Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
U01 CA182883
NCI NIH HHS - United States
P50 CA062924
NCI NIH HHS - United States
R01 HL034595
NHLBI NIH HHS - United States
HHSN268201600018C
NHLBI NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
R03 CA123546
NCI NIH HHS - United States
U01 CA247283
NCI NIH HHS - United States
HHSN268201600001C
NHLBI NIH HHS - United States
RO1CA154823
NIH HHS - United States
HHSN268201600003C
NHLBI NIH HHS - United States
R01 CA102765
NCI NIH HHS - United States
U01 CA182934
NCI NIH HHS - United States
UG1 CA189974
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
HHSN268201600002C
NHLBI NIH HHS - United States
P50 CA102701
NCI NIH HHS - United States
P30 CA015083
NCI NIH HHS - United States
HHSN268201600004C
NHLBI NIH HHS - United States
U01CA164973
NCI NIH HHS - United States
R01 CA154823
NCI NIH HHS - United States
R01 CA049449
NCI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
U01 CA182913
NCI NIH HHS - United States
001
World Health Organization - International
R01 CA098380
NCI NIH HHS - United States
PubMed
34258619
PubMed Central
PMC8488877
DOI
10.1093/ajcn/nqab217
PII: S0002-9165(22)00469-5
Knihovny.cz E-zdroje
- Klíčová slova
- epidemiology, genetic susceptibility, hepcidin, iron metabolism pathway, pancreatic cancer,
- MeSH
- adenokarcinom metabolismus MeSH
- genotyp MeSH
- hepcidiny genetika metabolismus MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory slinivky břišní metabolismus MeSH
- regulace genové exprese u nádorů fyziologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- vazebná nerovnováha MeSH
- železo metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- hepcidiny MeSH
- železo MeSH
BACKGROUND: Epidemiological studies have suggested positive associations for iron and red meat intake with risk of pancreatic ductal adenocarcinoma (PDAC). Inherited pathogenic variants in genes involved in the hepcidin-regulating iron metabolism pathway are known to cause iron overload and hemochromatosis. OBJECTIVES: The objective of this study was to determine whether common genetic variation in the hepcidin-regulating iron metabolism pathway is associated with PDAC. METHODS: We conducted a pathway analysis of the hepcidin-regulating genes using single nucleotide polymorphism (SNP) summary statistics generated from 4 genome-wide association studies in 2 large consortium studies using the summary data-based adaptive rank truncated product method. Our population consisted of 9253 PDAC cases and 12,525 controls of European descent. Our analysis included 11 hepcidin-regulating genes [bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 6 (BMP6), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), hepcidin (HAMP), homeostatic iron regulator (HFE), hemojuvelin (HJV), nuclear factor erythroid 2-related factor 2 (NRF2), ferroportin 1 (SLC40A1), transferrin receptor 1 (TFR1), and transferrin receptor 2 (TFR2)] and their surrounding genomic regions (±20 kb) for a total of 412 SNPs. RESULTS: The hepcidin-regulating gene pathway was significantly associated with PDAC (P = 0.002), with the HJV, TFR2, TFR1, BMP6, and HAMP genes contributing the most to the association. CONCLUSIONS: Our results support that genetic susceptibility related to the hepcidin-regulating gene pathway is associated with PDAC risk and suggest a potential role of iron metabolism in pancreatic carcinogenesis. Further studies are needed to evaluate effect modification by intake of iron-rich foods on this association.
Cancer Epidemiology Division Cancer Council Victoria Melbourne Australia
CHRISTUS Santa Rosa Hospital Medical Center San Antonio TX USA
CIBER Epidemiología y Salud Pública Barcelona Spain
Consortium for Biomedical Research in Epidemiology and Public Health Madrid Spain
Department of Biology University of Pisa Italy
Department of Biostatistics Harvard T H Chan School of Public Health Boston MA USA
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Chronic Disease Epidemiology Yale School of Public Health New Haven CT USA
Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York NY USA
Department of Epidemiology and Environmental Health University at Buffalo Buffalo NY USA
Department of Epidemiology Harvard T H Chan School of Public Health Boston MA USA
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA
Department of Epidemiology University of Hawaii Cancer Center Honolulu HI USA
Department of Epidemiology University of Texas MD Anderson Cancer Center Houston TX USA
Department of Health Sciences Research Mayo Clinic College of Medicine Rochester MN USA
Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA
Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA
Department of Obstetrics and Gynecology New York University School of Medicine New York NY USA
Department of Population Science American Cancer Society Atlanta GA USA
Division of Aging Brigham and Women's Hospital Boston MA USA
Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle WA USA
Division of Research Kaiser Permanente Northern California Oakland CA USA
Faculty of Health Sciences University of Olomouc Olomouc Czech Republic
Genetic and Molecular Epidemiology Group Spanish National Cancer Research Centre Madrid Spain
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
Hospital del Mar Institute of Medical Research Universitat Autònoma de Barcelona Barcelona Spain
IdiSNA Navarra Institute for Health Research Pamplona Spain
Information Management Services Silver Spring MD USA
Institute of Nutritional Science University of Potsdam Nuthetal Germany
International Agency for Research on Cancer Lyon France
Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Canada
Navarra Public Health Institute Pamplona Spain
Population Health Department QIMR Berghofer Medical Research Institute Brisbane Australia
Precision Medicine School of Clinical Sciences at Monash Health Monash University Clayton Australia
South Australian Health and Medical Research Institute Adelaide Australia
Specialized Institute of Hygiene and Epidemiology Banska Bystrica Slovakia
SWOG Statistical Center Fred Hutchinson Cancer Research Center Seattle WA USA
Yale Cancer Center and Smilow Cancer Hospital New Haven CT USA
Zobrazit více v PubMed
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. PubMed
Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49. PubMed
Chen F, Childs EJ, Mocci E, Bracci P, Gallinger S, Li D, Neale RE, Olson SH, Scelo G, Bamlet WRet al. . Analysis of heritability and genetic architecture of pancreatic cancer: a PanC4 study. Cancer Epidemiol Biomarkers Prev. 2019;28(7):1238–45. PubMed PMC
Zhao Z, Yin Z, Pu Z, Zhao Q. Association between consumption of red and processed meat and pancreatic cancer risk: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(4):486–493.e10. PubMed
Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K; International Agency for Research on Cancer Monograph Working Group . Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600. PubMed
Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH–AARP diet and health cohort. Int J Cancer. 2016;138(9):2172–89. PubMed PMC
World Cancer Research Fund/American Institute for Cancer Research . Diet, nutrition, physical activity and pancreatic cancer: Continuous Update Project expert report 2018. London: World Cancer Research Fund/American Institute for Cancer Research; 2018.
Hooda J, Shah A, Zhang L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014;6(3):1080–102. PubMed PMC
Friedman GD, van den Eeden SK. Risk factors for pancreatic cancer: an exploratory study. Int J Epidemiol. 1993;22(1):30–7. PubMed
Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–55. PubMed PMC
Gaur A, Collins H, Wulaningsih W, Holmberg L, Garmo H, Hammar N, Walldius G, Jungner I, Van Hemelrijck M. Iron metabolism and risk of cancer in the Swedish AMORIS study. Cancer Causes Control. 2013;24(7):1393–402. PubMed PMC
Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic β-cell functions and oxidative stress. Annu Rev Nutr. 2016;36:1, 241–73. PubMed
Rahier J, Loozen S, Goebbels RM, Abrahem M. The haemochromatotic human pancreas: a quantitative immunohistochemical and ultrastructural study. Diabetologia. 1987;30(1):5–12. PubMed
Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41. PubMed
Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. PubMed PMC
Ginzburg YZ. Hepcidin–ferroportin axis in health and disease. Vitam Horm. 2019;110:17–45. PubMed PMC
Drakesmith H, Prentice AM. Hepcidin and the iron–infection axis. Science. 2012;338(6108):768–72. PubMed
Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016. PubMed PMC
Hart PA, Bellin MD, Andersen DK, Bradley D, Cruz-Monserrate Z, Forsmark CE, Goodarzi MO, Habtezion A, Korc M, Kudva YCet al. . Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol. 2016;1(3):226–37. PubMed PMC
Amundadottir LT, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita H, Gross M, Helzlsouer K, Jacobs Eet al. . Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41(9):986–90. PubMed PMC
Petersen G, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs K, Arslan AA, Bueno-de-Mesquita H, Gallinger S, Gross Met al. . A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42(3):224–8. PubMed PMC
Wolpin B, Rizzato C, Kraft P, Kooperberg C, Petersen G, Wang Z, Arslan AA, Beane-Freeman L, Bracci P, Buring Jet al. . Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46(9):994–1000. PubMed PMC
Childs E, Mocci E, Campa D, Bracci P, Gallinger S, Goggins M, Li D, Neale RE, Olson SH, Scelo Get al. . Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47(8):911–6. PubMed PMC
Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk Aet al. . Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun. 2018;9(1):556. PubMed PMC
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. PubMed PMC
Wang CY, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019;133(1):18–29. PubMed PMC
Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38. PubMed
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61. PubMed PMC
Zhang H, Wheeler W, Hyland PL, Yang Y, Shi J, Chatterjee N, Yu K. A powerful procedure for pathway-based meta-analysis using summary statistics identifies 43 pathways associated with type II diabetes in European populations. PLoS Genet. 2016;12(6):e1006122. PubMed PMC
Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5. PubMed PMC
Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4. PubMed PMC
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng Set al. . Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7. PubMed PMC
Machiela MJ, Chanock SJ. LDlink: a Web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555–7. PubMed PMC
Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, Gogele M, Anderson D, Broer L, Podmore Cet al. . Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014;5:4926. PubMed PMC
Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet. 2018;50(11):1593–9. PubMed PMC
Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8(1):126–36. PubMed PMC
Zhang M, Xiong H, Fang L, Lu W, Wu X, Wang YQ, Cai ZM, Wu S. Meta-analysis of the association between H63D and C282Y polymorphisms in HFE and cancer risk. Asian Pac J Cancer Prev. 2015;16(11):4633–9. PubMed
Zhao Z, Li C, Hu M, Li J, Liu R. Plasma ferritin levels, HFE polymorphisms, and risk of pancreatic cancer among Chinese Han population. Tumour Biol. 2014;35(8):7629–33. PubMed
Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J, Asukai K, Ohashi T, Matsushita K, Iwagami Yet al. . Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol Lett. 2018;15(5):8125–33. PubMed PMC
Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di Xet al. . Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2(43):43ra56. PubMed PMC
Xiang-Tao P. Expression of hepcidin and neogenin in colorectal cancer. Open Medicine. 2017;12:184–8. PubMed PMC
Ward DG, Roberts K, Brookes MJ, Joy H, Martin A, Ismail T, Spychal R, Iqbal T, Tselepis C. Increased hepcidin expression in colorectal carcinogenesis. World J Gastroenterol. 2008;14(9):1339–45. PubMed PMC
Tesfay L, Clausen KA, Kim JW, Hegde P, Wang X, Miller LD, Deng Z, Blanchette N, Arvedson T, Miranti CKet al. . Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75(11):2254–63. PubMed PMC
Wang F, Liu A, Bai R, Zhang B, Jin Y, Guo W, Li Y, Gao J, Liu L. Hepcidin and iron metabolism in the pathogenesis of prostate cancer. J BUON. 2017;22(5):1328–32. PubMed
Vela D, Vela-Gaxha Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med. 2018;50(2):e436. PubMed PMC
Jeong SM, Hwang S, Seong RH. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun. 2016;471(3):373–9. PubMed
Lang J, Zhao X, Wang X, Zhao Y, Li Y, Zhao R, Cheng K, Li Y, Han X, Zheng Xet al. . Targeted co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano. 2019;13(2):2176–89. PubMed
Andreani M, Radio FC, Testi M, De Bernardo C, Troiano M, Majore S, Bertucci P, Polchi P, Rosati R, Grammatico P. Association of hepcidin promoter c.-582 A>G variant and iron overload in thalassemia major. Haematologica. 2009;94(9):1293–6. PubMed PMC
Sukiennicki GM, Marciniak W, Muszynska M, Baszuk P, Gupta S, Bialkowska K, Jaworska-Bieniek K, Durda K, Lener M, Pietrzak Set al. . Iron levels, genes involved in iron metabolism and antioxidative processes and lung cancer incidence. PLoS One. 2019;14(1):e0208610. PubMed PMC
Bruno F, Bonalumi S, Camaschella C, Ferrari M, Cremonesi L. The -582A>G variant of the HAMP promoter is not associated with high serum ferritin levels in normal subjects. Haematologica. 2010;95(5):849–50. PubMed PMC
Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA. 2001;98(15):8780–5. PubMed PMC
Bayele HK, McArdle H, Srai SK. Cis and trans regulation of hepcidin expression by upstream stimulatory factor. Blood. 2006;108(13):4237–45. PubMed