Disrupted Network Topology Contributed to Spatial Navigation Impairment in Patients With Mild Cognitive Impairment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34149391
PubMed Central
PMC8210585
DOI
10.3389/fnagi.2021.630677
Knihovny.cz E-zdroje
- Klíčová slova
- clustering coefficient, graph theory, mild cognitive impairment, network topology, spatial navigation,
- Publikační typ
- časopisecké články MeSH
Impairment in spatial navigation (SN) and structural network topology is not limited to patients with Alzheimer's disease (AD) dementia and can be detected earlier in patients with mild cognitive impairment (MCI). We recruited 32 MCI patients (65.91 ± 11.33 years old) and 28 normal cognition patients (NC; 69.68 ± 10.79 years old), all of whom underwent a computer-based battery of SN tests evaluating egocentric, allocentric, and mixed SN strategies and diffusion-weighted and T1-weighted Magnetic Resonance Imaging (MRI). To evaluate the topological features of the structural connectivity network, we calculated its measures such as the global efficiency, local efficiency, clustering coefficient, and shortest path length with GRETNA. We determined the correlation between SN accuracy and network topological properties. Compared to NC, MCI subjects demonstrated a lower egocentric navigation accuracy. Compared with NC, MCI subjects showed significantly decreased clustering coefficients in the left middle frontal gyrus, right rectus, right superior parietal gyrus, and right inferior parietal gyrus and decreased shortest path length in the left paracentral lobule. We observed significant positive correlations of the shortest path length in the left paracentral lobule with both the mixed allocentric-egocentric and the allocentric accuracy measured by the average total errors. A decreased clustering coefficient in the right inferior parietal gyrus was associated with a larger allocentric navigation error. White matter hyperintensities (WMH) did not affect the correlation between network properties and SN accuracy. This study demonstrated that structural connectivity network abnormalities, especially in the frontal and parietal gyri, are associated with a lower SN accuracy, independently of WMH, providing a new insight into the brain mechanisms associated with SN impairment in MCI.
Zobrazit více v PubMed
Achard S., Bullmore E. (2007). Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3:e17. 10.1371/journal.pcbi.0030017 PubMed DOI PMC
Bai F., Shu N., Yuan Y., Shi Y., Yu H., Wu D., et al. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci. 32 4307–4318. 10.1523/JNEUROSCI.5061-11.2012. PubMed DOI PMC
Bassett D. S., Bullmore E. T. (2016). Small-world brain networks revisited. Neuroscientist 23 499–516. 10.1177/1073858416667720 PubMed DOI PMC
Berthoz A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philos. Trans. R Soc. Lond. B Biol. Sci. 352 1437–1448. 10.1098/rstb.1997.0130 PubMed DOI PMC
Betzel R. F., Erickson M. A., Abell M., O’Donnell B. F., Hetrick W. P., Sporns O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG. Front. Comput. Neurosci. 6:74. 10.3389/fncom.2012.00074 PubMed DOI PMC
Chen Q., Wu S., Li X., Sun Y., Chen W., Lu J., et al. (2021). Basal forebrain atrophy is associated with allocentric navigation deficits in subjective cognitive decline. Front. Aging Neurosci. 13:596025. 10.3389/fnagi.2021.596025 PubMed DOI PMC
Chua T. C., Wen W., Slavin M. J., Sachdev P. S. (2008). Diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease: a review. Curr. Opin. Neurol. 21 83–92. 10.1097/WCO.0b013e3282f4594b PubMed DOI
Colombo D., Serino S., Tuena C., Pedroli E., Dakanalis A., Cipresso P., et al. (2017). Egocentric and allocentric spatial reference frames in aging: a systematic review. Neurosci. Biobehav. Rev. 80 605–621. 10.1016/j.neubiorev.2017.07.012 PubMed DOI
Cui Z., Zhong S., Xu P., He Y., Gong G. (2013). PANDA: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7:42. 10.3389/fnhum.2013.00042 PubMed DOI PMC
Epstein R. A., Ward E. J. (2010). How reliable are visual context effects in the parahippocampal place area? Cereb. Cortex 20 294–303. 10.1093/cercor/bhp099 PubMed DOI PMC
Gong G., He Y., Concha L., Lebel C., Gross D. W., Evans A. C., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb. Cortex 19 524–536. 10.1093/cercor/bhn102 PubMed DOI PMC
Henke K., Treyer V., Weber B., Nitsch R. M., Hock C., Wieser H. G., et al. (2003). Functional neuroimaging predicts individual memory outcome after amygdalohippocampectomy. Neuroreport 14 1197–1202. 10.1097/01.wnr.0000081865.45938.64 PubMed DOI
Hort J., Laczó J., Vyhnálek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U. S. A. 104 4042–4047. 10.1073/pnas.0611314104 PubMed DOI PMC
Jellinger K. A. (2020). Pathobiological subtypes of Alzheimer disease. Dement. Geriatr. Cogn. Disord. 49 321–333. 10.1159/000508625 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Vlcek K., Nedelska Z., Matoska V., et al. (2014). APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 28:676. PubMed
Laczo J., Andel R., Vyhnalek M., Vlcek K., Nedelska Z., Matoska V., et al. (2014). APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 28 676–684. 10.1037/neu0000072 PubMed DOI
Latora V., Marchiori M. (2001). Efficient behavior of small-world networks. Phys. Rev. Lett. 87:198701. 10.1103/PhysRevLett.87.198701 PubMed DOI
Lithfous S., Dufour A., Despres O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12 201–213. 10.1016/j.arr.2012.04.007 PubMed DOI
Liu Z., Zhang Y., Yan H., Bai L., Dai R., Wei W., et al. (2012). Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer’s disease: a resting-state fMRI study. Psychiatry Res. 202 118–125. 10.1016/j.pscychresns.2012.03.002 PubMed DOI
Muller R. U., Stead M., Pach J. (1996). The hippocampus as a cognitive graph. J. Gen. Physiol. 107 663–694. 10.1085/jgp.107.6.663 PubMed DOI PMC
Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U. S. A. 109 2590–2594. PubMed PMC
Nemmi F., Boccia M., Guariglia C. (2017). Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 24 29–44. 10.1080/13825585.2016.1167162 PubMed DOI
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256 183–194. 10.1111/j.1365-2796.2004.01388.x PubMed DOI
Qing Z., Li W., Nedelska Z., Wu W., Wang F., Liu R., et al. (2017). Spatial navigation impairment is associated with alterations in subcortical intrinsic activity in mild cognitive impairment: a resting-state fMRI study. Behav. Neurol. 2017:6364314. 10.1155/2017/6364314 PubMed DOI PMC
Rubinov M., Sporns O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52 1059–1069. 10.1016/j.neuroimage.2009.10.003 PubMed DOI
Seeley W. W., Crawford R. K., Zhou J., Miller B. L., Greicius M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron 62 42–52. 10.1016/j.neuron.2009.03.024 PubMed DOI PMC
Shu N., Liang Y., Li H., Zhang J., Li X., Wang L., et al. (2012). Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype. Radiology 265 518–527. PubMed
Wang J., Wang X., Xia M., Liao X., Evans A., He Y. (2015). GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 9:386. 10.3389/fnhum.2015.00386 PubMed DOI PMC
Watts D. J., Strogatz S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 393 440–442. 10.1038/30918 PubMed DOI
Wegman J., Fonteijn H. M., van Ekert J., Tyborowska A., Jansen C., Janzen G. (2014). Gray and white matter correlates of navigational ability in humans. Hum. Brain Mapp. 35 2561–2572. 10.1002/hbm.22349 PubMed DOI PMC
Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49 518–527. 10.1016/j.neuropsychologia.2010.12.031 PubMed DOI
Weniger G., Ruhleder M., Wolf S., Lange C., Irle E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia 47 59–69. PubMed
Wolbers T., Weiller C., Buchel C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Brain Res. Cogn. Brain Res. 21 401–411. 10.1016/j.cogbrainres.2004.06.013 PubMed DOI
Wolbers T., Wiener J. M. (2014). Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front. Hum. Neurosci. 8:571. 10.3389/fnhum.2014.00571 PubMed DOI PMC
Wu K., Taki Y., Sato K., Kinomura S., Goto R., Okada K., et al. (2012). Age-related changes in topological organization of structural brain networks in healthy individuals. Hum. Brain Mapp. 33 552–568. 10.1002/hbm.21232 PubMed DOI PMC
Xia M., Wang J., He Y. (2013). BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 8:e68910. 10.1371/journal.pone.0068910 PubMed DOI PMC
Zhao X., Liu Y., Wang X., Liu B., Xi Q., Guo Q., et al. (2012). Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state FMRI study. PLoS One 7:e33540. 10.1371/journal.pone.0033540 PubMed DOI PMC