ. J. Bioorg. Chem. 2014;40:742–747. doi: 10.1134/S1068162014070073. DOI
Mazumder K., Biswas B., Raja I.M., Fukase K. A Review of Cytotoxic Plants of the Indian Subcontinent and a Broad-Spectrum Analysis of Their Bioactive Compounds. Molecules. 2020;25:1904. doi: 10.3390/molecules25081904. PubMed DOI PMC
Räsänen R.-M., Hieta J.-P., Immanen J., Nieminen K., Haavikko R., Yli-Kauhaluoma J., Kauppila T.J. Chemical Profiles of Birch and Alder Bark by Ambient Mass Spectrometry. Anal. Bioanal. Chem. 2019;411:7573–7583. doi: 10.1007/s00216-019-02171-9. PubMed DOI PMC
Cîntă-Pînzaru S., Dehelean C.A., Soica C., Culea M., Borcan F. Evaluation and Differentiation of the Betulaceae Birch Bark Species and Their Bioactive Triterpene Content Using Analytical FT-Vibrational Spectroscopy and GC-MS. Chem. Cent. J. 2012;6:67. doi: 10.1186/1752-153X-6-67. PubMed DOI PMC
Baltina L.A., Flekhter O.B., Nigmatullina L.R., Boreko E.I., Pavlova N.I., Nikolaeva S.N., Savinova O.V., Tolstikov G.A. Lupane Triterpenes and Derivatives with Antiviral Activity. Bioorganic Med. Chem. Lett. 2003;13:3549–3552. doi: 10.1016/S0960-894X(03)00714-5. PubMed DOI
Csuk R., Schmuck K., Schäfer R. A Practical Synthesis of Betulinic Acid. Tetrahedron Lett. 2006;47:8769–8770. doi: 10.1016/j.tetlet.2006.10.004. DOI
Barthel A., Stark S., Csuk R. Oxidative Transformations of Betulinol. Tetrahedron. 2008;64:9225–9229. doi: 10.1016/j.tet.2008.07.042. DOI
Ressmann A.K., Kremsmayr T., Gaertner P., Zirbs R., Bica K. Toward a Benign Strategy for the Manufacturing of Betulinic Acid. Green Chem. 2017;19:1014–1022. doi: 10.1039/C6GC02641A. DOI
Kim D.S.H.L., Chen Z., Nguyen T., Pezzuto J.M., Qiu S., Lu Z.-Z. A Concise Semi-Synthetic Approach to Betulinic Acid from Betulin. Synth. Commun. 1997;27:1607–1612. doi: 10.1080/00397919708006099. DOI
Li T.-S., Wang J.-X., Zheng X.-J. Simple Synthesis of Allobetulin, 28-Oxyallobetulin and Related Biomarkers from Betulin and Betulinic Acid Catalysed by Solid Acids. J. Chem. Soc. Perkin Trans. 1998:3957–3966. doi: 10.1039/a806735j. DOI
Kvasnica M., Urban M., Dickinson N.J., Sarek J. Pentacyclic Triterpenoids with Nitrogen- and Sulfur-Containing Heterocycles: Synthesis and Medicinal Significance. Nat. Prod. Rep. 2015;32:1303–1330. doi: 10.1039/C5NP00015G. PubMed DOI
Borkova L., Hodon J., Urban M. Synthesis of Betulinic Acid Derivatives with Modified A-Rings and Their Application as Potential Drug Candidates. Asian J. Org. Chem. 2018;7:1542–1560. doi: 10.1002/ajoc.201800163. DOI
Sousa J.L.C., Freire C.S.R., Silvestre A.J.D., Silva A.M.S. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019;24:355. doi: 10.3390/molecules24020355. PubMed DOI PMC
Swidorski J.J., Liu Z., Sit S.-Y., Chen J., Chen Y., Sin N., Venables B.L., Parker D.D., Nowicka-Sans B., Terry B.J., et al. Inhibitors of HIV-1 Maturation: Development of Structure–Activity Relationship for C-28 Amides Based on C-3 Benzoic Acid-Modified Triterpenoids. Bioorganic Med. Chem. Lett. 2016;26:1925–1930. doi: 10.1016/j.bmcl.2016.03.019. PubMed DOI
Tolmacheva I.A., Igosheva E.V., Vikharev I.B., Grishko V.V., Savinova O.V., Boreko E.I., Eremin V.F. Synthesis and biological activity of 2,3-secotriterpene acid mono- and diamides. Bioorg. Khim. 2013;39:212–220. doi: 10.1134/S1068162013020143. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl Amides of Betulinic Acid as Antitumor Agents Causing Tumor Cell Apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Dang Thi T.A., Kim Tuyet N.T., Pham The C., Thanh Nguyen H., Ba Thi C., Thi Phuong H., Van Boi L., Van Nguyen T., D’hooghe M. Synthesis and Cytotoxic Evaluation of Novel Amide–Triazole-Linked Triterpenoid–AZT Conjugates. Tetrahedron Lett. 2015;56:218–224. doi: 10.1016/j.tetlet.2014.11.069. PubMed DOI
Sorokina I.V., Baev D.S., Zhukova N.A., Tolstikova T.G., Antimonova A.N., Petrenko N.I., Shul’ts E.E., Grigor’ev I.A. Hepatoprotective activity of betulonic acid amides containing a piperidine or pyrrolidine nitroxide moiety. Bioorg. Khim. 2013;39:749–752. doi: 10.1134/S1068162013060083. PubMed DOI
Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and Microscopic Study of Self-Assembly of Novel Cationic Spermine Amides of Betulinic Acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI
Xiao S., Wang Q., Si L., Shi Y., Wang H., Yu F., Zhang Y., Li Y., Zheng Y., Zhang C., et al. Synthesis and Anti-HCV Entry Activity Studies of β-Cyclodextrin–Pentacyclic Triterpene Conjugates. ChemMedChem. 2014;9:1060–1070. doi: 10.1002/cmdc.201300545. PubMed DOI
Li M., Yuan L., Chen Y., Ma W., Ran F., Zhang L., Zhou D., Xiao S. Rhodamine B-Based Fluorescent Probes for Molecular Mechanism Study of the Anti-Influenza Activity of Pentacyclic Triterpenes. Eur. J. Med. Chem. 2020;205:112664. doi: 10.1016/j.ejmech.2020.112664. PubMed DOI
Wiemann J., Heller L., Perl V., Kluge R., Ströhl D., Csuk R. Betulinic Acid Derived Hydroxamates and Betulin Derived Carbamates Are Interesting Scaffolds for the Synthesis of Novel Cytotoxic Compounds. Eur. J. Med. Chem. 2015;106:194–210. doi: 10.1016/j.ejmech.2015.10.043. PubMed DOI
Cui H.-W., He Y., Wang J., Gao W., Liu T., Qin M., Wang X., Gao C., Wang Y., Liu M.-Y., et al. Synthesis of Heterocycle-Modified Betulinic Acid Derivatives as Antitumor Agents. Eur. J. Med. Chem. 2015;95:240–248. doi: 10.1016/j.ejmech.2015.03.048. PubMed DOI
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II Study of the Safety, Virologic Effect, and Pharmacokinetics/Pharmacodynamics of Single-Dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic Acid (Bevirimat) against Human Immunodeficiency Virus Infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Hashimoto F., Kashiwada Y., Cosentino L.M., Chen C.-H., Garrett P.E., Lee K.-H. Anti-AIDS Agents—XXVII. Synthesis and Anti-HIV Activity of Betulinic Acid and Dihydrobetulinic Acid Derivatives. Bioorganic Med. Chem. 1997;5:2133–2143. doi: 10.1016/S0968-0896(97)00158-2. PubMed DOI
Khan I., Guru S.K., Rath S.K., Chinthakindi P.K., Singh B., Koul S., Bhushan S., Sangwan P.L. A Novel Triazole Derivative of Betulinic Acid Induces Extrinsic and Intrinsic Apoptosis in Human Leukemia HL-60 Cells. Eur. J. Med. Chem. 2016;108:104–116. doi: 10.1016/j.ejmech.2015.11.018. PubMed DOI
Urban M., Sarek J., Tislerova I., Dzubak P., Hajduch M. Influence of Esterification and Modification of A-Ring in a Group of Lupane Acids on Their Cytotoxicity. Bioorganic Med. Chem. 2005;13:5527–5535. doi: 10.1016/j.bmc.2005.07.011. PubMed DOI
Santos R.C., Salvador J.A.R., Marín S., Cascante M., Moreira J.N., Dinis T.C.P. Synthesis and Structure–Activity Relationship Study of Novel Cytotoxic Carbamate and N-Acylheterocyclic Bearing Derivatives of Betulin and Betulinic Acid. Bioorganic Med. Chem. 2010;18:4385–4396. doi: 10.1016/j.bmc.2010.04.085. PubMed DOI
Ma C., Nakamura N., Miyashiro H., Hattori M., Shimotohno K. Inhibitory Effects of Constituents from Cynomorium Songaricum and Related Triterpene Derivatives on HIV-1 Protease. Chem. Pharm. Bull. 1999;47:141–145. doi: 10.1248/cpb.47.141. PubMed DOI
Perlikova P., Kvasnica M., Urban M., Hajduch M., Sarek J. 2-Deoxyglycoside Conjugates of Lupane Triterpenoids with High Cytotoxic Activity—Synthesis, Activity, and Pharmacokinetic Profile. Bioconjugate Chem. 2019;30:2844–2858. doi: 10.1021/acs.bioconjchem.9b00565. PubMed DOI
Gauthier C., Legault J., Piochon-Gauthier M., Pichette A. Advances in the Synthesis and Pharmacological Activity of Lupane-Type Triterpenoid Saponins. Phytochem. Rev. 2011;10:521–544. doi: 10.1007/s11101-010-9176-y. DOI
Flekhter O.B., Baltina L.A., Tolstikov G.A. Direct Stereospecific Synthesis of Triterpene and Steroid 2-Deoxy-α-Glycosides. Russ. Chem. Bull. 1997;46:1335–1338. doi: 10.1007/BF02495937. DOI
Flekhter O.B., Baltina L.A., Tolstikov G.A. Glycals in the Stereoselective Synthesis of Triterpene 2-Deoxy-α-l-Glycosides under Conditions of Acidic Catalysis. J. Nat. Prod. 2000;63:992–994. doi: 10.1021/np990273b. PubMed DOI
Samoshina N.F., Denisenko M.V., Denisenko V.A., Uvarova N.I. Synthesis of Glycosides of Lupane-Type Triterpene Acids. Chem. Nat. Compd. 2003;39:575–582. doi: 10.1023/B:CONC.0000018113.79735.34. DOI
Eignerova B., Tichy M., Krasulova J., Kvasnica M., Rarova L., Christova R., Urban M., Bednarczyk-Cwynar B., Hajduch M., Sarek J. Synthesis and Antiproliferative Properties of New Hydrophilic Esters of Triterpenic Acids. Eur. J. Med. Chem. 2017;140:403–420. doi: 10.1016/j.ejmech.2017.09.041. PubMed DOI
Milner S.E., Maguire A.R. Recent Trends in Whole Cell and Isolated Enzymes in Enantioselective Synthesis. Arkivoc. 2012;2012:321–382. doi: 10.3998/ark.5550190.0013.109. DOI
Sun H., Zhang H., Ang E.L., Zhao H. Biocatalysis for the Synthesis of Pharmaceuticals and Pharmaceutical Intermediates. Bioorganic Med. Chem. 2018;26:1275–1284. doi: 10.1016/j.bmc.2017.06.043. PubMed DOI
Christianson D.W. Structural and Chemical Biology of Terpenoid Cyclases. Chem. Rev. 2017;117:11570–11648. doi: 10.1021/acs.chemrev.7b00287. PubMed DOI PMC
Abe I. Enzymatic Synthesis of Cyclic Triterpenes. Nat. Prod. Rep. 2007;24:1311–1331. doi: 10.1039/b616857b. PubMed DOI
An T., Zha W., Zi J. Biotechnological Production of Betulinic Acid and Derivatives and Their Applications. Appl. Microbiol. Biotechnol. 2020;104:3339–3348. doi: 10.1007/s00253-020-10495-1. PubMed DOI
Herrera J.B.R., Bartel B., Wilson W.K., Matsuda S.P.T. Cloning and Characterization of the Arabidopsis Thaliana Lupeol Synthase Gene. Phytochemistry. 1998;49:1905–1911. doi: 10.1016/S0031-9422(98)00366-5. PubMed DOI
Shibuya M., Zhang H., Endo A., Shishikura K., Kushiro T., Ebizuka Y. Two Branches of the Lupeol Synthase Gene in the Molecular Evolution of Plant Oxidosqualene Cyclases. Eur. J. Biochem. 1999;266:302–307. doi: 10.1046/j.1432-1327.1999.00875.x. PubMed DOI
Kushiro T., Shibuya M., Masuda K., Ebizuka Y. A Novel Multifunctional Triterpene Synthase from Arabidopsis Thaliana. Tetrahedron Lett. 2000;41:7705–7710. doi: 10.1016/S0040-4039(00)01347-2. DOI
Zhang H., Shibuya M., Yokota S., Ebizuka Y. Oxidosqualene Cyclases from Cell Suspension Cultures of Betula Platyphylla Var. Japonica: Molecular Evolution of Oxidosqualene Cyclases in Higher Plants. Biol. Pharm. Bull. 2003;26:642–650. doi: 10.1248/bpb.26.642. PubMed DOI
Ebizuka Y., Katsube Y., Tsutsumi T., Kushiro T., Shibuya M. Functional genomics approach to the study of triterpene biosynthesis. Pure Appl. Chem. 2003;75:369–374. doi: 10.1351/pac200375020369. DOI
Iturbe-Ormaetxe I., Haralampidis K., Papadopoulou K., Osbourn A.E. Molecular Cloning and Characterization of Triterpene Synthases from Medicago Truncatula and Lotus Japonicus. Plant Mol. Biol. 2003;51:731–743. doi: 10.1023/A:1022519709298. PubMed DOI
Hayashi H., Huang P., Takada S., Obinata M., Inoue K., Shibuya M., Ebizuka Y. Differential Expression of Three Oxidosqualene Cyclase MRNAs in Glycyrrhiza Glabra. Biol. Pharm. Bull. 2004;27:1086–1092. doi: 10.1248/bpb.27.1086. PubMed DOI
Guhling O., Hobl B., Yeats T., Jetter R. Cloning and Characterization of a Lupeol Synthase Involved in the Synthesis of Epicuticular Wax Crystals on Stem and Hypocotyl Surfaces of Ricinus Communis. Arch. Biochem. Biophys. 2006;448:60–72. doi: 10.1016/j.abb.2005.12.013. PubMed DOI
Sawai S., Shindo T., Sato S., Kaneko T., Tabata S., Ayabe S., Aoki T. Functional and Structural Analysis of Genes Encoding Oxidosqualene Cyclases of Lotus Japonicus. Plant Sci. 2006;170:247–257. doi: 10.1016/j.plantsci.2005.08.027. DOI
Basyuni M., Oku H., Inafuku M., Baba S., Iwasaki H., Oshiro K., Okabe T., Shibuya M., Ebizuka Y. Molecular Cloning and Functional Expression of a Multifunctional Triterpene Synthase CDNA from a Mangrove Species Kandelia candel (L.) Druce. Phytochemistry. 2006;67:2517–2524. doi: 10.1016/j.phytochem.2006.09.016. PubMed DOI
Basyuni M., Oku H., Tsujimoto E., Kinjo K., Baba S., Takara K. Triterpene Synthases from the Okinawan Mangrove Tribe, Rhizophoraceae. FEBS J. 2007;274:5028–5042. doi: 10.1111/j.1742-4658.2007.06025.x. PubMed DOI
Wang Z., Yeats T., Han H., Jetter R. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe Daigremontiana: Enzymes Catalyzing Up to 10 Rearrangement Steps Yielding Friedelin and Other Triterpenoids. J. Biol. Chem. 2010;285:29703–29712. doi: 10.1074/jbc.M109.098871. PubMed DOI PMC
Yin J., Ren C.-L., Zhan Y.-G., Li C.-X., Xiao J.-L., Qiu W., Li X.-Y., Peng H.-M. Distribution and Expression Characteristics of Triterpenoids and OSC Genes in White Birch (Betula Platyphylla Suk.) Mol. Biol. Rep. 2012;39:2321–2328. doi: 10.1007/s11033-011-0982-0. PubMed DOI
Khakimov B., Kuzina V., Erthmann P.Ø., Fukushima E.O., Augustin J.M., Olsen C.E., Scholtalbers J., Volpin H., Andersen S.B., Hauser T.P., et al. Identification and Genome Organization of Saponin Pathway Genes from a Wild Crucifer, and Their Use for Transient Production of Saponins in Nicotiana Benthamiana. Plant J. 2015;84:478–490. doi: 10.1111/tpj.13012. PubMed DOI
Fukushima E.O., Seki H., Ohyama K., Ono E., Umemoto N., Mizutani M., Saito K., Muranaka T. CYP716A Subfamily Members Are Multifunctional Oxidases in Triterpenoid Biosynthesis. Plant Cell Physiol. 2011;52:2050–2061. doi: 10.1093/pcp/pcr146. PubMed DOI
Huang L., Li J., Ye H., Li C., Wang H., Liu B., Zhang Y. Molecular Characterization of the Pentacyclic Triterpenoid Biosynthetic Pathway in Catharanthus Roseus. Planta. 2012;236:1571–1581. doi: 10.1007/s00425-012-1712-0. PubMed DOI
Zhou C., Li J., Li C., Zhang Y. Improvement of Betulinic Acid Biosynthesis in Yeast Employing Multiple Strategies. BMC Biotechnol. 2016;16:59. doi: 10.1186/s12896-016-0290-9. PubMed DOI PMC
Tamura K., Seki H., Suzuki H., Kojoma M., Saito K., Muranaka T. CYP716A179 Functions as a Triterpene C-28 Oxidase in Tissue-Cultured Stolons of Glycyrrhiza Uralensis. Plant Cell Rep. 2017;36:437–445. doi: 10.1007/s00299-016-2092-x. PubMed DOI
Huang J., Zha W., An T., Dong H., Huang Y., Wang D., Yu R., Duan L., Zhang X., Peters R.J., et al. Identification of RoCYP01 (CYP716A155) Enables Construction of Engineered Yeast for High-Yield Production of Betulinic Acid. Appl. Microbiol. Biotechnol. 2019;103:7029–7039. doi: 10.1007/s00253-019-10004-z. PubMed DOI
Suzuki H., Fukushima E.O., Shimizu Y., Seki H., Fujisawa Y., Ishimoto M., Osakabe K., Osakabe Y., Muranaka T. Lotus Japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta. Plant Cell Physiol. 2019;60:2496–2509. doi: 10.1093/pcp/pcz145. PubMed DOI
Liu J., Fu M.L., Chen Q.H. Biotransformation Optimization of Betulin into Betulinic Acid Production Catalysed by Cultured Armillaria Luteo-Virens Sacc ZJUQH100-6 Cells. J. Appl. Microbiol. 2011;110:90–97. doi: 10.1111/j.1365-2672.2010.04857.x. PubMed DOI
Bai Y.-H., Feng Y.-Q., Mao D.-B., Xu C.-P. Optimization for Betulin Production from Mycelial Culture of Inonotus Obliquus by Orthogonal Design and Evaluation of Its Antioxidant Activity. J. Taiwan Inst. Chem. Eng. 2012;43:663–669. doi: 10.1016/j.jtice.2012.03.004. DOI
Wang L.-X., Lu Z.-M., Geng Y., Zhang X.-M., Xu G.-H., Shi J.-S., Xu Z.-H. Stimulated Production of Steroids in Inonotus Obliquus by Host Factors from Birch. J. Biosci. Bioeng. 2014;118:728–731. doi: 10.1016/j.jbiosc.2014.05.022. PubMed DOI
Bertolo A.P., Biz A.P., Kempka A.P., Rigo E., Cavalheiro D. Yeast (Saccharomyces Cerevisiae): Evaluation of Cellular Disruption Processes, Chemical Composition, Functional Properties and Digestibility. J. Food Sci. Technol. 2019;56:3697–3706. doi: 10.1007/s13197-019-03833-3. PubMed DOI PMC
Li J., Zhang Y. Increase of Betulinic Acid Production in Saccharomyces Cerevisiae by Balancing Fatty Acids and Betulinic Acid Forming Pathways. Appl. Microbiol. Biotechnol. 2014;98:3081–3089. doi: 10.1007/s00253-013-5461-1. PubMed DOI
Li J., Zhang Y. Modulating Betulinic Acid Production in Saccharomyces Cerevisiae by Managing the Intracellular Supplies of the Co-Factor NADPH and Oxygen. J. Biosci. Bioeng. 2015;119:77–81. doi: 10.1016/j.jbiosc.2014.06.013. PubMed DOI
Lin T.-T., Wang D., Dai Z.-B., Zhang X.-L., Huang L.-Q. Construction of cell factories for production of lupeol in Saccharomyces cerevisiae. Zhongguo Zhong Yao Za Zhi. 2016;41:1008–1015. doi: 10.4268/cjcmm20160606. PubMed DOI
Czarnotta E., Dianat M., Korf M., Granica F., Merz J., Maury J., Jacobsen S.A.B., Förster J., Ebert B.E., Blank L.M. Fermentation and Purification Strategies for the Production of Betulinic Acid and Its Lupane-Type Precursors in Saccharomyces Cerevisiae. Biotechnol. Bioeng. 2017;114:2528–2538. doi: 10.1002/bit.26377. PubMed DOI
Arendt P., Miettinen K., Pollier J., De Rycke R., Callewaert N., Goossens A. An Endoplasmic Reticulum-Engineered Yeast Platform for Overproduction of Triterpenoids. Metab. Eng. 2017;40:165–175. doi: 10.1016/j.ymben.2017.02.007. PubMed DOI
D’Adamo S., Schiano di Visconte G., Lowe G., Szaub-Newton J., Beacham T., Landels A., Allen M.J., Spicer A., Matthijs M. Engineering the Unicellular Alga Phaeodactylum Tricornutum for High-Value Plant Triterpenoid Production. Plant Biotechnol. J. 2019;17:75–87. doi: 10.1111/pbi.12948. PubMed DOI PMC
Qiao W., Zhou Z., Liang Q., Mosongo I., Li C., Zhang Y. Improving Lupeol Production in Yeast by Recruiting Pathway Genes from Different Organisms. Sci. Rep. 2019;9:2992. doi: 10.1038/s41598-019-39497-4. PubMed DOI PMC
Zieniuk B., Fabiszewska A. Yarrowia Lipolytica: A Beneficious Yeast in Biotechnology as a Rare Opportunistic Fungal Pathogen: A Minireview. World J. Microbiol. Biotechnol. 2019;35 doi: 10.1007/s11274-018-2583-8. PubMed DOI PMC
Sun J., Zhang C., Nan W., Li D., Ke D., Lu W. Glycerol Improves Heterologous Biosynthesis of Betulinic Acid in Engineered Yarrowia Lipolytica. Chem. Eng. Sci. 2019;196:82–90. doi: 10.1016/j.ces.2018.10.052. DOI
Jin C.-C., Zhang J.-L., Song H., Cao Y.-X. Boosting the Biosynthesis of Betulinic Acid and Related Triterpenoids in Yarrowia Lipolytica via Multimodular Metabolic Engineering. Microb. Cell Factories. 2019;18:77. doi: 10.1186/s12934-019-1127-8. PubMed DOI PMC
Gowers G.-O.F., Chee S.M., Bell D., Suckling L., Kern M., Tew D., McClymont D.W., Ellis T. Improved Betulinic Acid Biosynthesis Using Synthetic Yeast Chromosome Recombination and Semi-Automated Rapid LC-MS Screening. Nat. Commun. 2020;11:868. doi: 10.1038/s41467-020-14708-z. PubMed DOI PMC
Chatterjee P., Pezzuto J.M., Kouzi S.A. Glucosidation of Betulinic Acid by Cunninghamella Species. J. Nat. Prod. 1999;62:761–763. doi: 10.1021/np980432b. PubMed DOI
Yasin Y., Basri M., Ahmad F., Salleh A.B. Response Surface Methodology as a Tool to Study the Lipase-Catalyzed Synthesis of Betulinic Acid Ester. J. Chem. Technol. Biotechnol. 2008;83:694–698. doi: 10.1002/jctb.1858. DOI
Ahmad F.B.H., Moghaddam M.G., Basri M., Rahman M.B.A. Enzymatic Synthesis of Betulinic Acid Ester as an Anticancer Agent: Optimization Study. Biocatal. Biotransform. 2010;28:192–200. doi: 10.3109/10242421003753795. DOI
Ahmad F.B.H., Moghaddam M.G., Basri M., Rahman M.B.A. Anticancer Activity of 3-O-Acylated Betulinic Acid Derivatives Obtained by Enzymatic Synthesis. Biosci. Biotechnol. Biochem. 2010;74:1025–1029. doi: 10.1271/bbb.90917. PubMed DOI
Mao D.-B., Feng Y.-Q., Bai Y.-H., Xu C.-P. Novel Biotransformation of Betulin to Produce Betulone by Rhodotorula Mucilaginosa. J. Taiwan Inst. Chem. Eng. 2012;43:825–829. doi: 10.1016/j.jtice.2012.06.006. DOI
Atikah Binti Amin Yusof N., Mat Hadzir N., Efliza Ashari S. Identification and Optimisation of Lipase-Catalysed Synthesis of Betulinic Acid Amide in a Solvent System. J. Appl. Chem. 2016;2016:e5149326. doi: 10.1155/2016/5149326. DOI
Guo B., Xu D., Liu X., Yi J. Enzymatic Synthesis and in Vitro Evaluation of Folate-Functionalized Liposomes. Drug Des Devel. 2017;11:1839–1847. doi: 10.2147/DDDT.S132841. PubMed DOI PMC
Dai Z., Liu Y., Sun Z., Wang D., Qu G., Ma X., Fan F., Zhang L., Li S., Zhang X. Identification of a Novel Cytochrome P450 Enzyme That Catalyzes the C-2α Hydroxylation of Pentacyclic Triterpenoids and Its Application in Yeast Cell Factories. Metab. Eng. 2019;51:70–78. doi: 10.1016/j.ymben.2018.10.001. PubMed DOI
Gauthier C., Legault J., Rondeau S., Pichette A. Synthesis of Betulinic Acid Acyl Glucuronide for Application in Anticancer Prodrug Monotherapy. Tetrahedron Lett. 2009;50:988–991. doi: 10.1016/j.tetlet.2008.12.043. DOI
Chatterjee P., Kouzi S.A., Pezzuto J.M., Hamann M.T. Biotransformation of the Antimelanoma Agent Betulinic Acid by Bacillus Megaterium ATCC 13368. Appl. Environ. Microbiol. 2000;66:3850–3855. doi: 10.1128/AEM.66.9.3850-3855.2000. PubMed DOI PMC
Kouzi S.A., Chatterjee P., Pezzuto J.M., Hamann M.T. Microbial Transformations of the Antimelanoma Agent Betulinic Acid. J. Nat. Prod. 2000;63:1653–1657. doi: 10.1021/np000343a. PubMed DOI
Bastos D.Z.L., Pimentel I.C., de Jesus D.A., de Oliveira B.H. Biotransformation of Betulinic and Betulonic Acids by Fungi. Phytochemistry. 2007;68:834–839. doi: 10.1016/j.phytochem.2006.12.007. PubMed DOI
Goswami A., Guo Z., Tully T.P., Rinaldi F.A., Huang X.S., Swidorski J.J., Regueiro-Ren A. Microbial Transformations of Betulinic and Betulonic Acids. J. Mol. Catal. B Enzym. 2015;117:45–53. doi: 10.1016/j.molcatb.2015.04.012. DOI
Chen C., Song K., Zhang Y., Chu C., Fan B., Song Y., Huang H., Chen G. Biotransformation of Betulinic Acid by Circinella Muscae and Cunninghamella Echinulata to Discover Anti-Inflammatory Derivatives. Phytochemistry. 2021;182:112608. doi: 10.1016/j.phytochem.2020.112608. PubMed DOI
Okamoto W., Sato T. Enzymatic Syntheses of Unnatural Head-to-Tail Pentacyclic Triterpenes by Tetraprenyl-β-Curcumene Cyclase. Tetrahedron Lett. 2013;54:6747–6750. doi: 10.1016/j.tetlet.2013.09.135. DOI