Influence of Drying Method and Argon Plasma Modification of Bacterial Nanocellulose on Keratinocyte Adhesion and Growth
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20-01641S
Grantová Agentura České Republiky
PubMed
34443747
PubMed Central
PMC8398638
DOI
10.3390/nano11081916
PII: nano11081916
Knihovny.cz E-resources
- Keywords
- bacterial nanocellulose, cell adhesion, lyophilization, plasma modification,
- Publication type
- Journal Article MeSH
Due to its nanostructure, bacterial nanocellulose (BC) has several advantages over plant cellulose, but it exhibits weak cell adhesion. To overcome this drawback, we studied the drying method of BC and subsequent argon plasma modification (PM). BC hydrogels were prepared using the Komagataeibacter sucrofermentans (ATCC 700178) bacteria strain. The hydrogels were transformed into solid samples via air-drying (BC-AD) or lyophilization (BC-L). The sample surfaces were then modified by argon plasma. SEM revealed that compared to BC-AD, the BC-L samples maintained their nanostructure and had higher porosity. After PM, the contact angle decreased while the porosity increased. XPS showed that the O/C ratio was higher after PM. The cell culture experiments revealed that the initial adhesion of human keratinocytes (HaCaT) was supported better on BC-L, while the subsequent growth of these cells and final cell population density were higher on BC-AD. The PM improved the final colonization of both BC-L and BC-AD with HaCaT, leading to formation of continuous cell layers. Our work indicates that the surface modification of BC renders this material highly promising for skin tissue engineering and wound healing.
See more in PubMed
Jayabalan R., Malbaša R.V., Lončar E.S., Vitas J.S., Sathishkumar M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014;13:538–550. doi: 10.1111/1541-4337.12073. PubMed DOI
Brown A.J. XLIII.—On an acetic ferment which forms cellulose. J. Chem. Soc. Trans. 1886;49:432–439. doi: 10.1039/CT8864900432. DOI
Matsutani M., Ito K., Azuma Y., Ogino H., Shirai M., Yakushi T., Matsushita K. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl. Microbiol. Biotechnol. 2015;99:7229–7240. doi: 10.1007/s00253-015-6598-x. PubMed DOI
Jonas R., Farah L.F. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998;59:101–106. doi: 10.1016/S0141-3910(97)00197-3. DOI
Yamada Y., Yukphan P., Vu H.T.L., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae) J. Gen. Appl. Microbiol. 2012;58:397–404. doi: 10.2323/jgam.58.397. PubMed DOI
Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011;50:5438–5466. doi: 10.1002/anie.201001273. PubMed DOI
Younesi M., Akkus A., Akkus O. Microbially-derived nanofibrous cellulose polymer for connective tissue regeneration. Mater. Sci. Eng. C. 2019;99:96–102. doi: 10.1016/j.msec.2019.01.090. PubMed DOI
Zeng M., Laromaine A., Roig A. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose. 2014;21:4455–4469. doi: 10.1007/s10570-014-0408-y. DOI
Chen S.-Q., Cao X., Li Z., Zhu J., Li L. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr. Polym. 2020;246:116632. doi: 10.1016/j.carbpol.2020.116632. PubMed DOI
Bacakova L., Pajorova J., Bacakova M., Skogberg A., Kallio P., Kolarova K., Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials. 2019;9:164. doi: 10.3390/nano9020164. PubMed DOI PMC
Nakagaito A., Yano H. Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys. A. 2005;80:155–159. doi: 10.1007/s00339-003-2225-2. DOI
Czaja W., Krystynowicz A., Bielecki S., Brown R.M. Microbial cellulose—The natural power to heal wounds. Biomaterials. 2006;27:145–151. doi: 10.1016/j.biomaterials.2005.07.035. PubMed DOI
Zielińska D., Rydzkowski T., Thakur V.K., Borysiak S. Enzymatic engineering of nanometric cellulose for sustainable polypropylene nanocomposites. Ind. Crop. Prod. 2021;161:113188. doi: 10.1016/j.indcrop.2020.113188. DOI
Yamanaka S., Watanabe K., Kitamura N., Iguchi M., Mitsuhashi S., Nishi Y., Uryu M. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 1989;24:3141–3145. doi: 10.1007/BF01139032. DOI
Trache D., Thakur V., Boukherroub R. Cellulose Nanocrystals/Graphene Hybrids—A Promising New Class of Materials for Advanced Applications. Nanomaterials. 2020;10:1523. doi: 10.3390/nano10081523. PubMed DOI PMC
Husemann V.E., Werner R. Cellulose synthesis by Acetobacter xylinum. I. The molecular weight of bacterial cellulose and molecular weight distribution during the synthesis. Die Makromol. Chem. 1963;59:43–60. doi: 10.1002/macp.1963.020590104. DOI
Rathinamoorthy R., Kiruba T. Bacterial cellulose-A potential material for sustainable eco-friendly fashion products. J. Nat. Fibers. 2020:1–13. doi: 10.1080/15440478.2020.1842841. DOI
Buruaga-Ramiro C., Valenzuela S.V., Valls C., Roncero M.B., Pastor F.J., Díaz P., Martinez J. Development of an antimicrobial bioactive paper made from bacterial cellulose. Int. J. Biol. Macromol. 2020;158:587–594. doi: 10.1016/j.ijbiomac.2020.04.234. PubMed DOI
Gallegos A.M.A., Carrera S.H., Parra R., Keshavarz T., Iqbal H.M.N. Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products—A Review. BioResources. 2016;11:5641–5655. doi: 10.15376/biores.11.2.Gallegos. DOI
Uryu M., Kurihara N. Acoustic Diaphragm and Method for Producing Same. US5274199A. U.S. Patent. 1993 Apr 20;
Liu X., Souzandeh H., Zheng Y., Xie Y., Zhong W.-H., Wang C. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos. Sci. Technol. 2017;138:124–133. doi: 10.1016/j.compscitech.2016.11.022. DOI
Hasan N., Biak D.R.A., Kamarudin S. Application of Bacterial Cellulose (BC) in Natural Facial Scrub. Int. J. Adv. Sci. Eng. Inf. Technol. 2012;2:272–275. doi: 10.18517/ijaseit.2.4.201. DOI
Picheth G.F., Pirich C., Sierakowski M.R., Woehl M.A., Sakakibara C.N., de Souza C.F., Martin A.A., da Silva R., de Freitas R.A. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 2017;104:97–106. doi: 10.1016/j.ijbiomac.2017.05.171. PubMed DOI
Bodhibukkana C., Srichana T., Kaewnopparat S., Tangthong N., Bouking P., Martin G.P., Suedee R. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J. Control. Release. 2006;113:43–56. doi: 10.1016/j.jconrel.2006.03.007. PubMed DOI
Trovatti E., Freire C., Pinto P., Almeida I., da Costa P.J.C., Silvestre A., Neto C., Rosado C. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. Int. J. Pharm. 2012;435:83–87. doi: 10.1016/j.ijpharm.2012.01.002. PubMed DOI
Cacicedo M.L., León I.E., Gonzalez J.S., Porto L.M., Álvarez V., Castro G.R. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf. B Biointerfaces. 2016;140:421–429. doi: 10.1016/j.colsurfb.2016.01.007. PubMed DOI
Wang J., Gao C., Zhang Y., Wan Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater. Sci. Eng. C. 2010;30:214–218. doi: 10.1016/j.msec.2009.10.006. DOI
Jia H., Jia Y., Wang J., Hu Y., Zhang Y., Jia S. Potentiality of Bacterial Cellulose as the Scaffold of Tissue Engineering of Cornea; Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics; Tianjin, China. 17–19 October 2009; pp. 1–5.
Klemm D., Schumann D., Udhardt U., Marsch S. Bacterial synthesized cellulose—Artificial blood vessels for microsurgery. Prog. Polym. Sci. 2001;26:1561–1603. doi: 10.1016/S0079-6700(01)00021-1. DOI
Zang S., Zhang R., Chen H., Lu Y., Zhou J., Chang X., Qiu G., Wu Z., Yang G. Investigation on artificial blood vessels prepared from bacterial cellulose. Mater. Sci. Eng. C. 2015;46:111–117. doi: 10.1016/j.msec.2014.10.023. PubMed DOI
Torgbo S., Sukyai P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today. 2018;11:34–49. doi: 10.1016/j.apmt.2018.01.004. DOI
Xu C., Ma X., Chen S., Tao M., Yuan L., Jing Y. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits. Int. J. Mol. Sci. 2014;15:10855–10867. doi: 10.3390/ijms150610855. PubMed DOI PMC
Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020;8:605374–605393. doi: 10.3389/fbioe.2020.605374. PubMed DOI PMC
Bionext®. [(accessed on 22 April 2021)]; Available online: http://www.bennetthealth.net/Bionext/#Clinical.
Aung B.J. Does A New Cellulose Dressing Have Potential in Chronic Wounds? Podiatry Today. 2004;17:20–26.
Axcelon®. [(accessed on 22 April 2021)]; Available online: https://axcelonbp.com/nanoderm-ag/
Nexfill®. [(accessed on 22 April 2021)]; Available online: https://nexfill.com.br/
Sulaeva I., Henniges U., Rosenau T., Potthast A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015;33:1547–1571. doi: 10.1016/j.biotechadv.2015.07.009. PubMed DOI
Gorgieva S. Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes. 2020;8:624. doi: 10.3390/pr8050624. DOI
Helenius G., Bäckdahl H., Bodin A., Nannmark U., Gatenholm P., Risberg B. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A. 2005;76:431–438. doi: 10.1002/jbm.a.30570. PubMed DOI
Torres F.G., Commeaux S., Troncoso O.P. Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater. 2012;3:864–878. doi: 10.3390/jfb3040864. PubMed DOI PMC
Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002;36:143–206. doi: 10.1016/S0927-796X(02)00004-9. DOI
Vosmanska V., Kolarova K., Rimpelova S., Svorcik V. Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose. 2014;21:2445–2456. doi: 10.1007/s10570-014-0328-x. DOI
Pertile R., Andrade F.K., Alves C., Gama M. Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr. Polym. 2010;82:692–698. doi: 10.1016/j.carbpol.2010.05.037. DOI
Kurniawan H., Lai J.-T., Wang M.-J. Biofunctionalized bacterial cellulose membranes by cold plasmas. Cellulose. 2012;19:1975–1988. doi: 10.1007/s10570-012-9785-2. DOI
Vasconcellos V.M., Farinas C.S. The effect of the drying process on the properties of bacterial cellulose films from Gluconacetobacter hansenii. Chem. Eng. Trans. 2018;64:145–150. doi: 10.3303/CET1864025. DOI
Illa M.P., Sharma C.S., Khandelwal M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. J. Mater. Sci. 2019;54:12024–12035. doi: 10.1007/s10853-019-03737-9. DOI
Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954;58:345–352. doi: 10.1042/bj0580345. PubMed DOI PMC
Hsieh J.-T., Wang M.-J., Lai J.-T., Liu H.-S. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. Eng. 2016;63:46–51. doi: 10.1016/j.jtice.2016.03.020. DOI
Kim S.-Y., Kim J.-N., Wee Y.-J., Park D.-H., Ryu H.-W. Production of Bacterial Cellulose by Gluconacetobacter sp. RKY5 Isolated from Persimmon Vinegar. Appl. Biochem. Biotechnol. 2006;131:705–715. doi: 10.1385/ABAB:131:1:705. PubMed DOI
Bae S., Sugano Y., Shoda M. Improvement of bacterial cellulose production by addition of agar in a jar fermentor. J. Biosci. Bioeng. 2004;97:33–38. doi: 10.1016/S1389-1723(04)70162-0. PubMed DOI
Wee Y.-J. Isolation and characterization of a bacterial cellulose-producing bacterium derived from the persimmon vinegar. Afr. J. Biotechnol. 2011;10:16267–16276. doi: 10.5897/ajb11.2036. DOI
Švorčík V., Kolářová K., Slepička P., Mackova A., Novotná M., Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 2006;91:1219–1225. doi: 10.1016/j.polymdegradstab.2005.09.007. DOI
Makarem M., Lee C.M., Kafle K., Huang S., Chae I., Yang H., Kubicki J.D., Kim S.H. Probing cellulose structures with vibrational spectroscopy. Cellulose. 2019;26:35–79. doi: 10.1007/s10570-018-2199-z. DOI
Hofstetter K., Hinterstoisser B., Salmén L. Moisture uptake in native cellulose—The roles of different hydrogen bonds: A dynamic FT-IR study using Deuterium exchange. Cellulose. 2006;13:131–145. doi: 10.1007/s10570-006-9055-2. DOI
Fan M., Dai D., Huang B. Fourier Transform Infrared Spectroscopy for Natural Fibres. In: Salih S., editor. Fourier Transform-Materials Analysis. 1st ed. InTech; Rijeka, Croatia: 2012. pp. 45–68.
Maréchal Y., Chanzy H. The hydrogen bond network in I β cellulose as observed by infrared spectrometry. J. Mol. Struct. 2000;523:183–196. doi: 10.1016/S0022-2860(99)00389-0. DOI
Yang J., Bei J., Wang S. Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials. 2002;23:2607–2614. doi: 10.1016/S0142-9612(01)00400-8. PubMed DOI
Slepička P., Trostová S., Kasálková N.S., Kolská Z., Sajdl P., Švorčík V. Surface Modification of Biopolymers by Argon Plasma and Thermal Treatment. Plasma Process. Polym. 2011;9:197–206. doi: 10.1002/ppap.201100126. DOI
Ku S.H., Ryu J., Hong S.K., Lee H., Park C.B. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials. 2010;31:2535–2541. doi: 10.1016/j.biomaterials.2009.12.020. PubMed DOI
Steinerova M., Matejka R., Stepanovska J., Filova E., Stankova L., Rysova M., Martinova L., Dragounova H., Domonkos M., Artemenko A., et al. Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Mater. Sci. Eng. C. 2021;121:111792. doi: 10.1016/j.msec.2020.111792. PubMed DOI
Vandrovcova M., Tolde Z., Vanek P., Nehasil V., Doubková M., Trávníčková M., Drahokoupil J., Buixaderas E., Borodavka F., Novakova J., et al. Beta-Titanium Alloy Covered by Ferroelectric Coating–Physicochemical Properties and Human Osteoblast-Like Cell Response. Coatings. 2021;11:210. doi: 10.3390/coatings11020210. DOI
Grausova L., Kromka A., Bacakova L., Potocký S., Vanecek M., Lisa V. Bone and vascular endothelial cells in cultures on nanocrystalline diamond films. Diam. Relat. Mater. 2008;17:1405–1409. doi: 10.1016/j.diamond.2008.02.008. DOI
Bacakova M., Pajorova J., Stranska D., Hadraba D., Lopot F., Riedel T., Brynda E., Zaloudkova M., Bacakova L. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells. Int. J. Nanomed. 2017;12:1143–1160. doi: 10.2147/IJN.S121299. PubMed DOI PMC
Bacakova M., Pajorova J., Broz A., Hadraba D., Lopot F., Zavadakova A., Vistejnova L., Beno M., Kostic I., Jencova V., et al. A two-layer skin construct consisting of a collagen hydrogel reinforced by a fibrin-coated polylactide nanofibrous membrane. Int. J. Nanomed. 2019;14:5033–5050. doi: 10.2147/IJN.S200782. PubMed DOI PMC
Stankova L., Fraczek-Szczypta A., Blazewicz M., Filova E., Blazewicz S., Lisa V., Bacakova L. Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon. 2014;67:578–591. doi: 10.1016/j.carbon.2013.10.031. DOI
Engler A., Sen S., Sweeney H.L., Discher D.E. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell. 2006;126:677–689. doi: 10.1016/j.cell.2006.06.044. PubMed DOI
Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI