Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies

. 2021 Oct 04 ; 114 (4) : 1408-1417.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34258619

Grantová podpora
U01 CA182883 NCI NIH HHS - United States
P50 CA062924 NCI NIH HHS - United States
R01 HL034595 NHLBI NIH HHS - United States
HHSN268201600018C NHLBI NIH HHS - United States
UM1 CA182883 NCI NIH HHS - United States
R03 CA123546 NCI NIH HHS - United States
U01 CA247283 NCI NIH HHS - United States
HHSN268201600001C NHLBI NIH HHS - United States
RO1CA154823 NIH HHS - United States
HHSN268201600003C NHLBI NIH HHS - United States
R01 CA102765 NCI NIH HHS - United States
U01 CA182934 NCI NIH HHS - United States
UG1 CA189974 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
U01 CA167551 NCI NIH HHS - United States
HHSN268201600002C NHLBI NIH HHS - United States
P50 CA102701 NCI NIH HHS - United States
P30 CA015083 NCI NIH HHS - United States
HHSN268201600004C NHLBI NIH HHS - United States
U01CA164973 NCI NIH HHS - United States
R01 CA154823 NCI NIH HHS - United States
R01 CA049449 NCI NIH HHS - United States
U01 CA074783 NCI NIH HHS - United States
U01 CA182913 NCI NIH HHS - United States
001 World Health Organization - International
R01 CA098380 NCI NIH HHS - United States

Odkazy

PubMed 34258619
PubMed Central PMC8488877
DOI 10.1093/ajcn/nqab217
PII: S0002-9165(22)00469-5
Knihovny.cz E-zdroje

BACKGROUND: Epidemiological studies have suggested positive associations for iron and red meat intake with risk of pancreatic ductal adenocarcinoma (PDAC). Inherited pathogenic variants in genes involved in the hepcidin-regulating iron metabolism pathway are known to cause iron overload and hemochromatosis. OBJECTIVES: The objective of this study was to determine whether common genetic variation in the hepcidin-regulating iron metabolism pathway is associated with PDAC. METHODS: We conducted a pathway analysis of the hepcidin-regulating genes using single nucleotide polymorphism (SNP) summary statistics generated from 4 genome-wide association studies in 2 large consortium studies using the summary data-based adaptive rank truncated product method. Our population consisted of 9253 PDAC cases and 12,525 controls of European descent. Our analysis included 11 hepcidin-regulating genes [bone morphogenetic protein 2 (BMP2), bone morphogenetic protein 6 (BMP6), ferritin heavy chain 1 (FTH1), ferritin light chain (FTL), hepcidin (HAMP), homeostatic iron regulator (HFE), hemojuvelin (HJV), nuclear factor erythroid 2-related factor 2 (NRF2), ferroportin 1 (SLC40A1), transferrin receptor 1 (TFR1), and transferrin receptor 2 (TFR2)] and their surrounding genomic regions (±20 kb) for a total of 412 SNPs. RESULTS: The hepcidin-regulating gene pathway was significantly associated with PDAC (P = 0.002), with the HJV, TFR2, TFR1, BMP6, and HAMP genes contributing the most to the association. CONCLUSIONS: Our results support that genetic susceptibility related to the hepcidin-regulating gene pathway is associated with PDAC risk and suggest a potential role of iron metabolism in pancreatic carcinogenesis. Further studies are needed to evaluate effect modification by intake of iron-rich foods on this association.

Australian Centre for Precision Health Allied Health and Human Performance University of South Australia Adelaide Australia

Cancer Epidemiology Division Cancer Council Victoria Melbourne Australia

Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health The University of Melbourne Melbourne Australia

CHRISTUS Santa Rosa Hospital Medical Center San Antonio TX USA

CIBER Epidemiología y Salud Pública Barcelona Spain

Colorectal Cancer Group ONCOBELL Program Bellvitge Biomedical Research Institute L'Hospitalet de Llobregat Barcelona Spain

Consortium for Biomedical Research in Epidemiology and Public Health Madrid Spain

Department for Determinants of Chronic Diseases National Institute for Public Health and the Environment Bilthoven The Netherlands

Department of Biology University of Pisa Italy

Department of Biostatistics Harvard T H Chan School of Public Health Boston MA USA

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Chronic Disease Epidemiology Yale School of Public Health New Haven CT USA

Department of Epidemiology and Biostatistics Memorial Sloan Kettering Cancer Center New York NY USA

Department of Epidemiology and Biostatistics University of California San Francisco San Francisco CA USA

Department of Epidemiology and Environmental Health University at Buffalo Buffalo NY USA

Department of Epidemiology Harvard T H Chan School of Public Health Boston MA USA

Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore MD USA

Department of Epidemiology University of Hawaii Cancer Center Honolulu HI USA

Department of Epidemiology University of Texas MD Anderson Cancer Center Houston TX USA

Department of Gastrointestinal Medical Oncology The University of Texas MD Anderson Cancer Center Houston TX USA

Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany

Department of Health Sciences Research Mayo Clinic College of Medicine Rochester MN USA

Department of Medical Oncology Dana Farber Cancer Institute Boston MA USA

Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA

Department of Molecular Epidemiology German Institute of Human Nutrition Potsdam Rehbruecke Nuthetal Germany

Department of Obstetrics and Gynecology New York University School of Medicine New York NY USA

Department of Oncology The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Baltimore MD USA

Department of Pathology Sol Goldman Pancreatic Cancer Research Center Johns Hopkins School of Medicine Baltimore MD USA

Department of Population Health and Perlmutter Cancer Center New York University School of Medicine New York NY USA

Department of Population Science American Cancer Society Atlanta GA USA

Division of Aging Brigham and Women's Hospital Boston MA USA

Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Division of Epidemiology Department of Medicine Vanderbilt Epidemiology Center Vanderbilt Ingram Cancer Center Vanderbilt University School of Medicine Nashville TN USA

Division of Preventive Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA USA

Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle WA USA

Division of Research Kaiser Permanente Northern California Oakland CA USA

Faculty of Health Sciences University of Olomouc Olomouc Czech Republic

Genetic and Molecular Epidemiology Group Spanish National Cancer Research Centre Madrid Spain

Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany

Hospital del Mar Institute of Medical Research Universitat Autònoma de Barcelona Barcelona Spain

IdiSNA Navarra Institute for Health Research Pamplona Spain

Information Management Services Silver Spring MD USA

Institute of Nutritional Science University of Potsdam Nuthetal Germany

Institute of Public Health and Preventive Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic

International Agency for Research on Cancer Lyon France

Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Canada

Navarra Public Health Institute Pamplona Spain

Population Health Department QIMR Berghofer Medical Research Institute Brisbane Australia

Precision Medicine School of Clinical Sciences at Monash Health Monash University Clayton Australia

South Australian Health and Medical Research Institute Adelaide Australia

Specialized Institute of Hygiene and Epidemiology Banska Bystrica Slovakia

SWOG Statistical Center Fred Hutchinson Cancer Research Center Seattle WA USA

Unit of Biomarkers and Susceptibility Oncology Data Analytics Program Catalan Institute of Oncology L'Hospitalet de Llobregat Barcelona Spain

Yale Cancer Center and Smilow Cancer Hospital New Haven CT USA

Zobrazit více v PubMed

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. PubMed

Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(11):1039–49. PubMed

Chen F, Childs EJ, Mocci E, Bracci P, Gallinger S, Li D, Neale RE, Olson SH, Scelo G, Bamlet WRet al. . Analysis of heritability and genetic architecture of pancreatic cancer: a PanC4 study. Cancer Epidemiol Biomarkers Prev. 2019;28(7):1238–45. PubMed PMC

Zhao Z, Yin Z, Pu Z, Zhao Q. Association between consumption of red and processed meat and pancreatic cancer risk: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2017;15(4):486–493.e10. PubMed

Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K; International Agency for Research on Cancer Monograph Working Group . Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599–600. PubMed

Taunk P, Hecht E, Stolzenberg-Solomon R. Are meat and heme iron intake associated with pancreatic cancer? Results from the NIH–AARP diet and health cohort. Int J Cancer. 2016;138(9):2172–89. PubMed PMC

World Cancer Research Fund/American Institute for Cancer Research . Diet, nutrition, physical activity and pancreatic cancer: Continuous Update Project expert report 2018. London: World Cancer Research Fund/American Institute for Cancer Research; 2018.

Hooda J, Shah A, Zhang L. Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 2014;6(3):1080–102. PubMed PMC

Friedman GD, van den Eeden SK. Risk factors for pancreatic cancer: an exploratory study. Int J Epidemiol. 1993;22(1):30–7. PubMed

Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–55. PubMed PMC

Gaur A, Collins H, Wulaningsih W, Holmberg L, Garmo H, Hammar N, Walldius G, Jungner I, Van Hemelrijck M. Iron metabolism and risk of cancer in the Swedish AMORIS study. Cancer Causes Control. 2013;24(7):1393–402. PubMed PMC

Backe MB, Moen IW, Ellervik C, Hansen JB, Mandrup-Poulsen T. Iron regulation of pancreatic β-cell functions and oxidative stress. Annu Rev Nutr. 2016;36:1, 241–73. PubMed

Rahier J, Loozen S, Goebbels RM, Abrahem M. The haemochromatotic human pancreas: a quantitative immunohistochemical and ultrastructural study. Diabetologia. 1987;30(1):5–12. PubMed

Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–41. PubMed

Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. PubMed PMC

Ginzburg YZ. Hepcidin–ferroportin axis in health and disease. Vitam Horm. 2019;110:17–45. PubMed PMC

Drakesmith H, Prentice AM. Hepcidin and the iron–infection axis. Science. 2012;338(6108):768–72. PubMed

Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016. PubMed PMC

Hart PA, Bellin MD, Andersen DK, Bradley D, Cruz-Monserrate Z, Forsmark CE, Goodarzi MO, Habtezion A, Korc M, Kudva YCet al. . Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol. 2016;1(3):226–37. PubMed PMC

Amundadottir LT, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita H, Gross M, Helzlsouer K, Jacobs Eet al. . Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41(9):986–90. PubMed PMC

Petersen G, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ, Jacobs K, Arslan AA, Bueno-de-Mesquita H, Gallinger S, Gross Met al. . A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42(3):224–8. PubMed PMC

Wolpin B, Rizzato C, Kraft P, Kooperberg C, Petersen G, Wang Z, Arslan AA, Beane-Freeman L, Bracci P, Buring Jet al. . Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46(9):994–1000. PubMed PMC

Childs E, Mocci E, Campa D, Bracci P, Gallinger S, Goggins M, Li D, Neale RE, Olson SH, Scelo Get al. . Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47(8):911–6. PubMed PMC

Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, Canzian F, Childs EJ, Hoskins JW, Jermusyk Aet al. . Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun. 2018;9(1):556. PubMed PMC

Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. PubMed PMC

Wang CY, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019;133(1):18–29. PubMed PMC

Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142(1):24–38. PubMed

Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61. PubMed PMC

Zhang H, Wheeler W, Hyland PL, Yang Y, Shi J, Chatterjee N, Yu K. A powerful procedure for pathway-based meta-analysis using summary statistics identifies 43 pathways associated with type II diabetes in European populations. PLoS Genet. 2016;12(6):e1006122. PubMed PMC

Consortium GT. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–5. PubMed PMC

Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(D1):D930–4. PubMed PMC

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng Set al. . Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7. PubMed PMC

Machiela MJ, Chanock SJ. LDlink: a Web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555–7. PubMed PMC

Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, Gogele M, Anderson D, Broer L, Podmore Cet al. . Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014;5:4926. PubMed PMC

Canela-Xandri O, Rawlik K, Tenesa A. An atlas of genetic associations in UK Biobank. Nat Genet. 2018;50(11):1593–9. PubMed PMC

Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone hepcidin. Adv Nutr. 2017;8(1):126–36. PubMed PMC

Zhang M, Xiong H, Fang L, Lu W, Wu X, Wang YQ, Cai ZM, Wu S. Meta-analysis of the association between H63D and C282Y polymorphisms in HFE and cancer risk. Asian Pac J Cancer Prev. 2015;16(11):4633–9. PubMed

Zhao Z, Li C, Hu M, Li J, Liu R. Plasma ferritin levels, HFE polymorphisms, and risk of pancreatic cancer among Chinese Han population. Tumour Biol. 2014;35(8):7629–33. PubMed

Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J, Asukai K, Ohashi T, Matsushita K, Iwagami Yet al. . Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol Lett. 2018;15(5):8125–33. PubMed PMC

Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr, Kute T, Willingham MC, Hatcher H, Tesfay L, Sui G, Di Xet al. . Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2010;2(43):43ra56. PubMed PMC

Xiang-Tao P. Expression of hepcidin and neogenin in colorectal cancer. Open Medicine. 2017;12:184–8. PubMed PMC

Ward DG, Roberts K, Brookes MJ, Joy H, Martin A, Ismail T, Spychal R, Iqbal T, Tselepis C. Increased hepcidin expression in colorectal carcinogenesis. World J Gastroenterol. 2008;14(9):1339–45. PubMed PMC

Tesfay L, Clausen KA, Kim JW, Hegde P, Wang X, Miller LD, Deng Z, Blanchette N, Arvedson T, Miranti CKet al. . Hepcidin regulation in prostate and its disruption in prostate cancer. Cancer Res. 2015;75(11):2254–63. PubMed PMC

Wang F, Liu A, Bai R, Zhang B, Jin Y, Guo W, Li Y, Gao J, Liu L. Hepcidin and iron metabolism in the pathogenesis of prostate cancer. J BUON. 2017;22(5):1328–32. PubMed

Vela D, Vela-Gaxha Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med. 2018;50(2):e436. PubMed PMC

Jeong SM, Hwang S, Seong RH. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun. 2016;471(3):373–9. PubMed

Lang J, Zhao X, Wang X, Zhao Y, Li Y, Zhao R, Cheng K, Li Y, Han X, Zheng Xet al. . Targeted co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano. 2019;13(2):2176–89. PubMed

Andreani M, Radio FC, Testi M, De Bernardo C, Troiano M, Majore S, Bertucci P, Polchi P, Rosati R, Grammatico P. Association of hepcidin promoter c.-582 A>G variant and iron overload in thalassemia major. Haematologica. 2009;94(9):1293–6. PubMed PMC

Sukiennicki GM, Marciniak W, Muszynska M, Baszuk P, Gupta S, Bialkowska K, Jaworska-Bieniek K, Durda K, Lener M, Pietrzak Set al. . Iron levels, genes involved in iron metabolism and antioxidative processes and lung cancer incidence. PLoS One. 2019;14(1):e0208610. PubMed PMC

Bruno F, Bonalumi S, Camaschella C, Ferrari M, Cremonesi L. The -582A>G variant of the HAMP promoter is not associated with high serum ferritin levels in normal subjects. Haematologica. 2010;95(5):849–50. PubMed PMC

Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA. 2001;98(15):8780–5. PubMed PMC

Bayele HK, McArdle H, Srai SK. Cis and trans regulation of hepcidin expression by upstream stimulatory factor. Blood. 2006;108(13):4237–45. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace