EURADOS STRATEGIC RESEARCH AGENDA 2020: VISION FOR THE DOSIMETRY OF IONISING RADIATION
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
33989429
PubMed Central
PMC8165425
DOI
10.1093/rpd/ncab063
PII: 6275894
Knihovny.cz E-zdroje
- MeSH
- dávka záření MeSH
- ionizující záření MeSH
- lidé MeSH
- monitorování radiace * MeSH
- radiační ochrana * MeSH
- radiometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).
Belgian Nuclear Research Centre Mol Belgium
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain
CERN 1211 Geneva 23 Switzerland
Danish Centre for Particle Therapy Aarhus Denmark
ELI Beamlines Institute of Physics Czech Academy of Sciences Dolní Břežany Czech Republic
ENEA Radiation Protection Institute Bologna Italy
Helmholtz Zentrum München Institute of Radiation Medicine Neuherberg Germany
Institut de Radioprotection et de Sûreté Nucléaire Fontenay aux Roses Cedex France
Institute of Energy Technologies Universitat Politecnica de Catalunya Barcelona Spain
Instituto Superior Técnico CTN Lisboa Portugal
Instytut Fizyki Jądrowej Polskiej Akademii Nauk Kraków Poland
Istituto Superiore di Sanità Rome Italy
Karlsruhe Institute of Technology Karlsruhe Germany
Physikalisch Technische Bundesanstalt Braunschweig and Berlin Germany
Politecnico di Milano Milano Italy
Public Health England Chilton Didcot UK
Zobrazit více v PubMed
Rühm, W. et al. Visions for radiation dosimetry over the next two decades–strategic research agenda of the European Radiation Dosimetry Group. In: EURADOS Report 2014–01. (Braunschweig: European Radiation Dosimetry Group e. V.) (2014).
Rühm, W. et al. EURADOS strategic research agenda: vision for dosimetry of ionising radiation. Radiat. Prot. Dosim. 168, 223–234 (2016). PubMed PMC
Bottollier-Depois, J.-F. et al. Visions for radiation dosimetry over the next two decades-strategic research agenda of the European Radiation Dosimetry Group: Version 2020. In: EURADOS Report 2020–04. (Neuherberg: European Radiation Dosimetry Group e. V.) (2020).
Stadtmann, H., Grimbergen, T. W., Figel, M., Romero, A. M., McWhan, A. F. and Gärtner, C. The results of the EURADOS intercomparison IC2014 for whole-body dosemeters in photon fields. Radiat. Prot. Dosim. 170, 86–89 (2016). PubMed
Stadtmann, H., McWhan, A., Figel, M., Grimbergen, T. W., Romero, A. M. and Gärtner, C. EURADOS intercomparisons for individual monitoring services: results of the 2015 extremity dosemeter intercomparison for photon and beta radiations. Radiat. Meas. 106, 285–289 (2017).
Chevallier, M.-A., Fantuzzi, E., Cruz-Suarez, R., Luszik-Bhadra, M., Mayer, S., Thomas, D. J., Tanner, R. and Vanhavere, F. EURADOS IC 2012n: further information derived from an Eurados international comparison of neutron personal dosemeters. Radiat. Prot. Dosim. 170, 78–81 (2015). PubMed
Siebert, B. R. et al. Pitfalls and modelling inconsistencies in computational radiation dosimetry: lessons learnt from the QUADOS intercomparison. Part I: Neutrons and uncertainties. Radiat. Prot. Dosim. 118, 144–154 (2006). PubMed
Price, R. A. et al. Pitfalls and modelling inconsistencies in computational radiation dosimetry: lessons learnt from the QUADOS intercomparison. Part II: Photons, electrons and protons. Radiat. Prot. Dosim. 118, 155–166 (2006). PubMed
Sáez-Vergara, J. C., Thompson, I. M., Gurriarán, R., Dombrowski, H., Funck, E. and Neumaier, S. The second EURADOS intercomparison of national network systems used to provide early warning of a nuclear accident. Radiat. Prot. Dosim. 123, 190–208 (2006). PubMed
Alves, J. G. et al. EURADOS education and training activities. J. Radiol. Prot. 39, R37–R50 (2019). PubMed
Rühm, W., Bottollier-Depois, J. F., Gilvin, P., Harrison, R., Knežević, Ž., Lopez, M. A., Tanner, R., Vargas, A. and Woda, C. The work programme of EURADOS on internal and external dosimetry. Ann. ICRP 47, 20–34 (2018). PubMed
Rühm, W. et al. The European radiation dosimetry group – review of recent scientific achievements. Radiat. Phys. Chem. 168, 108514 (2020).
Rühm, W. et al. EURADOS Stakeholder Workshop on June 30th, 2016. In: EURADOS Report 2017–02. (Braunschweig: European Radiation Dosimetry Group e. V.) (2017).
Rühm, W., Friedl, A. A. and Wojcik, A. Coordinated radiation protection research in Europe: is it the beginning of a new era? Radiat. Environ. Biophys. 57, 1–4 (2017). PubMed
Allisy, A., Jennings, W. A., Kellerer, A. M. and Müller, J. W. ICRU report 51: quantities and units in radiation protection dosimetry. J. Int. Comm. Radiat. Units Measure. os-26, iii-19 (1993).
International Commission on Radiological Protection (ICRP) . Conversion coefficients for use in radiological protection against external radiation. ICRP Publication 74. Ann. ICRP 26, 1–205 (1996). PubMed
International Commission on Radiation Units and Measurements (ICRU) . ICRU report 57: conversion coefficients for use in radiological protection against external radiations. J. Int. Comm. Radiat. Units Measure. os-29, v-137 (1998).
International Commission on Radiological Protection (ICRP) . The 2007 recommendations of the International Commission on radiological protection. ICRP Publication 103. Ann. ICRP 37, 1–332 (2007). PubMed
Palmans, H. et al. Future development of biologically relevant dosimetry. Br. J. Radiol. 88, 20140392 (2015). PubMed
Pietrzak, M. On the two modes of nanodosimetric experiment. Radiat. Prot. Dosim. 183, 187–191 (2019). PubMed
Bantsar, A., Colautti, P., Conte, V., Hilgers, G., Pietrzak, M., Pszona, S., Rabus, H. and Selva, A. State of the art of instrumentation in experimental Nanodosimetry. Radiat. Prot. Dosim. 180, 177–181 (2018). PubMed
Heimbach, F., Arndt, A., Nettelbeck, H., Langner, F., Giesen, U., Rabus, H., Sellner, S., Toppari, J., Shen, B. and Baek, W. Y. Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage - a novel approach for a DNA-based radiosensitive device. Eur. Phys. J. D 71, 211 (2017).
Bortot, D., Mazzucconi, D., Bonfanti, M., Agosteo, S., Pola, A., Pasquato, S., Fazzi, A., Colautti, P. and Conte, V. A novel TEPC for microdosimetry at nanometric level: response against different neutron fields. Radiat. Prot. Dosim. 180, 172–176 (2017). PubMed
Mazzucconi, D., Bortot, D., Rodriguez, P. M., Pola, A., Fazzi, A., Colautti, P., Conte, V., Selva, A. and Agosteo, S. A wall-less tissue equivalent proportional counter as connecting bridge from microdosimetry to nanodosimetry. Radiat. Phys. Chem. 171, 108729 (2020).
Casiraghi, M., Bashkirov, V. A., Hurley, R. F. and Schulte, R. W. Characterisation of a track structure imaging detector. Radiat. Prot. Dosim. 166, 223–227 (2015). PubMed
Vasi, F., Casiraghi, M., Bashkirov, V., Giesen, U. and Schulte, R. W. Development of a single ion detector for radiation track structure studies. J. Instrum. 11, C09021 (2016).
Bui, B., McConnell, K., Obeidat, M., Saenz, D., Papanikolaou, N., Shim, E. Y. and Kirby, N. DNA dosimeter measurements of beam profile using a novel simultaneous processing technique. Appl. Radiat. Isot. 165, 109316 (2020). PubMed PMC
Li, X., McConnell, K. A., Che, J., Ha, C. S., Lee, S. E., Kirby, N. and Shim, E. Y. DNA dosimeter measurement of relative biological effectiveness for 160 kVp and 6 MV X rays. Radiat. Res. 194, 173–179 (2020). PubMed PMC
Pietrzak, M., Pszona, S. and Bantsar, A. Measurements of spatial correlations of ionisation clusters in the track of carbon ions - first results. Radiat. Prot. Dosim. 180, 162–167 (2018). PubMed
Hilgers, G. and Rabus, H. Correlated ionisations in two spatially separated nanometric volumes in the track structure of 241Am alpha particles: measurements with the PTB ion counter. Radiat. Phys. Chem. 176, 109025 (2020).
Conte, V., Selva, A., Colautti, P., Hilgers, G. and Rabus, H. Track structure characterization and its link to radiobiology. Radiat. Meas. 106, 506–511 (2017).
Conte, V., Selva, A., Colautti, P., Hilgers, G., Rabus, H., Bantsar, A., Pietrzak, M. and Pszona, S. Nanodosimetry: towards a new concept of radiation quality. Radiat. Prot. Dosim. 180, 150–156 (2018). PubMed
Selva, A., Nadal, V. D., Cherubini, R., Colautti, P. and Conte, V. Towards the use of nanodosimetry to predict cell survival. Radiat. Prot. Dosim. 183, 192–196 (2019). PubMed
Testa, A. et al. Analysis of radiation-induced chromosomal aberrations on a cell-by-cell basis after alpha-particle microbeam irradiation: experimental data and simulations. Radiat. Res. 189, 597–604 (2018). PubMed
Gonon, G. et al. From energy deposition of ionizing radiation to cell damage signaling: benchmarking simulations by measured yields of initial DNA damage after ion microbeam irradiation. Radiat. Res. 191, 566–584 (2019). PubMed
Rabus, H., Barbieri, S., Baiocco, G., Ottolenghi, A. and Giesen, U. Investigation into uncertainty contributions in foci-based assays. Radiat. Prot. Dosim. 183, 126–130 (2019). PubMed
Rabus, H. Nanodosimetry – on the “tracks” of biological radiation effectiveness. Z. Med. Phys. 30, 91–94 (2020). PubMed
Braunroth, T., Nettelbeck, H., Ngcezu, S. A. and Rabus, H. Three-dimensional nanodosimetric characterisation of proton track structure. Radiat. Phys. Chem. 176, 109066 (2020).
Rübe, C. E., Lorat, Y., Schuler, N., Schanz, S., Wennemuth, G. and Rübe, C. DNA repair in the context of chromatin: new molecular insights by the nanoscale detection of DNA repair complexes using transmission electron microscopy. DNA Repair 10, 427–437 (2011). PubMed
Shulse, C. N. et al. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 27, 2241–2247 (2019). PubMed PMC
Zhu, C., Yu, M., Huang, H., Juric, I., Abnousi, A., Hu, R., Lucero, J., Behrens, M., Hu, M. and Ren, B. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019). PubMed PMC
Schuemann, J. et al. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys. Med. Biol. 65, 21RM02 (2020). PubMed
Ngwa, W., Kumar, R., Sridhar, S., Korideck, H., Zygmanski, P., Cormack, R. A., Berbeco, R. and Makrigiorgos, G. M. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine 9, 1063–1082 (2014). PubMed PMC
Schuemann, J., Berbeco, R., Chithrani, D. B., Cho, S. H., Kumar, R., McMahon, S. J., Sridhar, S. and Krishnan, S. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int. J. Radiat. Oncol. Biol. Phys. 94, 189–205 (2016). PubMed PMC
Kuncic, Z. and Lacombe, S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Phys. Med. Biol. 63, 02TR01 (2018). PubMed
Douglass, M., Bezak, E. and Penfold, S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med. Phys. 40, 071710 (2019). PubMed
Jones, B. L., Krishnan, S. and Cho, S. H. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Med. Phys. 37, 3809–3816 (2019). PubMed
Li, W. B. et al. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys. Med. 69, 147–163 (2020). PubMed PMC
Li, W. B. et al. Corrigendum to “Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes” [Phys. Med. 69 (2020) 147-163]. Phys. Med. 80, 383–388 (2020). PubMed PMC
Shi, J., Xu, K., Keyvanloo, A., Udayakumar, T. S., Ahmad, A., Yang, F. and Yang, Y. A. Multimodality image guided precision radiation research platform: integrating X-ray, bioluminescence, and fluorescence tomography with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 108, 1063–1072 (2020). PubMed
Wilson, J. D., Hammond, E. M., Higgins, G. S. and Petersson, K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool's gold? Front. Oncol. 9, 1563 (2020). PubMed PMC
Giussani, A. et al. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications. Radiat. Environ. Biophys. 59, 357–387 (2020). PubMed PMC
International Commission on Radiation Units and Measurements (ICRU) . ICRU report 94: methods for initial-phase assessment of individual doses following acute exposure to ionizing radiation. J. Int. Comm. Radiat. Units Measure. 19, 3–162 (2019).
Ainsbury, E. et al. Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans – joint RENEB and EURADOS inter-laboratory comparisons. Int. J. Radiat. Biol. 93, 99–109 (2017). PubMed
Ainsbury, E. A. et al. Uncertainty on radiation doses estimated by biological and retrospective physical methods. Radiat. Prot. Dosim. 178, 382–404 (2018). PubMed
Kulka, U. and Wojcik, A. Special issue: networking in biological and EPR/OSL dosimetry: the European RENEB platform for emergency preparedness and research. Int. J. Radiat. Biol. 93, 1–1 (2017). PubMed
Dombrowski, H. Area dose rate values derived from NaI or LaBr3 spectra. Radiat. Prot. Dosim. 160, 269–276 (2014). PubMed
Vargas, A., Cornejo, N. and Camp, A. Comparison of methods for H*(10) calculation from measured LaBr3(Ce) detector spectra. Appl. Radiat. Isot. 137, 241–249 (2018). PubMed
Schneider, T., Oughton, D. and Cardis, E. Guest editorial: the SHAMISEN project – applicability or lessons learnt and recommendations for disaster situations. Environ. Int. 144, 106000 (2020). PubMed PMC
Pomp, S., Bartlett, D. T., Mayer, S. A., Reitz, G., Röttger, S., Silari, M., Smit, F. D., Vincke, H. and Yasuda, H. High-energy quasi-monoenergetic neutron fields: existing facilities and future needs. In: EURADOS Report 2013–02. (Braunschweig: European Radiation Dosimetry Group e. V.) (2013). PubMed
Caresana, M. et al. Intercomparison of radiation protection instrumentation in a pulsed neutron field. Nucl. Instrum. Methods Phys. Res., Sect. A 737, 203–213 (2014).
Schüller, A. et al. The European joint research project UHDpulse — metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Phys. Med. 80, 134–150 (2020). PubMed
Lillhök, J. et al. A comparison of ambient dose equivalent meters and dose calculations at constant flight conditions. Radiat. Meas. 42, 323–333 (2007).
Beck, P., Dyer, C., Fuller, N., Hands, A., Latocha, M., Rollet, S. and Spurny, F. Overview of on-board measurements during solar storm periods. Radiat. Prot. Dosim. 136, 297–303 (2009). PubMed
Ambrožová, I. et al. REFLECT–research flight of EURADOS and CRREAT: intercomparison of various radiation dosimeters onboard aircraft. Radiat. Meas. 137, 106433 (2020).
Bagshaw, M. Cosmic radiation in commercial aviation. Travel Med. Infect. Dis. 6, 125–127 (2008). PubMed
Yasuda, H. and Yajima, K. Verification of cosmic neutron doses in long-haul flights from Japan. Radiat. Meas. 119, 6–11 (2018).
Caresana, M., Ferrarini, M., Garlati, L. and Parravicini, A. About ageing and fading of Cr-39 PADC track detectors used as air radon concentration measurement devices. Radiat. Meas. 45, 183–189 (2010).
Caresana, M., Ferrarini, M., Garlati, L. and Parravicini, A. Further studies on ageing and fading of CR39 PADC track detectors used as air radon concentration measurement devices. Radiat. Meas. 46, 1160–1167 (2011).
Caresana, M., Ferrarini, M., Parravicini, A. and Naik, A. S. Evaluation of a personal and environmental dosemeter based on CR-39 track detectors in quasi-monoenergetic neutron fields. Radiat. Prot. Dosim. 161, 100–103 (2014). PubMed
traceRadon Publishable Summary for EMPIR project 19ENV01 ``traceRadon'' – Radon metrology for use in climate change observation and radiation protection at the environmental level. (2020). https://www.euramet.org/research-innovation/search-research-projects/ (accessed 27 Apr 2021).
Endo, A. Operational quantities and new approach by ICRU. Ann. ICRP 45, 178–187 (2016). PubMed