Biocatalysis in the Chemistry of Lupane Triterpenoids

. 2021 Apr 14 ; 26 (8) : . [epub] 20210414

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33919839

Grantová podpora
ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868) European Regional Development Fund
IGA_PrF_2021_024 Palacky University

Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by biocatalysts and highlights a large space for the future development of biocatalysis in this field. The results of this study may serve as a summary of the current state of research and demonstrate the potential of the method in future applications.

Zobrazit více v PubMed

Yao C.-L., Zhang J.-Q., Li J.-Y., Wei W.-L., Wu S.-F., Guo D.-A. Traditional Chinese Medicine (TCM) as a Source of New Anticancer Drugs. Nat. Prod. Rep. 2021 doi: 10.1039/D0NP00057D. PubMed DOI

Devi J., Kumar R., Singh K., Gehlot A., Bhushan S., Kumar S. In Vitro Adventitious Roots: A Non-Disruptive Technology for the Production of Phytoconstituents on the Industrial Scale. Crit. Rev. Biotechnol. 2021:1–25. doi: 10.1080/07388551.2020.1869690. PubMed DOI

Lu Y., An T., Tian H., Gao X., Wang F., Wang S., Ma K. Depression with Comorbid Diabetes: What Evidence Exists for Treatments Using Traditional Chinese Medicine and Natural Products? Front. Pharm. Ther. 2020;11:596362. doi: 10.3389/fphar.2020.596362. PubMed DOI PMC

Sun C.-P., Jia Z.-L., Huo X.-K., Tian X.-G., Feng L., Wang C., Zhang B.-J., Zhao W.-Y., Ma X.-C. Medicinal Inula Species: Phytochemistry, Biosynthesis, and Bioactivities. Am. J. Chin. Med. 2021:1–44. doi: 10.1142/S0192415X21500166. PubMed DOI

Zhang L., Song J., Kong L., Yuan T., Li W., Zhang W., Hou B., Lu Y., Du G. The Strategies and Techniques of Drug Discovery from Natural Products. Pharm. Ther. 2020;216:107686. doi: 10.1016/j.pharmthera.2020.107686. PubMed DOI

Wohnsland F., Faller B. High-Throughput Permeability PH Profile and High-Throughput Alkane/Water Log P with Artificial Membranes. J. Med. Chem. 2001;44:923–930. doi: 10.1021/jm001020e. PubMed DOI

Hiemstra S., Ramaiahgari S.C., Wink S., Callegaro G., Coonen M., Meerman J., Jennen D., van den Nieuwendijk K., Dankers A., Snoeys J., et al. High-Throughput Confocal Imaging of Differentiated 3D Liver-like Spheroid Cellular Stress Response Reporters for Identification of Drug-Induced Liver Injury Liability. Arch. Toxicol. 2019;93:2895–2911. doi: 10.1007/s00204-019-02552-0. PubMed DOI

Wei Z., Xie Z., Kuvelkar R., Shah V., Bateman K., McLaren D.G., Cooks R.G. High-Throughput Bioassays Using “Dip-and-Go” Multiplexed Electrospray Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2019;58:17594–17598. doi: 10.1002/anie.201909047. PubMed DOI

Aldewachi H., Al-Zidan R.N., Conner M.T., Salman M.M. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering (Basel) 2021;8:30. doi: 10.3390/bioengineering8020030. PubMed DOI PMC

David B., Wolfender J.-L., Dias D.A. The Pharmaceutical Industry and Natural Products: Historical Status and New Trends. Phytochem. Rev. 2015;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI

Davison E.K., Brimble M.A. Natural Product Derived Privileged Scaffolds in Drug Discovery. Curr. Opin. Chem. Biol. 2019;52:1–8. doi: 10.1016/j.cbpa.2018.12.007. PubMed DOI

Hill R.A., Connolly J.D. Triterpenoids. Nat. Prod. Rep. 2020;37:962–998. doi: 10.1039/C9NP00067D. PubMed DOI

Hill R., Connolly J. Triterpenoids. Nat. Prod. Rep. 2018;35:1294–1329. doi: 10.1039/C8NP00029H. PubMed DOI

Gershenzon J., Dudareva N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007;3:408–414. doi: 10.1038/nchembio.2007.5. PubMed DOI

Keeling C.I., Bohlmann J. Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers against Insects and Pathogens. New Phytol. 2006;170:657–675. doi: 10.1111/j.1469-8137.2006.01716.x. PubMed DOI

Tetali S.D. Terpenes and Isoprenoids: A Wealth of Compounds for Global Use. Planta. 2019;249:1–8. doi: 10.1007/s00425-018-3056-x. PubMed DOI

Patočka J. Biologically Active Pentacyclic Triterpenes and Their Current Medicine Signification. J. Appl. Biomed. 2003;1:7–12. doi: 10.32725/jab.2003.002. DOI

Luchnikova N.A., Grishko V.V., Ivshina I.B. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules. 2020;25:5526. doi: 10.3390/molecules25235526. PubMed DOI PMC

Cichewicz R.H., Kouzi S.A. Chemistry, Biological Activity, and Chemotherapeutic Potential of Betulinic Acid for the Prevention and Treatment of Cancer and HIV Infection. Med. Res. Rev. 2004;24:90–114. doi: 10.1002/med.10053. PubMed DOI

Zhang D.-M., Xu H.-G., Wang L., Li Y.-J., Sun P.-H., Wu X.-M., Wang G.-J., Chen W.-M., Ye W.-C. Betulinic Acid and Its Derivatives as Potential Antitumor Agents. Med. Res. Rev. 2015;35:1127–1155. doi: 10.1002/med.21353. PubMed DOI

Zhang X., Hu J., Chen Y. Betulinic Acid and the Pharmacological Effects of Tumor Suppression (Review) Mol. Med. Rep. 2016;14:4489–4495. doi: 10.3892/mmr.2016.5792. PubMed DOI

Hussain H., Green I.R., Ali I., Khan I.A., Ali Z., Al-Sadi A.M., Ahmed I. Ursolic Acid Derivatives for Pharmaceutical Use: A Patent Review (2012-2016) Expert. Opin. Ther. Pat. 2017;27:1061–1072. doi: 10.1080/13543776.2017.1344219. PubMed DOI

Fontanay S., Grare M., Mayer J., Finance C., Duval R.E. Ursolic, Oleanolic and Betulinic Acids: Antibacterial Spectra and Selectivity Indexes. J. Ethnopharmacol. 2008;120:272–276. doi: 10.1016/j.jep.2008.09.001. PubMed DOI

Kashyap D., Tuli H.S., Sharma A.K. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016;146:201–213. doi: 10.1016/j.lfs.2016.01.017. PubMed DOI

Lin C., Wen X., Sun H. Oleanolic Acid Derivatives for Pharmaceutical Use: A Patent Review. Expert Opin. Ther. Pat. 2016;26:643–655. doi: 10.1080/13543776.2016.1182988. PubMed DOI

Pollier J., Goossens A. Oleanolic Acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI

Rodríguez J.A., Astudillo L., Schmeda-Hirschmann G. Oleanolic Acid Promotes Healing of Acetic Acid-Induced Chronic Gastric Lesions in Rats. Pharmacol. Res. 2003;48:291–294. doi: 10.1016/S1043-6618(03)00155-5. PubMed DOI

Urban M., Kvasnica M., Dickinson N.J., Sarek J. Biologically Active Triterpenoids Usable As Prodrugs. In: Bates A.R., editor. Terpenoids and Squalene: Biosynthesis, Functions and Health Implications. Volume 2015. Nova Science Publishers; New York, NY, USA: 2015.

Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of Triterpenoids and Their Derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI

Ríos J.L., Máñez S. New Pharmacological Opportunities for Betulinic Acid. Planta Med. 2018;84:8–19. doi: 10.1055/s-0043-123472. PubMed DOI

Żwawiak J., Pawełczyk A., Olender D., Zaprutko L. Structure and Activity of Pentacyclic Triterpenes Codrugs. A Review. Mini Rev. Med. Chem. 2021 doi: 10.2174/1389557521666210105110848. PubMed DOI

Retzlaff F. Ueber Herba Gratiolae. Arch. Der Pharm. 1902;240:561–568. doi: 10.1002/ardp.19022400802. DOI

Trumbull E.R., Bianchi E., Eckert D.J., Wiedhopf R.M., Cole J.R. Tumor Inhibitory Agents from Vauquelinia Corymbosa (Rosaceae) J. Pharm. Sci. 1976;65:1407–1408. doi: 10.1002/jps.2600650938. PubMed DOI

Fujioka T., Kashiwada Y., Kilkuskie R.E., Cosentino L.M., Ballas L.M., Jiang J.B., Janzen W.P., Chen I.-S., Lee K.-H. Anti-AIDS Agents, 11. Betulinic Acid and Platanic Acid as Anti-HIV Principles from Syzigium Claviflorum, and the Anti-HIV Activity of Structurally Related Triterpenoids. J. Nat. Prod. 1994;57:243–247. doi: 10.1021/np50104a008. PubMed DOI

Pisha E., Chai H., Lee I.S., Chagwedera T.E., Farnsworth N.R., Cordell G.A., Beecher C.W., Fong H.H., Kinghorn A.D., Brown D.M. Discovery of Betulinic Acid as a Selective Inhibitor of Human Melanoma That Functions by Induction of Apoptosis. Nat. Med. 1995;1:1046–1051. doi: 10.1038/nm1095-1046. PubMed DOI

Schmidt M.L., Kuzmanoff K.L., Ling-Indeck L., Pezzuto J.M. Betulinic Acid Induces Apoptosis in Human Neuroblastoma Cell Lines. Eur. J. Cancer. 1997;33:2007–2010. doi: 10.1016/S0959-8049(97)00294-3. PubMed DOI

Freire C.S.R., Silvestre A.J.D., Neto C.P., Cavaleiro J.S. Lipophilic Extractives of the Inner and Outer Barks of Eucalyptus Globulus. Holzforschung (HF) 2002;56:372–379. doi: 10.1515/HF.2002.059. DOI

Abe F., Yamauchi T., Nagao T., Kinjo J., Okabe H., Higo H., Akahane H. Ursolic Acid as a Trypanocidal Constituent in Rosemary. Biol. Pharm. Bull. 2002;25:1485–1487. doi: 10.1248/bpb.25.1485. PubMed DOI

Zhao F., Mai Q., Ma J., Xu M., Wang X., Cui T., Qiu F., Han G. Triterpenoids from Inonotus Obliquus and Their Antitumor Activities. Fitoterapia. 2015;101:34–40. doi: 10.1016/j.fitote.2014.12.005. PubMed DOI

Cunha A.B., Batista R., Castro M.Á., David J.M. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Molecules. 2021;26:1081. doi: 10.3390/molecules26041081. PubMed DOI PMC

Liu J., Chen P., Yao W., Wang J., Wang L., Deng L., He J., Zhang G., Lei J. Subcritical Water Extraction of Betulinic Acid from Birch Bark. Ind. Crop. Prod. 2015;74:557–565. doi: 10.1016/j.indcrop.2015.05.064. DOI

Zhao G., Yan W., Cao D. Simultaneous Determination of Betulin and Betulinic Acid in White Birch Bark Using RP-HPLC. J. Pharm. Biomed. Anal. 2007;43:959–962. doi: 10.1016/j.jpba.2006.09.026. PubMed DOI

Ren H., Omori S. A Simple Preparation of Betulinic Acid from Sycamore Bark. J. Wood Sci. 2012;58:169–173. doi: 10.1007/s10086-011-1227-5. DOI

Urban M., Sarek J., Klinot J., Korinkova G., Hajduch M. Synthesis of A-Seco Derivatives of Betulinic Acid with Cytotoxic Activity. J. Nat. Prod. 2004;67:1100–1105. doi: 10.1021/np049938m. PubMed DOI

Mullally M., Kramp K., Cayer C., Saleem A., Ahmed F., McRae C., Baker J., Goulah A., Otorola M., Sanchez P., et al. Anxiolytic Activity of a Supercritical Carbon Dioxide Extract of Souroubea Sympetala (Marcgraviaceae) Phytother. Res. 2011;25:264–270. doi: 10.1002/ptr.3246. PubMed DOI

Patinha D.J.S., Domingues R.M.A., Villaverde J.J., Silva A.M.S., Silva C.M., Freire C.S.R., Neto C.P., Silvestre A.J.D. Lipophilic Extractives from the Bark of Eucalyptus Grandis x Globulus, a Rich Source of Methyl Morolate: Selective Extraction with Supercritical CO2. Ind. Crop. Prod. 2013;43:340–348. doi: 10.1016/j.indcrop.2012.06.056. DOI

Silva N.H.C.S., Morais E.S., Freire C.S.R., Freire M.G., Silvestre A.J.D. Extraction of High Value Triterpenic Acids from Eucalyptus Globulus Biomass Using Hydrophobic Deep Eutectic Solvents. Molecules. 2020;25:210. doi: 10.3390/molecules25010210. PubMed DOI PMC

Kuznetsova S.A., Skvortsova G.P., Maliar I.N., Skurydina E.S., Veselova O.F. Extraction of Betulin from Birch Bark and Study of Its Physico-Chemical and Pharmacological Properties. Russ. J. Bioorg. Chem. 2014;40:742–747. doi: 10.1134/S1068162014070073. DOI

Mazumder K., Biswas B., Raja I.M., Fukase K. A Review of Cytotoxic Plants of the Indian Subcontinent and a Broad-Spectrum Analysis of Their Bioactive Compounds. Molecules. 2020;25:1904. doi: 10.3390/molecules25081904. PubMed DOI PMC

Räsänen R.-M., Hieta J.-P., Immanen J., Nieminen K., Haavikko R., Yli-Kauhaluoma J., Kauppila T.J. Chemical Profiles of Birch and Alder Bark by Ambient Mass Spectrometry. Anal. Bioanal. Chem. 2019;411:7573–7583. doi: 10.1007/s00216-019-02171-9. PubMed DOI PMC

Cîntă-Pînzaru S., Dehelean C.A., Soica C., Culea M., Borcan F. Evaluation and Differentiation of the Betulaceae Birch Bark Species and Their Bioactive Triterpene Content Using Analytical FT-Vibrational Spectroscopy and GC-MS. Chem. Cent. J. 2012;6:67. doi: 10.1186/1752-153X-6-67. PubMed DOI PMC

Baltina L.A., Flekhter O.B., Nigmatullina L.R., Boreko E.I., Pavlova N.I., Nikolaeva S.N., Savinova O.V., Tolstikov G.A. Lupane Triterpenes and Derivatives with Antiviral Activity. Bioorganic Med. Chem. Lett. 2003;13:3549–3552. doi: 10.1016/S0960-894X(03)00714-5. PubMed DOI

Csuk R., Schmuck K., Schäfer R. A Practical Synthesis of Betulinic Acid. Tetrahedron Lett. 2006;47:8769–8770. doi: 10.1016/j.tetlet.2006.10.004. DOI

Barthel A., Stark S., Csuk R. Oxidative Transformations of Betulinol. Tetrahedron. 2008;64:9225–9229. doi: 10.1016/j.tet.2008.07.042. DOI

Ressmann A.K., Kremsmayr T., Gaertner P., Zirbs R., Bica K. Toward a Benign Strategy for the Manufacturing of Betulinic Acid. Green Chem. 2017;19:1014–1022. doi: 10.1039/C6GC02641A. DOI

Kim D.S.H.L., Chen Z., Nguyen T., Pezzuto J.M., Qiu S., Lu Z.-Z. A Concise Semi-Synthetic Approach to Betulinic Acid from Betulin. Synth. Commun. 1997;27:1607–1612. doi: 10.1080/00397919708006099. DOI

Li T.-S., Wang J.-X., Zheng X.-J. Simple Synthesis of Allobetulin, 28-Oxyallobetulin and Related Biomarkers from Betulin and Betulinic Acid Catalysed by Solid Acids. J. Chem. Soc. Perkin Trans. 1998:3957–3966. doi: 10.1039/a806735j. DOI

Kvasnica M., Urban M., Dickinson N.J., Sarek J. Pentacyclic Triterpenoids with Nitrogen- and Sulfur-Containing Heterocycles: Synthesis and Medicinal Significance. Nat. Prod. Rep. 2015;32:1303–1330. doi: 10.1039/C5NP00015G. PubMed DOI

Borkova L., Hodon J., Urban M. Synthesis of Betulinic Acid Derivatives with Modified A-Rings and Their Application as Potential Drug Candidates. Asian J. Org. Chem. 2018;7:1542–1560. doi: 10.1002/ajoc.201800163. DOI

Sousa J.L.C., Freire C.S.R., Silvestre A.J.D., Silva A.M.S. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules. 2019;24:355. doi: 10.3390/molecules24020355. PubMed DOI PMC

Swidorski J.J., Liu Z., Sit S.-Y., Chen J., Chen Y., Sin N., Venables B.L., Parker D.D., Nowicka-Sans B., Terry B.J., et al. Inhibitors of HIV-1 Maturation: Development of Structure–Activity Relationship for C-28 Amides Based on C-3 Benzoic Acid-Modified Triterpenoids. Bioorganic Med. Chem. Lett. 2016;26:1925–1930. doi: 10.1016/j.bmcl.2016.03.019. PubMed DOI

Tolmacheva I.A., Igosheva E.V., Vikharev I.B., Grishko V.V., Savinova O.V., Boreko E.I., Eremin V.F. Synthesis and biological activity of 2,3-secotriterpene acid mono- and diamides. Bioorg. Khim. 2013;39:212–220. doi: 10.1134/S1068162013020143. PubMed DOI

Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl Amides of Betulinic Acid as Antitumor Agents Causing Tumor Cell Apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI

Dang Thi T.A., Kim Tuyet N.T., Pham The C., Thanh Nguyen H., Ba Thi C., Thi Phuong H., Van Boi L., Van Nguyen T., D’hooghe M. Synthesis and Cytotoxic Evaluation of Novel Amide–Triazole-Linked Triterpenoid–AZT Conjugates. Tetrahedron Lett. 2015;56:218–224. doi: 10.1016/j.tetlet.2014.11.069. PubMed DOI

Sorokina I.V., Baev D.S., Zhukova N.A., Tolstikova T.G., Antimonova A.N., Petrenko N.I., Shul’ts E.E., Grigor’ev I.A. Hepatoprotective activity of betulonic acid amides containing a piperidine or pyrrolidine nitroxide moiety. Bioorg. Khim. 2013;39:749–752. doi: 10.1134/S1068162013060083. PubMed DOI

Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and Microscopic Study of Self-Assembly of Novel Cationic Spermine Amides of Betulinic Acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI

Xiao S., Wang Q., Si L., Shi Y., Wang H., Yu F., Zhang Y., Li Y., Zheng Y., Zhang C., et al. Synthesis and Anti-HCV Entry Activity Studies of β-Cyclodextrin–Pentacyclic Triterpene Conjugates. ChemMedChem. 2014;9:1060–1070. doi: 10.1002/cmdc.201300545. PubMed DOI

Li M., Yuan L., Chen Y., Ma W., Ran F., Zhang L., Zhou D., Xiao S. Rhodamine B-Based Fluorescent Probes for Molecular Mechanism Study of the Anti-Influenza Activity of Pentacyclic Triterpenes. Eur. J. Med. Chem. 2020;205:112664. doi: 10.1016/j.ejmech.2020.112664. PubMed DOI

Wiemann J., Heller L., Perl V., Kluge R., Ströhl D., Csuk R. Betulinic Acid Derived Hydroxamates and Betulin Derived Carbamates Are Interesting Scaffolds for the Synthesis of Novel Cytotoxic Compounds. Eur. J. Med. Chem. 2015;106:194–210. doi: 10.1016/j.ejmech.2015.10.043. PubMed DOI

Cui H.-W., He Y., Wang J., Gao W., Liu T., Qin M., Wang X., Gao C., Wang Y., Liu M.-Y., et al. Synthesis of Heterocycle-Modified Betulinic Acid Derivatives as Antitumor Agents. Eur. J. Med. Chem. 2015;95:240–248. doi: 10.1016/j.ejmech.2015.03.048. PubMed DOI

Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II Study of the Safety, Virologic Effect, and Pharmacokinetics/Pharmacodynamics of Single-Dose 3-O-(3′,3′-Dimethylsuccinyl)Betulinic Acid (Bevirimat) against Human Immunodeficiency Virus Infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC

Hashimoto F., Kashiwada Y., Cosentino L.M., Chen C.-H., Garrett P.E., Lee K.-H. Anti-AIDS Agents—XXVII. Synthesis and Anti-HIV Activity of Betulinic Acid and Dihydrobetulinic Acid Derivatives. Bioorganic Med. Chem. 1997;5:2133–2143. doi: 10.1016/S0968-0896(97)00158-2. PubMed DOI

Khan I., Guru S.K., Rath S.K., Chinthakindi P.K., Singh B., Koul S., Bhushan S., Sangwan P.L. A Novel Triazole Derivative of Betulinic Acid Induces Extrinsic and Intrinsic Apoptosis in Human Leukemia HL-60 Cells. Eur. J. Med. Chem. 2016;108:104–116. doi: 10.1016/j.ejmech.2015.11.018. PubMed DOI

Urban M., Sarek J., Tislerova I., Dzubak P., Hajduch M. Influence of Esterification and Modification of A-Ring in a Group of Lupane Acids on Their Cytotoxicity. Bioorganic Med. Chem. 2005;13:5527–5535. doi: 10.1016/j.bmc.2005.07.011. PubMed DOI

Santos R.C., Salvador J.A.R., Marín S., Cascante M., Moreira J.N., Dinis T.C.P. Synthesis and Structure–Activity Relationship Study of Novel Cytotoxic Carbamate and N-Acylheterocyclic Bearing Derivatives of Betulin and Betulinic Acid. Bioorganic Med. Chem. 2010;18:4385–4396. doi: 10.1016/j.bmc.2010.04.085. PubMed DOI

Ma C., Nakamura N., Miyashiro H., Hattori M., Shimotohno K. Inhibitory Effects of Constituents from Cynomorium Songaricum and Related Triterpene Derivatives on HIV-1 Protease. Chem. Pharm. Bull. 1999;47:141–145. doi: 10.1248/cpb.47.141. PubMed DOI

Perlikova P., Kvasnica M., Urban M., Hajduch M., Sarek J. 2-Deoxyglycoside Conjugates of Lupane Triterpenoids with High Cytotoxic Activity—Synthesis, Activity, and Pharmacokinetic Profile. Bioconjugate Chem. 2019;30:2844–2858. doi: 10.1021/acs.bioconjchem.9b00565. PubMed DOI

Gauthier C., Legault J., Piochon-Gauthier M., Pichette A. Advances in the Synthesis and Pharmacological Activity of Lupane-Type Triterpenoid Saponins. Phytochem. Rev. 2011;10:521–544. doi: 10.1007/s11101-010-9176-y. DOI

Flekhter O.B., Baltina L.A., Tolstikov G.A. Direct Stereospecific Synthesis of Triterpene and Steroid 2-Deoxy-α-Glycosides. Russ. Chem. Bull. 1997;46:1335–1338. doi: 10.1007/BF02495937. DOI

Flekhter O.B., Baltina L.A., Tolstikov G.A. Glycals in the Stereoselective Synthesis of Triterpene 2-Deoxy-α-l-Glycosides under Conditions of Acidic Catalysis. J. Nat. Prod. 2000;63:992–994. doi: 10.1021/np990273b. PubMed DOI

Samoshina N.F., Denisenko M.V., Denisenko V.A., Uvarova N.I. Synthesis of Glycosides of Lupane-Type Triterpene Acids. Chem. Nat. Compd. 2003;39:575–582. doi: 10.1023/B:CONC.0000018113.79735.34. DOI

Eignerova B., Tichy M., Krasulova J., Kvasnica M., Rarova L., Christova R., Urban M., Bednarczyk-Cwynar B., Hajduch M., Sarek J. Synthesis and Antiproliferative Properties of New Hydrophilic Esters of Triterpenic Acids. Eur. J. Med. Chem. 2017;140:403–420. doi: 10.1016/j.ejmech.2017.09.041. PubMed DOI

Milner S.E., Maguire A.R. Recent Trends in Whole Cell and Isolated Enzymes in Enantioselective Synthesis. Arkivoc. 2012;2012:321–382. doi: 10.3998/ark.5550190.0013.109. DOI

Sun H., Zhang H., Ang E.L., Zhao H. Biocatalysis for the Synthesis of Pharmaceuticals and Pharmaceutical Intermediates. Bioorganic Med. Chem. 2018;26:1275–1284. doi: 10.1016/j.bmc.2017.06.043. PubMed DOI

Christianson D.W. Structural and Chemical Biology of Terpenoid Cyclases. Chem. Rev. 2017;117:11570–11648. doi: 10.1021/acs.chemrev.7b00287. PubMed DOI PMC

Abe I. Enzymatic Synthesis of Cyclic Triterpenes. Nat. Prod. Rep. 2007;24:1311–1331. doi: 10.1039/b616857b. PubMed DOI

An T., Zha W., Zi J. Biotechnological Production of Betulinic Acid and Derivatives and Their Applications. Appl. Microbiol. Biotechnol. 2020;104:3339–3348. doi: 10.1007/s00253-020-10495-1. PubMed DOI

Herrera J.B.R., Bartel B., Wilson W.K., Matsuda S.P.T. Cloning and Characterization of the Arabidopsis Thaliana Lupeol Synthase Gene. Phytochemistry. 1998;49:1905–1911. doi: 10.1016/S0031-9422(98)00366-5. PubMed DOI

Shibuya M., Zhang H., Endo A., Shishikura K., Kushiro T., Ebizuka Y. Two Branches of the Lupeol Synthase Gene in the Molecular Evolution of Plant Oxidosqualene Cyclases. Eur. J. Biochem. 1999;266:302–307. doi: 10.1046/j.1432-1327.1999.00875.x. PubMed DOI

Kushiro T., Shibuya M., Masuda K., Ebizuka Y. A Novel Multifunctional Triterpene Synthase from Arabidopsis Thaliana. Tetrahedron Lett. 2000;41:7705–7710. doi: 10.1016/S0040-4039(00)01347-2. DOI

Zhang H., Shibuya M., Yokota S., Ebizuka Y. Oxidosqualene Cyclases from Cell Suspension Cultures of Betula Platyphylla Var. Japonica: Molecular Evolution of Oxidosqualene Cyclases in Higher Plants. Biol. Pharm. Bull. 2003;26:642–650. doi: 10.1248/bpb.26.642. PubMed DOI

Ebizuka Y., Katsube Y., Tsutsumi T., Kushiro T., Shibuya M. Functional genomics approach to the study of triterpene biosynthesis. Pure Appl. Chem. 2003;75:369–374. doi: 10.1351/pac200375020369. DOI

Iturbe-Ormaetxe I., Haralampidis K., Papadopoulou K., Osbourn A.E. Molecular Cloning and Characterization of Triterpene Synthases from Medicago Truncatula and Lotus Japonicus. Plant Mol. Biol. 2003;51:731–743. doi: 10.1023/A:1022519709298. PubMed DOI

Hayashi H., Huang P., Takada S., Obinata M., Inoue K., Shibuya M., Ebizuka Y. Differential Expression of Three Oxidosqualene Cyclase MRNAs in Glycyrrhiza Glabra. Biol. Pharm. Bull. 2004;27:1086–1092. doi: 10.1248/bpb.27.1086. PubMed DOI

Guhling O., Hobl B., Yeats T., Jetter R. Cloning and Characterization of a Lupeol Synthase Involved in the Synthesis of Epicuticular Wax Crystals on Stem and Hypocotyl Surfaces of Ricinus Communis. Arch. Biochem. Biophys. 2006;448:60–72. doi: 10.1016/j.abb.2005.12.013. PubMed DOI

Sawai S., Shindo T., Sato S., Kaneko T., Tabata S., Ayabe S., Aoki T. Functional and Structural Analysis of Genes Encoding Oxidosqualene Cyclases of Lotus Japonicus. Plant Sci. 2006;170:247–257. doi: 10.1016/j.plantsci.2005.08.027. DOI

Basyuni M., Oku H., Inafuku M., Baba S., Iwasaki H., Oshiro K., Okabe T., Shibuya M., Ebizuka Y. Molecular Cloning and Functional Expression of a Multifunctional Triterpene Synthase CDNA from a Mangrove Species Kandelia candel (L.) Druce. Phytochemistry. 2006;67:2517–2524. doi: 10.1016/j.phytochem.2006.09.016. PubMed DOI

Basyuni M., Oku H., Tsujimoto E., Kinjo K., Baba S., Takara K. Triterpene Synthases from the Okinawan Mangrove Tribe, Rhizophoraceae. FEBS J. 2007;274:5028–5042. doi: 10.1111/j.1742-4658.2007.06025.x. PubMed DOI

Wang Z., Yeats T., Han H., Jetter R. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe Daigremontiana: Enzymes Catalyzing Up to 10 Rearrangement Steps Yielding Friedelin and Other Triterpenoids. J. Biol. Chem. 2010;285:29703–29712. doi: 10.1074/jbc.M109.098871. PubMed DOI PMC

Yin J., Ren C.-L., Zhan Y.-G., Li C.-X., Xiao J.-L., Qiu W., Li X.-Y., Peng H.-M. Distribution and Expression Characteristics of Triterpenoids and OSC Genes in White Birch (Betula Platyphylla Suk.) Mol. Biol. Rep. 2012;39:2321–2328. doi: 10.1007/s11033-011-0982-0. PubMed DOI

Khakimov B., Kuzina V., Erthmann P.Ø., Fukushima E.O., Augustin J.M., Olsen C.E., Scholtalbers J., Volpin H., Andersen S.B., Hauser T.P., et al. Identification and Genome Organization of Saponin Pathway Genes from a Wild Crucifer, and Their Use for Transient Production of Saponins in Nicotiana Benthamiana. Plant J. 2015;84:478–490. doi: 10.1111/tpj.13012. PubMed DOI

Fukushima E.O., Seki H., Ohyama K., Ono E., Umemoto N., Mizutani M., Saito K., Muranaka T. CYP716A Subfamily Members Are Multifunctional Oxidases in Triterpenoid Biosynthesis. Plant Cell Physiol. 2011;52:2050–2061. doi: 10.1093/pcp/pcr146. PubMed DOI

Huang L., Li J., Ye H., Li C., Wang H., Liu B., Zhang Y. Molecular Characterization of the Pentacyclic Triterpenoid Biosynthetic Pathway in Catharanthus Roseus. Planta. 2012;236:1571–1581. doi: 10.1007/s00425-012-1712-0. PubMed DOI

Zhou C., Li J., Li C., Zhang Y. Improvement of Betulinic Acid Biosynthesis in Yeast Employing Multiple Strategies. BMC Biotechnol. 2016;16:59. doi: 10.1186/s12896-016-0290-9. PubMed DOI PMC

Tamura K., Seki H., Suzuki H., Kojoma M., Saito K., Muranaka T. CYP716A179 Functions as a Triterpene C-28 Oxidase in Tissue-Cultured Stolons of Glycyrrhiza Uralensis. Plant Cell Rep. 2017;36:437–445. doi: 10.1007/s00299-016-2092-x. PubMed DOI

Huang J., Zha W., An T., Dong H., Huang Y., Wang D., Yu R., Duan L., Zhang X., Peters R.J., et al. Identification of RoCYP01 (CYP716A155) Enables Construction of Engineered Yeast for High-Yield Production of Betulinic Acid. Appl. Microbiol. Biotechnol. 2019;103:7029–7039. doi: 10.1007/s00253-019-10004-z. PubMed DOI

Suzuki H., Fukushima E.O., Shimizu Y., Seki H., Fujisawa Y., Ishimoto M., Osakabe K., Osakabe Y., Muranaka T. Lotus Japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta. Plant Cell Physiol. 2019;60:2496–2509. doi: 10.1093/pcp/pcz145. PubMed DOI

Liu J., Fu M.L., Chen Q.H. Biotransformation Optimization of Betulin into Betulinic Acid Production Catalysed by Cultured Armillaria Luteo-Virens Sacc ZJUQH100-6 Cells. J. Appl. Microbiol. 2011;110:90–97. doi: 10.1111/j.1365-2672.2010.04857.x. PubMed DOI

Bai Y.-H., Feng Y.-Q., Mao D.-B., Xu C.-P. Optimization for Betulin Production from Mycelial Culture of Inonotus Obliquus by Orthogonal Design and Evaluation of Its Antioxidant Activity. J. Taiwan Inst. Chem. Eng. 2012;43:663–669. doi: 10.1016/j.jtice.2012.03.004. DOI

Wang L.-X., Lu Z.-M., Geng Y., Zhang X.-M., Xu G.-H., Shi J.-S., Xu Z.-H. Stimulated Production of Steroids in Inonotus Obliquus by Host Factors from Birch. J. Biosci. Bioeng. 2014;118:728–731. doi: 10.1016/j.jbiosc.2014.05.022. PubMed DOI

Bertolo A.P., Biz A.P., Kempka A.P., Rigo E., Cavalheiro D. Yeast (Saccharomyces Cerevisiae): Evaluation of Cellular Disruption Processes, Chemical Composition, Functional Properties and Digestibility. J. Food Sci. Technol. 2019;56:3697–3706. doi: 10.1007/s13197-019-03833-3. PubMed DOI PMC

Li J., Zhang Y. Increase of Betulinic Acid Production in Saccharomyces Cerevisiae by Balancing Fatty Acids and Betulinic Acid Forming Pathways. Appl. Microbiol. Biotechnol. 2014;98:3081–3089. doi: 10.1007/s00253-013-5461-1. PubMed DOI

Li J., Zhang Y. Modulating Betulinic Acid Production in Saccharomyces Cerevisiae by Managing the Intracellular Supplies of the Co-Factor NADPH and Oxygen. J. Biosci. Bioeng. 2015;119:77–81. doi: 10.1016/j.jbiosc.2014.06.013. PubMed DOI

Lin T.-T., Wang D., Dai Z.-B., Zhang X.-L., Huang L.-Q. Construction of cell factories for production of lupeol in Saccharomyces cerevisiae. Zhongguo Zhong Yao Za Zhi. 2016;41:1008–1015. doi: 10.4268/cjcmm20160606. PubMed DOI

Czarnotta E., Dianat M., Korf M., Granica F., Merz J., Maury J., Jacobsen S.A.B., Förster J., Ebert B.E., Blank L.M. Fermentation and Purification Strategies for the Production of Betulinic Acid and Its Lupane-Type Precursors in Saccharomyces Cerevisiae. Biotechnol. Bioeng. 2017;114:2528–2538. doi: 10.1002/bit.26377. PubMed DOI

Arendt P., Miettinen K., Pollier J., De Rycke R., Callewaert N., Goossens A. An Endoplasmic Reticulum-Engineered Yeast Platform for Overproduction of Triterpenoids. Metab. Eng. 2017;40:165–175. doi: 10.1016/j.ymben.2017.02.007. PubMed DOI

D’Adamo S., Schiano di Visconte G., Lowe G., Szaub-Newton J., Beacham T., Landels A., Allen M.J., Spicer A., Matthijs M. Engineering the Unicellular Alga Phaeodactylum Tricornutum for High-Value Plant Triterpenoid Production. Plant Biotechnol. J. 2019;17:75–87. doi: 10.1111/pbi.12948. PubMed DOI PMC

Qiao W., Zhou Z., Liang Q., Mosongo I., Li C., Zhang Y. Improving Lupeol Production in Yeast by Recruiting Pathway Genes from Different Organisms. Sci. Rep. 2019;9:2992. doi: 10.1038/s41598-019-39497-4. PubMed DOI PMC

Zieniuk B., Fabiszewska A. Yarrowia Lipolytica: A Beneficious Yeast in Biotechnology as a Rare Opportunistic Fungal Pathogen: A Minireview. World J. Microbiol. Biotechnol. 2019;35 doi: 10.1007/s11274-018-2583-8. PubMed DOI PMC

Sun J., Zhang C., Nan W., Li D., Ke D., Lu W. Glycerol Improves Heterologous Biosynthesis of Betulinic Acid in Engineered Yarrowia Lipolytica. Chem. Eng. Sci. 2019;196:82–90. doi: 10.1016/j.ces.2018.10.052. DOI

Jin C.-C., Zhang J.-L., Song H., Cao Y.-X. Boosting the Biosynthesis of Betulinic Acid and Related Triterpenoids in Yarrowia Lipolytica via Multimodular Metabolic Engineering. Microb. Cell Factories. 2019;18:77. doi: 10.1186/s12934-019-1127-8. PubMed DOI PMC

Gowers G.-O.F., Chee S.M., Bell D., Suckling L., Kern M., Tew D., McClymont D.W., Ellis T. Improved Betulinic Acid Biosynthesis Using Synthetic Yeast Chromosome Recombination and Semi-Automated Rapid LC-MS Screening. Nat. Commun. 2020;11:868. doi: 10.1038/s41467-020-14708-z. PubMed DOI PMC

Chatterjee P., Pezzuto J.M., Kouzi S.A. Glucosidation of Betulinic Acid by Cunninghamella Species. J. Nat. Prod. 1999;62:761–763. doi: 10.1021/np980432b. PubMed DOI

Yasin Y., Basri M., Ahmad F., Salleh A.B. Response Surface Methodology as a Tool to Study the Lipase-Catalyzed Synthesis of Betulinic Acid Ester. J. Chem. Technol. Biotechnol. 2008;83:694–698. doi: 10.1002/jctb.1858. DOI

Ahmad F.B.H., Moghaddam M.G., Basri M., Rahman M.B.A. Enzymatic Synthesis of Betulinic Acid Ester as an Anticancer Agent: Optimization Study. Biocatal. Biotransform. 2010;28:192–200. doi: 10.3109/10242421003753795. DOI

Ahmad F.B.H., Moghaddam M.G., Basri M., Rahman M.B.A. Anticancer Activity of 3-O-Acylated Betulinic Acid Derivatives Obtained by Enzymatic Synthesis. Biosci. Biotechnol. Biochem. 2010;74:1025–1029. doi: 10.1271/bbb.90917. PubMed DOI

Mao D.-B., Feng Y.-Q., Bai Y.-H., Xu C.-P. Novel Biotransformation of Betulin to Produce Betulone by Rhodotorula Mucilaginosa. J. Taiwan Inst. Chem. Eng. 2012;43:825–829. doi: 10.1016/j.jtice.2012.06.006. DOI

Atikah Binti Amin Yusof N., Mat Hadzir N., Efliza Ashari S. Identification and Optimisation of Lipase-Catalysed Synthesis of Betulinic Acid Amide in a Solvent System. J. Appl. Chem. 2016;2016:e5149326. doi: 10.1155/2016/5149326. DOI

Guo B., Xu D., Liu X., Yi J. Enzymatic Synthesis and in Vitro Evaluation of Folate-Functionalized Liposomes. Drug Des Devel. 2017;11:1839–1847. doi: 10.2147/DDDT.S132841. PubMed DOI PMC

Dai Z., Liu Y., Sun Z., Wang D., Qu G., Ma X., Fan F., Zhang L., Li S., Zhang X. Identification of a Novel Cytochrome P450 Enzyme That Catalyzes the C-2α Hydroxylation of Pentacyclic Triterpenoids and Its Application in Yeast Cell Factories. Metab. Eng. 2019;51:70–78. doi: 10.1016/j.ymben.2018.10.001. PubMed DOI

Gauthier C., Legault J., Rondeau S., Pichette A. Synthesis of Betulinic Acid Acyl Glucuronide for Application in Anticancer Prodrug Monotherapy. Tetrahedron Lett. 2009;50:988–991. doi: 10.1016/j.tetlet.2008.12.043. DOI

Chatterjee P., Kouzi S.A., Pezzuto J.M., Hamann M.T. Biotransformation of the Antimelanoma Agent Betulinic Acid by Bacillus Megaterium ATCC 13368. Appl. Environ. Microbiol. 2000;66:3850–3855. doi: 10.1128/AEM.66.9.3850-3855.2000. PubMed DOI PMC

Kouzi S.A., Chatterjee P., Pezzuto J.M., Hamann M.T. Microbial Transformations of the Antimelanoma Agent Betulinic Acid. J. Nat. Prod. 2000;63:1653–1657. doi: 10.1021/np000343a. PubMed DOI

Bastos D.Z.L., Pimentel I.C., de Jesus D.A., de Oliveira B.H. Biotransformation of Betulinic and Betulonic Acids by Fungi. Phytochemistry. 2007;68:834–839. doi: 10.1016/j.phytochem.2006.12.007. PubMed DOI

Goswami A., Guo Z., Tully T.P., Rinaldi F.A., Huang X.S., Swidorski J.J., Regueiro-Ren A. Microbial Transformations of Betulinic and Betulonic Acids. J. Mol. Catal. B Enzym. 2015;117:45–53. doi: 10.1016/j.molcatb.2015.04.012. DOI

Chen C., Song K., Zhang Y., Chu C., Fan B., Song Y., Huang H., Chen G. Biotransformation of Betulinic Acid by Circinella Muscae and Cunninghamella Echinulata to Discover Anti-Inflammatory Derivatives. Phytochemistry. 2021;182:112608. doi: 10.1016/j.phytochem.2020.112608. PubMed DOI

Okamoto W., Sato T. Enzymatic Syntheses of Unnatural Head-to-Tail Pentacyclic Triterpenes by Tetraprenyl-β-Curcumene Cyclase. Tetrahedron Lett. 2013;54:6747–6750. doi: 10.1016/j.tetlet.2013.09.135. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace