Movement as a Positive Modulator of Aging

. 2021 Jun 11 ; 22 (12) : . [epub] 20210611

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34208002

Grantová podpora
MH CZ-DRO [Institute of Endocrinology, 00023761] Ministerstvo Zdravotnictví Ceské Republiky

The aging of human populations, including those in Europe, is an indisputable fact. The challenge for the future is not simply prolonging human life at any cost or by any means but rather extending self-sufficiency and quality of life. Even in the most advanced societies, the eternal questions remain. Who will take care of the older generations? Will adult children's own circumstances be sufficient to support family members as they age? For a range of complex reasons, including socioeconomic conditions, adult children are often unable or unwilling to assume responsibility for the care of older family members. For this reason, it is imperative that aging adults maintain their independence and self-care for as long as possible. Movement is an important part of self-sufficiency. Moreover, movement has been shown to improve patients' clinical status. At a time when the coronavirus pandemic is disrupting the world, older people are among the most vulnerable. Our paper explores current knowledge and offers insights into the significant benefits of movement for the elderly, including improved immunity. We discuss the biochemical processes of aging and the counteractive effects of exercise and endogenous substances, such as vitamin D.

Zobrazit více v PubMed

Bicikova M., Macova L., Kolatorova L., Hill M., Novotny J., Jandova D., Starka L. Physiological changes after spa treatment—A focus on endocrinology. Physiol. Res. 2018;67:S525–S530. doi: 10.33549/physiolres.934016. PubMed DOI

Sgrò P., Sansone M., Sansone A., Sabatini S., Borrione P., Romanelli F., Di Luigi L. Physical exercise, nutrition and hormones: Three pillars to fight sarcopenia. Aging Male Off. J. Int. Soc. Study Aging Male. 2019;22:75–88. doi: 10.1080/13685538.2018.1439004. PubMed DOI

Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485. PubMed DOI

Khan M.J., Gerasimidis K., Edwards C.A., Shaikh M.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. J. Obes. 2016;2016:7353642. doi: 10.1155/2016/7353642. PubMed DOI PMC

Van Hul M., Cani P.D. Targeting Carbohydrates and Polyphenols for a Healthy Microbiome and Healthy Weight. Curr. Nutr. Rep. 2019;8:307–316. doi: 10.1007/s13668-019-00281-5. PubMed DOI PMC

Angelucci F., Cechova K., Amlerova J., Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation. 2019;16:108. doi: 10.1186/s12974-019-1494-4. PubMed DOI PMC

Gubert C., Kong G., Renoir T., Hannan A.J. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol. Dis. 2020;134:104621. doi: 10.1016/j.nbd.2019.104621. PubMed DOI

Stacchiotti A., Favero G., Rodella L.F. Impact of Melatonin on Skeletal Muscle and Exercise. Cells. 2020;9:288. doi: 10.3390/cells9020288. PubMed DOI PMC

Soysal P., Isik A.T., Carvalho A.F., Fernandes B.S., Solmi M., Schofield P., Veronese N., Stubbs B. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72. doi: 10.1016/j.maturitas.2017.01.006. PubMed DOI

Madreiter-Sokolowski C.T., Thomas C., Ristow M. Interrelation between ROS and Ca(2+) in aging and age-related diseases. Redox Biol. 2020;36:101678. doi: 10.1016/j.redox.2020.101678. PubMed DOI PMC

Vaccaro A., Kaplan Dor Y., Nambara K., Pollina E.A., Lin C., Greenberg M.E., Rogulja D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell. 2020;181:1307–1328.e1315. doi: 10.1016/j.cell.2020.04.049. PubMed DOI

Alam J. Vitamins: A nutritional intervention to modulate the Alzheimer’s disease progression. Nutr. Neurosci. 2020:1–18. doi: 10.1080/1028415X.2020.1826762. PubMed DOI

Martí-Carvajal A.J., Solà I., Lathyris D., Salanti G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2009:Cd006612. doi: 10.1002/14651858.CD006612.pub2. PubMed DOI PMC

McCleery J., Abraham R.P., Denton D.A., Rutjes A.W., Chong L.Y., Al-Assaf A.S., Griffith D.J., Rafeeq S., Yaman H., Malik M.A., et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst. Rev. 2018;11:Cd011905. doi: 10.1002/14651858.CD011905.pub2. PubMed DOI PMC

Vidoni M.L., Pettee Gabriel K., Luo S.T., Simonsick E.M., Day R.S. Vitamin B12 and Homocysteine Associations with Gait Speed in Older Adults: The Baltimore Longitudinal Study of Aging. J. Nutr. Health Aging. 2017;21:1321–1328. doi: 10.1007/s12603-017-0893-4. PubMed DOI PMC

Vidoni M.L., Pettee Gabriel K., Luo S.T., Simonsick E.M., Day R.S. Relationship between Homocysteine and Muscle Strength Decline: The Baltimore Longitudinal Study of Aging. J. Gerontology. Ser. A Biol. Sci. Med Sci. 2018;73:546–551. doi: 10.1093/gerona/glx161. PubMed DOI PMC

Colaianni G., Cinti S., Colucci S., Grano M. Irisin and musculoskeletal health. Ann. N. Y. Acad. Sci. 2017;1402:5–9. doi: 10.1111/nyas.13345. PubMed DOI

Korta P., Pocheć E., Mazur-Biały A. Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases. Medicina. 2019;55:485. doi: 10.3390/medicina55080485. PubMed DOI PMC

Askari H., Rajani S.F., Poorebrahim M., Haghi-Aminjan H., Raeis-Abdollahi E., Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: An introductory review. Pharm. Res. 2018;129:44–55. doi: 10.1016/j.phrs.2018.01.012. PubMed DOI

Mahalakshmi B., Maurya N., Lee S.D., Bharath Kumar V. Possible Neuroprotective Mechanisms of Physical Exercise in Neurodegeneration. Int. J. Mol. Sci. 2020;21:5895. doi: 10.3390/ijms21165895. PubMed DOI PMC

Wang K., Li H., Wang H., Wang J.H., Song F., Sun Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes. Mediat. Inflamm. 2018;2018:9070341. doi: 10.1155/2018/9070341. PubMed DOI PMC

Yang L., Zhao Y., Wang Y., Liu L., Zhang X., Li B., Cui R. The Effects of Psychological Stress on Depression. Curr. Neuropharmacol. 2015;13:494–504. doi: 10.2174/1570159X1304150831150507. PubMed DOI PMC

Moreno-Villanueva M., Bürkle A. Molecular consequences of psychological stress in human aging. Exp. Gerontol. 2015;68:39–42. doi: 10.1016/j.exger.2014.12.003. PubMed DOI

Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687. PubMed DOI

Mora J.C., Valencia W.M. Exercise and Older Adults. Clin. Geriatr Med. 2018;34:145–162. doi: 10.1016/j.cger.2017.08.007. PubMed DOI

Galloza J., Castillo B., Micheo W. Benefits of Exercise in the Older Population. Phys. Med. Rehabil. Clin. N. Am. 2017;28:659–669. doi: 10.1016/j.pmr.2017.06.001. PubMed DOI

Micheli L., Ceccarelli M., D’Andrea G., Tirone F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull. 2018;143:181–193. doi: 10.1016/j.brainresbull.2018.09.002. PubMed DOI

Lever-van Milligen B.A., Verhoeven J.E., Schmaal L., van Velzen L.S., Révész D., Black C.N., Han L.K.M., Horsfall M., Batelaan N.M., van Balkom A., et al. The impact of depression and anxiety treatment on biological aging and metabolic stress: Study protocol of the MOod treatment with antidepressants or running (MOTAR) study. BMC Psychiatry. 2019;19:425. doi: 10.1186/s12888-019-2404-0. PubMed DOI PMC

Puterman E., Lin J., Blackburn E., O’Donovan A., Adler N., Epel E. The power of exercise: Buffering the effect of chronic stress on telomere length. PLoS ONE. 2010;5:e10837. doi: 10.1371/journal.pone.0010837. PubMed DOI PMC

Netz Y. Is the Comparison between Exercise and Pharmacologic Treatment of Depression in the Clinical Practice Guideline of the American College of Physicians Evidence-Based? Front. Pharm. 2017;8:257. doi: 10.3389/fphar.2017.00257. PubMed DOI PMC

Révész D., Milaneschi Y., Verhoeven J.E., Penninx B.W. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J. Clin. Endocrinol. Metab. 2014;99:4607–4615. doi: 10.1210/jc.2014-1851. PubMed DOI

Révész D., Verhoeven J.E., Milaneschi Y., Penninx B.W. Depressive and anxiety disorders and short leukocyte telomere length: Mediating effects of metabolic stress and lifestyle factors. Psychol. Med. 2016;46:2337–2349. doi: 10.1017/S0033291716000891. PubMed DOI

Arsenis N.C., You T., Ogawa E.F., Tinsley G.M., Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8:45008–45019. doi: 10.18632/oncotarget.16726. PubMed DOI PMC

Ulrich-Lai Y.M., Ryan K.K. PPARγ and stress: Implications for aging. Exp. Gerontol. 2013;48:671–676. doi: 10.1016/j.exger.2012.08.011. PubMed DOI PMC

Faye C., McGowan J.C., Denny C.A., David D.J. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr. Neuropharmacol. 2018;16:234–270. doi: 10.2174/1570159X15666170818095105. PubMed DOI PMC

Saxena S., Jané-Llopis E., Hosman C. Prevention of mental and behavioural disorders: Implications for policy and practice. World Psychiatry. 2006;5:5–14. PubMed PMC

Di Liegro C.M., Schiera G., Proia P., Di Liegro I. Physical Activity and Brain Health. Genes. 2019;10:720. doi: 10.3390/genes10090720. PubMed DOI PMC

Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019;13:363. doi: 10.3389/fncel.2019.00363. PubMed DOI PMC

Lessmann V., Gottmann K., Malcangio M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol. 2003;69:341–374. doi: 10.1016/S0301-0082(03)00019-4. PubMed DOI

Lee R., Kermani P., Teng K.K., Hempstead B.L. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294:1945–1948. doi: 10.1126/science.1065057. PubMed DOI

Mowla S.J., Farhadi H.F., Pareek S., Atwal J.K., Morris S.J., Seidah N.G., Murphy R.A. Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J. Biol. Chem. 2001;276:12660–12666. doi: 10.1074/jbc.M008104200. PubMed DOI

Raz N., Lustig C. Genetic variants and cognitive aging: Destiny or a nudge? Psychol. Aging. 2014;29:359–362. doi: 10.1037/a0036893. PubMed DOI

Erickson K.I., Prakash R.S., Voss M.W., Chaddock L., Heo S., McLaren M., Pence B.D., Martin S.A., Vieira V.J., Woods J.A., et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:5368–5375. doi: 10.1523/JNEUROSCI.6251-09.2010. PubMed DOI PMC

Almeida R.D., Manadas B.J., Melo C.V., Gomes J.R., Mendes C.S., Grãos M.M., Carvalho R.F., Carvalho A.P., Duarte C.B. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005;12:1329–1343. doi: 10.1038/sj.cdd.4401662. PubMed DOI

Morris J.C., Price J.L. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J. Mol. Neurosci. MN. 2001;17:101–118. doi: 10.1385/JMN:17:2:101. PubMed DOI

Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A., Plymate S.R., Fishel M.A., Watson G.S., Cholerton B.A., et al. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010;67:71–79. doi: 10.1001/archneurol.2009.307. PubMed DOI PMC

Novkovic T., Mittmann T., Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus. 2015;25:1–15. doi: 10.1002/hipo.22342. PubMed DOI

Marvanová M., Lakso M., Pirhonen J., Nawa H., Wong G., Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell. Neurosci. 2001;18:247–258. doi: 10.1006/mcne.2001.1027. PubMed DOI

Firth J., Stubbs B., Vancampfort D., Schuch F., Lagopoulos J., Rosenbaum S., Ward P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage. 2018;166:230–238. doi: 10.1016/j.neuroimage.2017.11.007. PubMed DOI

Ashdown-Franks G., Firth J., Carney R., Carvalho A.F., Hallgren M., Koyanagi A., Rosenbaum S., Schuch F.B., Smith L., Solmi M., et al. Exercise as Medicine for Mental and Substance Use Disorders: A Meta-review of the Benefits for Neuropsychiatric and Cognitive Outcomes. Sports Med. 2020;50:151–170. doi: 10.1007/s40279-019-01187-6. PubMed DOI

Rashid M.H., Zahid M.F., Zain S., Kabir A., Hassan S.U. The Neuroprotective Effects of Exercise on Cognitive Decline: A Preventive Approach to Alzheimer Disease. Cureus. 2020;12:e6958. doi: 10.7759/cureus.6958. PubMed DOI PMC

Palasz E., Wysocka A., Gasiorowska A., Chalimoniuk M., Niewiadomski W., Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. Int. J. Mol. Sci. 2020;21:1170. doi: 10.3390/ijms21031170. PubMed DOI PMC

Müller P., Duderstadt Y., Lessmann V., Müller N.G. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J. Clin. Med. 2020;9:1136. doi: 10.3390/jcm9041136. PubMed DOI PMC

Molinari C., Morsanuto V., Ruga S., Notte F., Farghali M., Galla R., Uberti F. The Role of BDNF on Aging-Modulation Markers. Brain Sci. 2020;10:285. doi: 10.3390/brainsci10050285. PubMed DOI PMC

Jia Y., Li F., Liu Y.F., Zhao J.P., Leng M.M., Chen L. Depression and cancer risk: A systematic review and meta-analysis. Public Health. 2017;149:138–148. doi: 10.1016/j.puhe.2017.04.026. PubMed DOI

Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015;135:355–380. doi: 10.1016/bs.pmbts.2015.08.001. PubMed DOI

Ramírez L.A., Pérez-Padilla E.A., García-Oscos F., Salgado H., Atzori M., Pineda J.C. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary- adrenal axis. Biomed. Rev. Del. Inst. Nac. De Salud. 2018;38:437–450. doi: 10.7705/biomedica.v38i3.3688. PubMed DOI

Campbell J.P., Turner J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018;9:648. doi: 10.3389/fimmu.2018.00648. PubMed DOI PMC

Baek K.W., Jo J.O., Kang Y.J., Song K.S., Yu H.S., Park J.J., Choi Y.H., Cha H.J., Ock M.S. Exercise training reduces the risk of opportunistic infections after acute exercise and improves cytokine antigen recognition. Pflug. Arch. Eur. J. Physiol. 2020;472:235–244. doi: 10.1007/s00424-019-02281-4. PubMed DOI

Nakajima K., Takeoka M., Mori M., Hashimoto S., Sakurai A., Nose H., Higuchi K., Itano N., Shiohara M., Oh T., et al. Exercise effects on methylation of ASC gene. Int. J. Sports Med. 2010;31:671–675. doi: 10.1055/s-0029-1246140. PubMed DOI

Fu W.Y., Wang X., Ip N.Y. Targeting Neuroinflammation as a Therapeutic Strategy for Alzheimer’s Disease: Mechanisms, Drug Candidates, and New Opportunities. ACS Chem. Neurosci. 2019;10:872–879. doi: 10.1021/acschemneuro.8b00402. PubMed DOI

Schwartz M., Deczkowska A. Neurological Disease as a Failure of Brain-Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol. 2016;37:668–679. doi: 10.1016/j.it.2016.08.001. PubMed DOI

Małkiewicz M.A., Szarmach A., Sabisz A., Cubała W.J., Szurowska E., Winklewski P.J. Blood-brain barrier permeability and physical exercise. J. Neuroinflammation. 2019;16:15. doi: 10.1186/s12974-019-1403-x. PubMed DOI PMC

Mee-Inta O., Zhao Z.W., Kuo Y.M. Physical Exercise Inhibits Inflammation and Microglial Activation. Cells. 2019;8:691. doi: 10.3390/cells8070691. PubMed DOI PMC

Nelson A.R., Sweeney M.D., Sagare A.P., Zlokovic B.V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim. Et Biophys. Acta. 2016;1862:887–900. doi: 10.1016/j.bbadis.2015.12.016. PubMed DOI PMC

Ciccocioppo F., Bologna G., Ercolino E., Pierdomenico L., Simeone P., Lanuti P., Pieragostino D., Del Boccio P., Marchisio M., Miscia S. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural. Regen. Res. 2020;15:850–856. doi: 10.4103/1673-5374.268971. PubMed DOI PMC

Elkurd M.T., Bahroo L.B., Pahwa R. The role of extended-release amantadine for the treatment of dyskinesia in Parkinson’s disease patients. Neurodegener. Dis. Manag. 2018;8:73–80. doi: 10.2217/nmt-2018-0001. PubMed DOI

Raupp-Barcaro I.F., Vital M.A., Galduróz J.C., Andreatini R. Potential antidepressant effect of amantadine: A review of preclinical studies and clinical trials. Revista Bras. Psiquiatr. 2018;40:449–458. doi: 10.1590/1516-4446-2017-2393. PubMed DOI PMC

Kishi T., Matsunaga S., Oya K., Nomura I., Ikuta T., Iwata N. Memantine for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis. J. Alzheimer’s Dis. JAD. 2017;60:401–425. doi: 10.3233/JAD-170424. PubMed DOI

Hill M., Triskala Z., Honcu P., Krejci M., Kajzar J., Bicikova M., Ondrejikova L., Jandova D., Sterzl I. Aging, hormones and receptors. Physiol. Res. 2020;69:S255–S272. doi: 10.33549/physiolres.934523. PubMed DOI PMC

Smith A.D., Refsum H., Bottiglieri T., Fenech M., Hooshmand B., McCaddon A., Miller J.W., Rosenberg I.H., Obeid R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimer’s Dis. JAD. 2018;62:561–570. doi: 10.3233/JAD-171042. PubMed DOI PMC

Walentukiewicz A., Lysak-Radomska A., Jaworska J., Prusik K., Prusik K., Kortas J.A., Lipiński M., Babinska A., Antosiewicz J., Ziemann E. Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. Int. J. Environ. Res. Public Health. 2018;15:2064. doi: 10.3390/ijerph15102064. PubMed DOI PMC

Mieszkowski J., Niespodziński B., Kochanowicz A., Gmiat A., Prusik K., Prusik K., Kortas J., Ziemann E., Antosiewicz J. The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People-A Randomized Controlled Trial. Int. J. Environ. Res. Public Health. 2018;15:1951. doi: 10.3390/ijerph15091951. PubMed DOI PMC

Wiciński M., Adamkiewicz D., Adamkiewicz M., Śniegocki M., Podhorecka M., Szychta P., Malinowski B. Impact of Vitamin D on Physical Efficiency and Exercise Performance-A Review. Nutrients. 2019;11:2826. doi: 10.3390/nu11112826. PubMed DOI PMC

American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults Recommendations abstracted from the American Geriatrics Society Consensus Statement on vitamin D for Prevention of Falls and Their Consequences. J. Am. Geriatr. Soc. 2014;62:147–152. doi: 10.1111/jgs.12631. PubMed DOI

Antoniak A.E., Greig C.A. The effect of combined resistance exercise training and vitamin D(3) supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open. 2017;7:e014619. doi: 10.1136/bmjopen-2016-014619. PubMed DOI PMC

Jamilian H., Amirani E., Milajerdi A., Kolahdooz F., Mirzaei H., Zaroudi M., Ghaderi A., Asemi Z. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog. Neuro Psychopharmacol. Biol. Psychiatry. 2019;94:109651. doi: 10.1016/j.pnpbp.2019.109651. PubMed DOI

Saedi A.A., Feehan J., Phu S., Duque G. Current and emerging biomarkers of frailty in the elderly. Clin. Interv. Aging. 2019;14:389–398. doi: 10.2147/CIA.S168687. PubMed DOI PMC

Gálvez I., Torres-Piles S., Ortega-Rincón E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018;19:1687. doi: 10.3390/ijms19061687. PubMed DOI PMC

Rattan S.I., Demirovic D. Hormesis can and does work in humans. Dose-Response A Publ. Int. Hormesis Soc. 2009;8:58–63. doi: 10.2203/dose-response.09-041.Rattan. PubMed DOI PMC

Ortega E. The “bioregulatory effect of exercise” on the innate/inflammatory responses. J. Physiol. Biochem. 2016;72:361–369. doi: 10.1007/s13105-016-0478-4. PubMed DOI

IHIS-CR Survey of Deaths of Persons with COVID-19 According to KHS by Age Groups, Sex and Region of Place of Residence (Weekly Surveys) [(accessed on 12 January 2021)]; Available online: https://onemocneni-aktualne.mzcr.cz/covid-19/prehledy-khs.

Santesmasses D., Castro J.P., Zenin A.A., Shindyapina A.V., Gerashchenko M.V., Zhang B., Kerepesi C., Yim S.H., Fedichev P.O., Gladyshev V.N. COVID-19 is an emergent disease of aging. Aging Cell. 2020;19:e13230. doi: 10.1111/acel.13230. PubMed DOI PMC

Franceschi C., Salvioli S., Garagnani P., de Eguileor M., Monti D., Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front. Immunol. 2017;8:982. doi: 10.3389/fimmu.2017.00982. PubMed DOI PMC

Fulop T., Larbi A., Dupuis G., Le Page A., Frost E.H., Cohen A.A., Witkowski J.M., Franceschi C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2017;8:1960. doi: 10.3389/fimmu.2017.01960. PubMed DOI PMC

Mueller A.L., McNamara M.S., Sinclair D.A. Why does COVID-19 disproportionately affect older people? Aging. 2020;12:9959–9981. doi: 10.18632/aging.103344. PubMed DOI PMC

Salimi S., Hamlyn J.M. COVID-19 and Crosstalk with the Hallmarks of Aging. J. Gerontology. Ser. A Biol. Sci. Med. Sci. 2020;75:e34–e41. doi: 10.1093/gerona/glaa149. PubMed DOI PMC

Bilezikian J.P., Bikle D., Hewison M., Lazaretti-Castro M., Formenti A.M., Gupta A., Madhavan M.V., Nair N., Babalyan V., Hutchings N., et al. Mechanisms in endocrinology: Vitamin D and COVID-19. Eur. J. Endocrinol. 2020;183:R133–R147. doi: 10.1530/EJE-20-0665. PubMed DOI PMC

Bergman P. The link between vitamin D and COVID-19: Distinguishing facts from fiction. J. Intern. Med. 2021;289:131–133. doi: 10.1111/joim.13158. PubMed DOI PMC

Yang Y.C., Chou C.L., Kao C.L. Exercise, nutrition, and medication considerations in the light of the COVID pandemic, with specific focus on geriatric population: A literature review. J. Chin. Med. Assoc. 2020;83:977–980. doi: 10.1097/JCMA.0000000000000393. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Vitamin D as a Possible COVID-19 Prevention Strategy

. 2022 Sep 11 ; 23 (18) : . [epub] 20220911

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...