Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
MUNI/A/1425/2020
Masarykova Univerzita
PubMed
34067364
PubMed Central
PMC8224592
DOI
10.3390/antiox10060829
PII: antiox10060829
Knihovny.cz E-resources
- Keywords
- anoxygenic photosynthesis, hydrogen sulfide, toxicity, waste water treatment,
- Publication type
- Journal Article MeSH
- Review MeSH
Hydrogen sulfide is a toxic compound that can affect various groups of water microorganisms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as well as the conditions for isolation and cultivation of these microorganisms will be presented.
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
See more in PubMed
Postgate J. The Suphate-Reducing Bacteria. 2nd ed. Volume 1984 Cambridge University; Cambridge, UK: 1984.
Barton L.L., Fardeau M.-L., Fauque G.D. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. Met. Ions Life Sci. 2014;14:237–277. doi: 10.1007/978-94-017-9269-1_10. PubMed DOI
Kushkevych I., Dordević D., Vítězová M. Toxicity of Hydrogen Sulfide toward Sulfate-Reducing Bacteria Desulfovibrio Piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L. Hydrogen Sulfide as a Toxic Product in the Small–Large Intestine Axis and Its Role in IBD Development. JCM. 2019;8:1054. doi: 10.3390/jcm8071054. PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The Diversity of Sulfate-Reducing Bacteria in the Seven Bioreactors. Arch. Microbiol. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Kushkevych I.V. Activity and Kinetic Properties of Phosphotransacetylase from Intestinal Sulfate-Reducing Bacteria. Acta Biochim. Pol. 2015;62:103–108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I., Dordević D., Vítězová M. Possible Synergy Effect of Hydrogen Sulfide and Acetate Produced by Sulfate-Reducing Bacteria on Inflammatory Bowel Disease Development. J. Adv. Res. 2020;27:71–78. doi: 10.1016/j.jare.2020.03.007. PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. Hydrogen Sulfide Toxicity in the Gut Environment: Meta-Analysis of Sulfate-Reducing and Lactic Acid Bacteria in Inflammatory Processes. J. Adv. Res. 2020;27:55–69. doi: 10.1016/j.jare.2020.03.003. PubMed DOI PMC
Imhoff J. Anoxygenic Photosynthetic Bacteria. Springer; Berlin/Heidelberg, Germany: 2004. Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria; pp. 1–15.
Niel C. On the Morphology and Physiology of the Purple and Green Sulfur Bacteria. Arch. Microbiol. 1932;3:1–112. doi: 10.1007/BF00454965. DOI
Reinartz M., Tschäpe J., Brüser T., Trüper H., Dahl C. Sulfide Oxidation in the Phototrophic Sulfur Bacterium Chromatium Vinosum. Arch. Microbiol. 1998;170:59–68. doi: 10.1007/s002030050615. PubMed DOI
Kushkevych I. Isolation and Purification of Sulfate-Reducing Bacteria. In: Blumenberg M., Shaaban M., Elgaml A., editors. Microorganisms. IntechOpen; London, UK: 2020.
Overmann J. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Volume 7. Springer; Berlin/Heidelberg, Germany: 2006. The Family Chlorobiaceae; pp. 359–378.
Alexander B., Andersen J.H., Cox R.P., Imhoff J.F. Phylogeny of Green Sulfur Bacteria on the Basis of Gene Sequences of 16S RRNA and of the Fenna-Matthews-Olson Protein. Arch. Microbiol. 2002;178:131–140. doi: 10.1007/s00203-002-0432-4. PubMed DOI
Olson J. Chlorophyll Organization and Function in Green Photosynthetic Bacteria*. Photochem. Photobiol. 2008;67:61–75. doi: 10.1111/j.1751-1097.1998.tb05166.x. DOI
Clayton R., Sistrom W.R. The Photosynthetic Bacteria. Springer; Berlin/Heidelberg, Germany: 1978.
Frigaard N.-U., Dahl C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Adv. Microb. Physiol. 2008;54:103–200. doi: 10.1016/S0065-2911(08)00002-7. PubMed DOI
Büttner M., Xie D., Nelson H., Pinther W., Hauska G., Nelson N. Photosynthetic Reaction Center Genes in Green Sulfur Bacteria and in Photosystem 1 Are Related. Proc. Natl. Acad. Sci. USA. 1992;89:8135–8139. doi: 10.1073/pnas.89.17.8135. PubMed DOI PMC
Blankenship R., Olson J., Miller M. Anoxygenic Photosynthetic Bacteria. Springer; Berlin/Heidelberg, Germany: 2004. Antenna Complexes from Green Photosynthetic Bacteria; pp. 399–435.
Hauska G., Schoedl T., Remigy H., Tsiotis G. The Reaction Center of Green Sulfur Bacteria Dedicated to the Memory of Jan Amesz.1. Biochim. Et Biophys. Acta. 2001;1507:260–277. doi: 10.1016/S0005-2728(01)00200-6. PubMed DOI
Wang-Otomo Z.-Y. Solar to Chemical Energy Conversion. Springer; Berlin/Heidelberg, Germany: 2016. Recent Understanding on the Photosystem of Purple Photosynthetic Bacteria; pp. 379–390.
Sundstro V., Pullerits T., van Grondelle R. Photosynthetic Light-Harvesting: Reconciling Dynamics and Structure of Purple Bacterial LH2 Reveals Function of Photosynthetic Unit. J. Phys. Chem. 1999;103:2327–2346. doi: 10.1021/jp983722+. DOI
Takaichi S. Distribution and Biosynthesis of Carotenoids. In: Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Volume 28. Springer; Dordrecht, The Netherlands: 2009. pp. 97–117. Advances in Photosynthesis and Respiration.
Cohen-Bazire G., Sistrom W., Vernon L., Seeley G. Academic Press; New York, NY, USA: 1966. The Chlorophylls.
Griesbeck C., Hauska G., Schütz M. Biological Sulfide Oxidation: Sulfide-Quinone Reductase (SQR), the Primary Reaction. Recent Res. Dev. Microbiol. 2000;4:179–203.
Theissen U., Hoffmeister M., Grieshaber M., Martin W. Single Eubacterial Origin of Eukaryotic Sulfide:Quinone Oxidoreductase, a Mitochondrial Enzyme Conserved from the Early Evolution of Eukaryotes during Anoxic and Sulfidic Times. Mol. Biol. Evol. 2003;20:1564–1574. doi: 10.1093/molbev/msg174. PubMed DOI
Shahak Y., Arieli B., Padan E., Hauska G. Sulfide Quinone Reductase (SQR) Activity in Chlorobium. FEBS Lett. 1992;299:127–130. doi: 10.1016/0014-5793(92)80230-E. PubMed DOI
Heising S., Richter L., Ludwig W., Schink B. Chlorobium Ferrooxidans Sp. Nov., a Phototrophic Green Sulfur Bacterium That Oxidizes Ferrous Iron in Coculture with a “Geospirillum” Sp. Strain. Arch. Microbiol. 1999;172:116–124. doi: 10.1007/s002030050748. PubMed DOI
Griesbeck C., Schütz M., Schödl T., Bathe S., Nausch L., Mederer N., Vielreicher M., Hauska G. Mechanism of Sulfide-Quinone Reductase Investigated Using Site-Directed Mutagenesis and Sulfur Analysis. Biochemistry. 2002;41:11552–11565. doi: 10.1021/bi026032b. PubMed DOI
Appia-Ayme C., Little P.J., Matsumoto Y., Leech A.P., Berks B.C. Cytochrome Complex Essential for Photosynthetic Oxidation of Both Thiosulfate and Sulfide in Rhodovulum Sulfidophilum. J. Bacteriol. 2001;183:6107–6118. doi: 10.1128/JB.183.20.6107-6118.2001. PubMed DOI PMC
Steudel R., Holdt G., Visscher P., Gemerden H. Search for Polythionates in Cultures of Chromatium Vinosum after Sulfide Incubation. Arch. Microbiol. 1990;153:432–437. doi: 10.1007/BF00248423. DOI
Visscher P., Nijburg J., Gemerden H. Polysulfide Utilization by Thiocapsa Roseopersicina. Arch. Microbiol. 1990;155:75–81. doi: 10.1007/BF00291278. DOI
Brune D. Anoxygenic Photosynthetic Bacteria. Volume 2. Kluwer Academic Publishers; New York, NY, USA: Boston, MA, USA: Dordrecht, The Netherlands: London, UK: Moscow, Russia: 2004. Sulfur Compounds as Photosynthetic Electron Donors; pp. 847–870.
Dahl C. Sulfur Metabolism in Phototrophic Organisms. Springer; Berlin, Germany: 2008. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria; pp. 289–317.
Franz B., Lichtenberg H., Hormes J., Modrow H., Dahl C., Prange A. Utilization of Solid “elemental” Sulfur by the Phototrophic Purple Sulfur Bacterium Allochromatium Vinosum: A Sulfur K-Edge X-ray Absorption Spectroscopy Study. Microbiology. 2007;153:1268–1274. doi: 10.1099/mic.0.2006/003954-0. PubMed DOI
Overmann J., van Gemerden H. Microbial Interactions Involving Sulfur Bacteria: Implications for the Ecology and Evolution of Bacterial Communities. FEMS Microbiol. Rev. 2000;24:591–599. doi: 10.1111/j.1574-6976.2000.tb00560.x. PubMed DOI
Dickerson R. Evolution and Gene Transfer in Purple Photosynthetic Bacteria. Nature. 1980;283:210–212. doi: 10.1038/283210a0. PubMed DOI
Zablen L., Woese C. Procaryote Phylogeny IV: Concerning the Phylogenetic Status of a Photosynthetic Bacterium. J. Mol. Evol. 1975;5:25–34. doi: 10.1007/BF01732011. PubMed DOI
Fenna R.E., Matthews B.W. Chlorophyll Arrangement in a Bacteriochlorophyll Protein from Chlorobium Limicola. Nature. 1975;258:573–577. doi: 10.1038/258573a0. DOI
Imhoff J. Phylogenetic Taxonomy of the Family Chlorobiaceae on the Basis of 16S RRNA and Fmo (Fenna-Matthews-Olson Protein) Gene Sequences. Int. J. Syst. Evol. Microbiol. 2003;53:941–951. doi: 10.1099/ijs.0.02403-0. PubMed DOI
Visscher P.T., van Gemerden H. Growth of Chlorobium Limicola F. Thiosulfatophilum on Polysulfides. In: Olson J.M., Ormerod J.G., Amesz J., Stackebrandt E., Trüper H.G., editors. Green Photosynthetic Bacteria. Springer; Boston, MA, USA: 1988. pp. 287–294.
Imhoff J.F., Thiel V. Phylogeny and Taxonomy of Chlorobiaceae. Photosynth. Res. 2010;104:123–136. doi: 10.1007/s11120-009-9510-7. PubMed DOI
Pfennig N., Trüper H.G. The Phototrophic Bacteria. Bergey’s Man. Determ. Bacteriol. 1974:24–75.
Struk M., Kushkevych I. Perspectives of Application of Phototrophic Sulfur Bacteria in Hydrogen Sulfide Utilization. MendelNet. 2018:537–541.
Struk M., Kushkevych I., Vítězová M. Biogas Upgrading Methods: Recent Advancements and Emerging Technologies. Rev. Environ. Sci. Biotechnol. 2020;19:651–671. doi: 10.1007/s11157-020-09539-9. DOI
Hatti-Kaul R., Mamo G., Mattiasson B., editors. Anaerobes in Biotechnology. Springer; Berlin/Heidelberg, Germany: 2016. DOI
Okoro O.V., Sun Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. Chem. Eng. 2019;3:76. doi: 10.3390/chemengineering3030076. DOI