Movement as a Positive Modulator of Aging
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MH CZ-DRO [Institute of Endocrinology, 00023761]
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34208002
PubMed Central
PMC8230594
DOI
10.3390/ijms22126278
PII: ijms22126278
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, brain-derived neurotrophic factor (BDNF), exercises, geroscience, immunity, irisin, stress, vitamin D,
- MeSH
- COVID-19 imunologie patologie virologie MeSH
- cvičení * MeSH
- lidé MeSH
- mozkový neurotrofický faktor metabolismus MeSH
- obezita patologie MeSH
- psychický stres MeSH
- sarkopenie patologie MeSH
- SARS-CoV-2 izolace a purifikace MeSH
- stárnutí * MeSH
- vitamin D aplikace a dávkování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mozkový neurotrofický faktor MeSH
- vitamin D MeSH
The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children's own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients' clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.
Zobrazit více v PubMed
Bicikova M., Macova L., Kolatorova L., Hill M., Novotny J., Jandova D., Starka L. Physiological changes after spa treatment—A focus on endocrinology. Physiol. Res. 2018;67:S525–S530. doi: 10.33549/physiolres.934016. PubMed DOI
Sgrò P., Sansone M., Sansone A., Sabatini S., Borrione P., Romanelli F., Di Luigi L. Physical exercise, nutrition and hormones: Three pillars to fight sarcopenia. Aging Male Off. J. Int. Soc. Study Aging Male. 2019;22:75–88. doi: 10.1080/13685538.2018.1439004. PubMed DOI
Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485. PubMed DOI
Khan M.J., Gerasimidis K., Edwards C.A., Shaikh M.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J. Obes. 2016;2016:7353642. doi: 10.1155/2016/7353642. PubMed DOI PMC
Van Hul M., Cani P.D. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr. Nutr. Rep. 2019;8:307–316. doi: 10.1007/s13668-019-00281-5. PubMed DOI PMC
Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation. 2019;16:108. doi: 10.1186/s12974-019-1494-4. PubMed DOI PMC
Gubert C., Kong G., Renoir T., Hannan A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis. 2020;134:104621. doi: 10.1016/j.nbd.2019.104621. PubMed DOI
Stacchiotti A., Favero G., Rodella L.F. Impact of Melatonin on Skeletal Muscle and Exercise. Cells. 2020;9:288. doi: 10.3390/cells9020288. PubMed DOI PMC
Soysal P., Isik A.T., Carvalho A.F., Fernandes B.S., Solmi M., Schofield P., Veronese N., Stubbs B. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72. doi: 10.1016/j.maturitas.2017.01.006. PubMed DOI
Madreiter-Sokolowski C.T., Thomas C., Ristow M. Interrelation between ROS and Ca(2+) in aging and age-related diseases. Redox Biol. 2020;36:101678. doi: 10.1016/j.redox.2020.101678. PubMed DOI PMC
Vaccaro A., Kaplan Dor Y., Nambara K., Pollina E.A., Lin C., Greenberg M.E., Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell. 2020;181:1307–1328.e1315. doi: 10.1016/j.cell.2020.04.049. PubMed DOI
Alam J. Vitamins: A nutritional intervention to modulate the Alzheimer’s disease progression. Nutr. Neurosci. 2020:1–18. doi: 10.1080/1028415X.2020.1826762. PubMed DOI
Martí-Carvajal A.J., Solà I., Lathyris D., Salanti G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2009:Cd006612. doi: 10.1002/14651858.CD006612.pub2. PubMed DOI PMC
McCleery J., Abraham R.P., Denton D.A., Rutjes A.W., Chong L.Y., Al-Assaf A.S., Griffith D.J., Rafeeq S., Yaman H., Malik M.A., et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst. Rev. 2018;11:Cd011905. doi: 10.1002/14651858.CD011905.pub2. PubMed DOI PMC
Vidoni M.L., Pettee Gabriel K., Luo S.T., Simonsick E.M., Day R.S. Vitamin B12 and Homocysteine Associations with Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J. Nutr. Health Aging. 2017;21:1321–1328. doi: 10.1007/s12603-017-0893-4. PubMed DOI PMC
Vidoni M.L., Pettee Gabriel K., Luo S.T., Simonsick E.M., Day R.S. Relationship between Homocysteine and Muscle Strength Decline: The Baltimore Longitudinal Study of Aging. J. Gerontology. Ser. A Biol. Sci. Med Sci. 2018;73:546–551. doi: 10.1093/gerona/glx161. PubMed DOI PMC
Colaianni G., Cinti S., Colucci S., Grano M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017;1402:5–9. doi: 10.1111/nyas.13345. PubMed DOI
Korta P., Pocheć E., Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina. 2019;55:485. doi: 10.3390/medicina55080485. PubMed DOI PMC
Askari H., Rajani S.F., Poorebrahim M., Haghi-Aminjan H., Raeis-Abdollahi E., Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharm. Res. 2018;129:44–55. doi: 10.1016/j.phrs.2018.01.012. PubMed DOI
Mahalakshmi B., Maurya N., Lee S.D., Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020;21:5895. doi: 10.3390/ijms21165895. PubMed DOI PMC
Wang K., Li H., Wang H., Wang J.H., Song F., Sun Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes. Mediat. Inflamm. 2018;2018:9070341. doi: 10.1155/2018/9070341. PubMed DOI PMC
Yang L., Zhao Y., Wang Y., Liu L., Zhang X., Li B., Cui R. The Effects of Psychological Stress on Depression. Curr. Neuropharmacol. 2015;13:494–504. doi: 10.2174/1570159X1304150831150507. PubMed DOI PMC
Moreno-Villanueva M., Bürkle A. Molecular consequences of psychological stress in human aging. Exp. Gerontol. 2015;68:39–42. doi: 10.1016/j.exger.2014.12.003. PubMed DOI
Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687. PubMed DOI
Mora J.C., Valencia W.M. Exercise and Older Adults. Clin. Geriatr Med. 2018;34:145–162. doi: 10.1016/j.cger.2017.08.007. PubMed DOI
Galloza J., Castillo B., Micheo W. Benefits of Exercise in the Older Population. Phys. Med. Rehabil. Clin. N. Am. 2017;28:659–669. doi: 10.1016/j.pmr.2017.06.001. PubMed DOI
Micheli L., Ceccarelli M., D’Andrea G., Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull. 2018;143:181–193. doi: 10.1016/j.brainresbull.2018.09.002. PubMed DOI
Lever-van Milligen B.A., Verhoeven J.E., Schmaal L., van Velzen L.S., Révész D., Black C.N., Han L.K.M., Horsfall M., Batelaan N.M., van Balkom A., et al. The impact of depression and anxiety treatment on biological aging and metabolic stress: Study protocol of the MOod treatment with antidepressants or running (MOTAR) study. BMC Psychiatry. 2019;19:425. doi: 10.1186/s12888-019-2404-0. PubMed DOI PMC
Puterman E., Lin J., Blackburn E., O’Donovan A., Adler N., Epel E. The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS ONE. 2010;5:e10837. doi: 10.1371/journal.pone.0010837. PubMed DOI PMC
Netz Y. Is the Comparison between Exercise and Pharmacologic Treatment of Depression in the Clinical Practice Guideline of the American College of Physicians Evidence-Based? Front. Pharm. 2017;8:257. doi: 10.3389/fphar.2017.00257. PubMed DOI PMC
Révész D., Milaneschi Y., Verhoeven J.E., Penninx B.W. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J. Clin. Endocrinol. Metab. 2014;99:4607–4615. doi: 10.1210/jc.2014-1851. PubMed DOI
Révész D., Verhoeven J.E., Milaneschi Y., Penninx B.W. Depressive and anxiety disorders and short leukocyte telomere length: Mediating effects of metabolic stress and lifestyle factors. Psychol. Med. 2016;46:2337–2349. doi: 10.1017/S0033291716000891. PubMed DOI
Arsenis N.C., You T., Ogawa E.F., Tinsley G.M., Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008–45019. doi: 10.18632/oncotarget.16726. PubMed DOI PMC
Ulrich-Lai Y.M., Ryan K.K. PPARγ and stress: Implications for aging. Exp. Gerontol. 2013;48:671–676. doi: 10.1016/j.exger.2012.08.011. PubMed DOI PMC
Faye C., McGowan J.C., Denny C.A., David D.J. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr. Neuropharmacol. 2018;16:234–270. doi: 10.2174/1570159X15666170818095105. PubMed DOI PMC
Saxena S., Jané-Llopis E., Hosman C. Prevention of mental and behavioural disorders: Implications for policy and practice. World Psychiatry. 2006;5:5–14. PubMed PMC
Di Liegro C.M., Schiera G., Proia P., Di Liegro I. Physical Activity and Brain Health. Genes. 2019;10:720. doi: 10.3390/genes10090720. PubMed DOI PMC
Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019;13:363. doi: 10.3389/fncel.2019.00363. PubMed DOI PMC
Lessmann V., Gottmann K., Malcangio M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol. 2003;69:341–374. doi: 10.1016/S0301-0082(03)00019-4. PubMed DOI
Lee R., Kermani P., Teng K.K., Hempstead B.L. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–1948. doi: 10.1126/science.1065057. PubMed DOI
Mowla S.J., Farhadi H.F., Pareek S., Atwal J.K., Morris S.J., Seidah N.G., Murphy R.A. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 2001;276:12660–12666. doi: 10.1074/jbc.M008104200. PubMed DOI
Raz N., Lustig C. Genetic variants and cognitive aging: Destiny or a nudge? Psychol. Aging. 2014;29:359–362. doi: 10.1037/a0036893. PubMed DOI
Erickson K.I., Prakash R.S., Voss M.W., Chaddock L., Heo S., McLaren M., Pence B.D., Martin S.A., Vieira V.J., Woods J.A., et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:5368–5375. doi: 10.1523/JNEUROSCI.6251-09.2010. PubMed DOI PMC
Almeida R.D., Manadas B.J., Melo C.V., Gomes J.R., Mendes C.S., Grãos M.M., Carvalho R.F., Carvalho A.P., Duarte C.B. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005;12:1329–1343. doi: 10.1038/sj.cdd.4401662. PubMed DOI
Morris J.C., Price J.L. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. MN. 2001;17:101–118. doi: 10.1385/JMN:17:2:101. PubMed DOI
Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A., Plymate S.R., Fishel M.A., Watson G.S., Cholerton B.A., et al. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010;67:71–79. doi: 10.1001/archneurol.2009.307. PubMed DOI PMC
Novkovic T., Mittmann T., Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus. 2015;25:1–15. doi: 10.1002/hipo.22342. PubMed DOI
Marvanová M., Lakso M., Pirhonen J., Nawa H., Wong G., Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell. Neurosci. 2001;18:247–258. doi: 10.1006/mcne.2001.1027. PubMed DOI
Firth J., Stubbs B., Vancampfort D., Schuch F., Lagopoulos J., Rosenbaum S., Ward P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage. 2018;166:230–238. doi: 10.1016/j.neuroimage.2017.11.007. PubMed DOI
Ashdown-Franks G., Firth J., Carney R., Carvalho A.F., Hallgren M., Koyanagi A., Rosenbaum S., Schuch F.B., Smith L., Solmi M., et al. Exercise as Medicine for Mental and Substance Use Disorders: A Meta-review of the Benefits for Neuropsychiatric and Cognitive Outcomes. Sports Med. 2020;50:151–170. doi: 10.1007/s40279-019-01187-6. PubMed DOI
Rashid M.H., Zahid M.F., Zain S., Kabir A., Hassan S.U. The Neuroprotective Effects of Exercise on Cognitive Decline: A Preventive Approach to Alzheimer Disease. Cureus. 2020;12:e6958. doi: 10.7759/cureus.6958. PubMed DOI PMC
Palasz E., Wysocka A., Gasiorowska A., Chalimoniuk M., Niewiadomski W., Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020;21:1170. doi: 10.3390/ijms21031170. PubMed DOI PMC
Müller P., Duderstadt Y., Lessmann V., Müller N.G. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J. Clin. Med. 2020;9:1136. doi: 10.3390/jcm9041136. PubMed DOI PMC
Molinari C., Morsanuto V., Ruga S., Notte F., Farghali M., Galla R., Uberti F. The Role of BDNF on Aging-Modulation Markers. Brain Sci. 2020;10:285. doi: 10.3390/brainsci10050285. PubMed DOI PMC
Jia Y., Li F., Liu Y.F., Zhao J.P., Leng M.M., Chen L. Depression and cancer risk: A systematic review and meta-analysis. Public Health. 2017;149:138–148. doi: 10.1016/j.puhe.2017.04.026. PubMed DOI
Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015;135:355–380. doi: 10.1016/bs.pmbts.2015.08.001. PubMed DOI
Ramírez L.A., Pérez-Padilla E.A., García-Oscos F., Salgado H., Atzori M., Pineda J.C. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary- adrenal axis. Biomed. Rev. Del. Inst. Nac. De Salud. 2018;38:437–450. doi: 10.7705/biomedica.v38i3.3688. PubMed DOI
Campbell J.P., Turner J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018;9:648. doi: 10.3389/fimmu.2018.00648. PubMed DOI PMC
Baek K.W., Jo J.O., Kang Y.J., Song K.S., Yu H.S., Park J.J., Choi Y.H., Cha H.J., Ock M.S. Exercise training reduces the risk of opportunistic infections after acute exercise and improves cytokine antigen recognition. Pflug. Arch. Eur. J. Physiol. 2020;472:235–244. doi: 10.1007/s00424-019-02281-4. PubMed DOI
Nakajima K., Takeoka M., Mori M., Hashimoto S., Sakurai A., Nose H., Higuchi K., Itano N., Shiohara M., Oh T., et al. Exercise effects on methylation of ASC gene. Int. J. Sports Med. 2010;31:671–675. doi: 10.1055/s-0029-1246140. PubMed DOI
Fu W.Y., Wang X., Ip N.Y. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer’s Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chem. Neurosci. 2019;10:872–879. doi: 10.1021/acschemneuro.8b00402. PubMed DOI
Schwartz M., Deczkowska A. Neurological Disease as a Failure of Brain-Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol. 2016;37:668–679. doi: 10.1016/j.it.2016.08.001. PubMed DOI
Małkiewicz M.A., Szarmach A., Sabisz A., Cubała W.J., Szurowska E., Winklewski P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflammation. 2019;16:15. doi: 10.1186/s12974-019-1403-x. PubMed DOI PMC
Mee-Inta O., Zhao Z.W., Kuo Y.M. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells. 2019;8:691. doi: 10.3390/cells8070691. PubMed DOI PMC
Nelson A.R., Sweeney M.D., Sagare A.P., Zlokovic B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim. Et Biophys. Acta. 2016;1862:887–900. doi: 10.1016/j.bbadis.2015.12.016. PubMed DOI PMC
Ciccocioppo F., Bologna G., Ercolino E., Pierdomenico L., Simeone P., Lanuti P., Pieragostino D., Del Boccio P., Marchisio M., Miscia S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural. Regen. Res. 2020;15:850–856. doi: 10.4103/1673-5374.268971. PubMed DOI PMC
Elkurd M.T., Bahroo L.B., Pahwa R. The role of extended-release amantadine for the treatment of dyskinesia in Parkinson’s disease patients. Neurodegener. Dis. Manag. 2018;8:73–80. doi: 10.2217/nmt-2018-0001. PubMed DOI
Raupp-Barcaro I.F., Vital M.A., Galduróz J.C., Andreatini R. Potential antidepressant effect of amantadine: A review of preclinical studies and clinical trials. Revista Bras. Psiquiatr. 2018;40:449–458. doi: 10.1590/1516-4446-2017-2393. PubMed DOI PMC
Kishi T., Matsunaga S., Oya K., Nomura I., Ikuta T., Iwata N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimer’s Dis. JAD. 2017;60:401–425. doi: 10.3233/JAD-170424. PubMed DOI
Hill M., Triskala Z., Honcu P., Krejci M., Kajzar J., Bicikova M., Ondrejikova L., Jandova D., Sterzl I. Aging, hormones and receptors. Physiol. Res. 2020;69:S255–S272. doi: 10.33549/physiolres.934523. PubMed DOI PMC
Smith A.D., Refsum H., Bottiglieri T., Fenech M., Hooshmand B., McCaddon A., Miller J.W., Rosenberg I.H., Obeid R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimer’s Dis. JAD. 2018;62:561–570. doi: 10.3233/JAD-171042. PubMed DOI PMC
Walentukiewicz A., Lysak-Radomska A., Jaworska J., Prusik K., Prusik K., Kortas J.A., Lipiński M., Babinska A., Antosiewicz J., Ziemann E. Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. Int. J. Environ. Res. Public Health. 2018;15:2064. doi: 10.3390/ijerph15102064. PubMed DOI PMC
Mieszkowski J., Niespodziński B., Kochanowicz A., Gmiat A., Prusik K., Prusik K., Kortas J., Ziemann E., Antosiewicz J. The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People-A Randomized Controlled Trial. Int. J. Environ. Res. Public Health. 2018;15:1951. doi: 10.3390/ijerph15091951. PubMed DOI PMC
Wiciński M., Adamkiewicz D., Adamkiewicz M., Śniegocki M., Podhorecka M., Szychta P., Malinowski B. Impact of Vitamin D on Physical Efficiency and Exercise Performance-A Review. Nutrients. 2019;11:2826. doi: 10.3390/nu11112826. PubMed DOI PMC
American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. J. Am. Geriatr. Soc. 2014;62:147–152. doi: 10.1111/jgs.12631. PubMed DOI
Antoniak A.E., Greig C.A. The effect of combined resistance exercise training and vitamin D(3) supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open. 2017;7:e014619. doi: 10.1136/bmjopen-2016-014619. PubMed DOI PMC
Jamilian H., Amirani E., Milajerdi A., Kolahdooz F., Mirzaei H., Zaroudi M., Ghaderi A., Asemi Z. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2019;94:109651. doi: 10.1016/j.pnpbp.2019.109651. PubMed DOI
Saedi A.A., Feehan J., Phu S., Duque G. Current and emerging biomarkers of frailty in the elderly. Clin. Interv. Aging. 2019;14:389–398. doi: 10.2147/CIA.S168687. PubMed DOI PMC
Gálvez I., Torres-Piles S., Ortega-Rincón E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018;19:1687. doi: 10.3390/ijms19061687. PubMed DOI PMC
Rattan S.I., Demirovic D. Hormesis can and does work in humans. Dose-Response A Publ. Int. Hormesis Soc. 2009;8:58–63. doi: 10.2203/dose-response.09-041.Rattan. PubMed DOI PMC
Ortega E. The “bioregulatory effect of exercise” on the innate/inflammatory responses. J. Physiol. Biochem. 2016;72:361–369. doi: 10.1007/s13105-016-0478-4. PubMed DOI
IHIS-CR Survey of Deaths of Persons with COVID-19 According to KHS by Age Groups, Sex and Region of Place of Residence (Weekly Surveys) [(accessed on 12 January 2021)]; Available online: https://onemocneni-aktualne.mzcr.cz/covid-19/prehledy-khs.
Santesmasses D., Castro J.P., Zenin A.A., Shindyapina A.V., Gerashchenko M.V., Zhang B., Kerepesi C., Yim S.H., Fedichev P.O., Gladyshev V.N. COVID-19 is an emergent disease of aging. Aging Cell. 2020;19:e13230. doi: 10.1111/acel.13230. PubMed DOI PMC
Franceschi C., Salvioli S., Garagnani P., de Eguileor M., Monti D., Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front. Immunol. 2017;8:982. doi: 10.3389/fimmu.2017.00982. PubMed DOI PMC
Fulop T., Larbi A., Dupuis G., Le Page A., Frost E.H., Cohen A.A., Witkowski J.M., Franceschi C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2017;8:1960. doi: 10.3389/fimmu.2017.01960. PubMed DOI PMC
Mueller A.L., McNamara M.S., Sinclair D.A. Why does COVID-19 disproportionately affect older people? Aging. 2020;12:9959–9981. doi: 10.18632/aging.103344. PubMed DOI PMC
Salimi S., Hamlyn J.M. COVID-19 and Crosstalk with the Hallmarks of Aging. J. Gerontology. Ser. A Biol. Sci. Med. Sci. 2020;75:e34–e41. doi: 10.1093/gerona/glaa149. PubMed DOI PMC
Bilezikian J.P., Bikle D., Hewison M., Lazaretti-Castro M., Formenti A.M., Gupta A., Madhavan M.V., Nair N., Babalyan V., Hutchings N., et al. Mechanisms in endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020;183:R133–R147. doi: 10.1530/EJE-20-0665. PubMed DOI PMC
Bergman P. The link between vitamin D and COVID-19: Distinguishing facts from fiction. J. Intern. Med. 2021;289:131–133. doi: 10.1111/joim.13158. PubMed DOI PMC
Yang Y.C., Chou C.L., Kao C.L. Exercise, nutrition, and medication considerations in the light of the COVID pandemic, with specific focus on geriatric population: A literature review. J. Chin. Med. Assoc. 2020;83:977–980. doi: 10.1097/JCMA.0000000000000393. PubMed DOI PMC
Vitamin D as a Possible COVID-19 Prevention Strategy