• This record comes from PubMed

Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses

. 2021 Sep 16 ; 26 (18) : . [epub] 20210916

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 34577097
PubMed Central PMC8469069
DOI 10.3390/molecules26185627
PII: molecules26185627
Knihovny.cz E-resources

Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.

See more in PubMed

Ghofrani H.A., Osterloh I.H., Grimminger F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov. 2006;5:689–702. doi: 10.1038/nrd2030. PubMed DOI PMC

Upputuri B., Pallapati M.S., Tarwater P., Srikantam A. Thalidomide in the treatment of erythema nodosum leprosum (ENL) in an outpatient setting: A five-year retrospective analysis from a leprosy referral centre in India. PLoS Negl. Trop. Dis. 2020;14:e0008678. doi: 10.1371/journal.pntd.0008678. PubMed DOI PMC

Zhang X., Luo H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett. 2018;15:3313–3320. doi: 10.3892/ol.2017.7645. PubMed DOI PMC

Zhang Z.L., Liu Z.S., Sun Q. Effects of thalidomide on angiogenesis and tumor growth and metastasis of human hepatocellular carcinoma in nude mice. World J. Gastroenterol. 2005;11:216–220. doi: 10.3748/wjg.v11.i2.216. PubMed DOI PMC

Alberts M.J., Bergman D.L., Molner E., Jovanovic B.D., Ushiwata I., Teruya J. Antiplatelet effect of aspirin in patients with cerebrovascular disease. Stroke. 2004;35:175–178. doi: 10.1161/01.STR.0000106763.46123.F6. PubMed DOI

Rothwell P.M., Fowkes F.G.R., Belch J.F.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41. doi: 10.1016/S0140-6736(10)62110-1. PubMed DOI

Digitalis Investigation Group The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med. 1997;336:525–533. doi: 10.1056/NEJM199702203360801. PubMed DOI

Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI

Wang H.Y.L., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC

Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC

Fujii T., Shimizu T., Yamamoto S., Funayama K., Fujita K., Tabuchi Y., Ikari A., Takeshima H., Sakai H. Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3792–3804. doi: 10.1016/j.bbadis.2018.09.014. PubMed DOI

Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI

Lee D.H., Oh S.C., Giles A.J., Jung J., Gilbert M.R., Park D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget. 2017;8:40233–40245. doi: 10.18632/oncotarget.16714. PubMed DOI PMC

Tverskoi A.M., Sidorenko S.V., Klimanova E.A., Akimova O.A., Smolyaninova L.V., Lopina O.D., Orlov S.N. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K. Biochemistry. 2016;81:876–883. doi: 10.1134/S0006297916080083. PubMed DOI

Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008;105:19579–19586. doi: 10.1073/pnas.0809763105. PubMed DOI PMC

Kumar A., De T., Mishra A., Mishra A.K. Oleandrin: A cardiac glycosides with potent cytotoxicity. Pharmacogn. Rev. 2013;7:131–139. doi: 10.4103/0973-7847.120512. PubMed DOI PMC

Kohls S., Scholz-Bottcher B.M., Teske J., Zark P., Rullkotter J. Cardiac glycosides from Yellow Oleander (Thevetia peruviana) seeds. Phytochemistry. 2012;75:114–127. doi: 10.1016/j.phytochem.2011.11.019. PubMed DOI

Welsh K.J., Huang R.S.P., Actor J.K., Dasgupta A. Rapid detection of the active cardiac glycoside convallatoxin of Lily of the valley using LOCI digoxin assay. Am. J. Clin. Pathol. 2014;142:307–312. doi: 10.1309/AJCPCOXF0O5XXTKD. PubMed DOI

Qi J., Zulfiker A.M., Li C., Good D., Wei M.Q. The development of toad toxins as potential therapeutic agents. Toxins. 2018;10:336. doi: 10.3390/toxins10080336. PubMed DOI PMC

Smedley S.R., Risteen R.G., Tonyai K.K., Pitino J.C., Hu Y.M., Ahmed Z.B., Christofel B.T., Gaber M., Howells N.R., Mosey C.F., et al. Bufadienolides (lucibufagins) from an ecologically aberrant firefly (Ellychnia corrusca) Chemoecology. 2017;27:141–153. doi: 10.1007/s00049-017-0240-6. DOI

Brower L.P., McEvoy P.B., Williamson K.L., Flannery M.A. Variation in cardiac glycoside content of Monarch butterflies from natural populations in eastern north America. Science. 1972;177:426–429. doi: 10.1126/science.177.4047.426. PubMed DOI

Bejček J., Jurášek M., Spiwok V., Rimpelová S. Quo vadis cardiac glycoside research? Toxins. 2021;13:344. doi: 10.3390/toxins13050344. PubMed DOI PMC

Melero C.P., Medarde M., San Feliciano A. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules. 2000;5:51–58. doi: 10.3390/50100051. DOI

Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 2021;26:1905. doi: 10.3390/molecules26071905. PubMed DOI PMC

Cui X., Xie Z. Protein interaction and Na/K-ATPase-mediated signal transduction. Molecules. 2017;22:990. doi: 10.3390/molecules22060990. PubMed DOI PMC

Chang F., Steelman L.S., Shelton J.G., Lee J.T., Navolanic P.M., Blalock W.L., Franklin R., McCubrey J.A. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review) Int. J. Oncol. 2003;22:469–480. doi: 10.3892/ijo.22.3.469. PubMed DOI

Karas K., Salkowska A., Dastych J., Bachorzd R.A., Ratajewski M. Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed. Pharmacother. 2020;127:110106. doi: 10.1016/j.biopha.2020.110106. PubMed DOI

Takara K., Takagi K., Tsujimoto M., Ohnishi N., Yokoyama T. Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem. Biophys. Res. Commun. 2003;306:116–120. doi: 10.1016/S0006-291X(03)00922-7. PubMed DOI

Manna S.K., Sreenivasan Y., Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J. Cell Physiol. 2006;207:195–207. doi: 10.1002/jcp.20555. PubMed DOI

Škubník J., Pavlíčková V., Rimpelová S. Cardiac glycosides as immune system modulators. Biomolecules. 2021;11:659. doi: 10.3390/biom11050659. PubMed DOI PMC

Jones J.E., Le Sage V., Lakdawala S.S. Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 2021;19:272–282. doi: 10.1038/s41579-020-00449-9. PubMed DOI PMC

Miller C.M., Selvam S., Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. Wiley Interdiscip. Rev. RNA. 2021;12:e1613. doi: 10.1002/wrna.1613. PubMed DOI PMC

V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC

Behrens A.J., Vasiljevic S., Pritchard L.K., Harvey D.J., Andev R.S., Krumm S.A., Struwe W.B., Cupo A., Kumar A., Zitzmann N., et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 2016;14:2695–2706. doi: 10.1016/j.celrep.2016.02.058. PubMed DOI PMC

Hernaez B., Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J. Virol. 2010;84:2100–2109. doi: 10.1128/JVI.01557-09. PubMed DOI PMC

Macovei A., Radulescu C., Lazar C., Petrescu S., Durantel D., Dwek R.A., Zitzmann N., Nichita N.B. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol. 2010;84:243–253. doi: 10.1128/JVI.01207-09. PubMed DOI PMC

Wei X., She G., Wu T., Xue C., Cao Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet. Res. 2020;51:10. doi: 10.1186/s13567-020-0739-7. PubMed DOI PMC

Lagache T., Sieben C., Meyer T., Herrmann A., Holcman D. Stochastic model of acidification, activation of hemagglutinin and escape of influenza viruses from an edosome. Front. Phys. 2017;5:25. doi: 10.3389/fphy.2017.00025. DOI

Jana A.K., May E.R. Atomistic dynamics of a viral infection process: Release of membrane lytic peptides from a non-enveloped virus. Sci. Adv. 2021;7:eabe1761. doi: 10.1126/sciadv.abe1761. PubMed DOI PMC

Zaitseva E., Zaitsev E., Melikov K., Arakelyan A., Marin M., Villasmil R., Margolis L.B., Melikyan G.B., Chernomordik L.V. Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe. 2017;22:99–110.e7. doi: 10.1016/j.chom.2017.06.012. PubMed DOI PMC

Lin X.P., Mintern J.D., Gleeson P.A. Macropinocytosis in different cell types: Similarities and differences. Membranes. 2020;10:177. doi: 10.3390/membranes10080177. PubMed DOI PMC

Rasmussen I., Vilhardt F., Beemon K.L. Macropinocytosis is the entry mechanism of amphotropic murine leukemia virus. J. Virol. 2015;89:1851–1866. doi: 10.1128/JVI.02343-14. PubMed DOI PMC

Rossman J.S., Leser G.P., Lamb R.A. Filamentous influenza virus enters cells via macropinocytosis. J. Virol. 2012;86:10950–10960. doi: 10.1128/JVI.05992-11. PubMed DOI PMC

Fernandez J., Portilho D.M., Danckaert A., Munier S., Becker A., Roux P., Zambo A., Shorte S., Jacob Y., Vidalain P.O., et al. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J. Biol. Chem. 2015;290:4631–4646. doi: 10.1074/jbc.M114.613133. PubMed DOI PMC

Pawlica P., Berthoux L. Cytoplasmic dynein promotes HIV-1 uncoating. Viruses. 2014;6:4195–4211. doi: 10.3390/v6114195. PubMed DOI PMC

Rabe B., Glebe D., Kann M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J. Virol. 2006;80:5465–5473. doi: 10.1128/JVI.02303-05. PubMed DOI PMC

Haffar O.K., Popov S., Dubrovsky L., Agostini I., Tang H., Pushkarsky T., Nadler S.G., Bukrinsky M. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 2000;299:359–368. doi: 10.1006/jmbi.2000.3768. PubMed DOI

Sonntag F., Bleker S., Leuchs B., Fischer R., Kleinschmidt J.A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 2006;80:11040–11054. doi: 10.1128/JVI.01056-06. PubMed DOI PMC

Pyeon D., Pearce S.M., Lank S.M., Ahlquist P., Lambert P.F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 2009;5:e1000318. doi: 10.1371/journal.ppat.1000318. PubMed DOI PMC

Cann A.J. Replication of viruses. Encycl. Virol. 2008:406–412. doi: 10.1016/B978-012374410-4.00486-6. DOI

Rozov A., Khusainov I., El Omari K., Duman R., Mykhaylyk V., Yusupov M., Westhof E., Wagner A., Yusupova G. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 2019;10:2519. doi: 10.1038/s41467-019-10409-4. PubMed DOI PMC

O’Carroll I.P., Rein A. Viral nucleic acids. Encycl. Cell Biol. 2016:517–524. doi: 10.1016/B978-0-12-394447-4.10061-6. DOI

Engelman A., Cherepanov P. The structural biology of HIV-1: Mechanistic and therapeutic insights. Nat. Rev. Microbiol. 2012;10:279–290. doi: 10.1038/nrmicro2747. PubMed DOI PMC

Mertens J., Casado S., Mata C.P., Hernando-Pérez M., de Pablo P.J., Carrascosa J.L., Castón J.R. A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci. Rep. 2015;5:13486. doi: 10.1038/srep13486. PubMed DOI PMC

Chamanian M., Purzycka K.J., Wille P.T., Ha J.S., McDonald D., Gao Y., Le Grice S.F., Arts E.J. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation. Cell Host Microbe. 2013;13:181–192. doi: 10.1016/j.chom.2013.01.007. PubMed DOI PMC

Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog. 2011;7:e1002116. doi: 10.1371/journal.ppat.1002116. PubMed DOI PMC

Jiang H., White E.J., Ríos-Vicil C.I., Xu J., Gomez-Manzano C., Fueyo J. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J. Virol. 2011;85:4720–4729. doi: 10.1128/JVI.02032-10. PubMed DOI PMC

Jolly C., Sattentau Q.J. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J. Virol. 2007;81:7873–7884. doi: 10.1128/JVI.01845-06. PubMed DOI PMC

Bigalke J.M., Heuser T., Nicastro D., Heldwein E.E. Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat. Commun. 2014;5:4131. doi: 10.1038/ncomms5131. PubMed DOI PMC

Ipinmoroti A.O., Matthews Q.L. Extracellular vesicles: Roles in human viral infections, immune-diagnostic, and therapeutic applications. Pathogens. 2020;9:1056. doi: 10.3390/pathogens9121056. PubMed DOI PMC

Kucharska I., Ding P., Zadrozny K.K., Dick R.A., Summers M.F., Ganser-Pornillos B.K., Pornillos O. Biochemical reconstitution of HIV-1 assembly and maturation. J. Virol. 2020;94:e01844-19. doi: 10.1128/JVI.01844-19. PubMed DOI PMC

Mattei S., Anders M., Konvalinka J., Kräusslich H.-G., Briggs J.A.G., Müller B. Induced maturation of human immunodeficiency virus. J. Virol. 2014;88:13722–13731. doi: 10.1128/JVI.02271-14. PubMed DOI PMC

Nie Y., Bai F., Chaudhry M.A., Pratt R., Shapiro J.I., Liu J. The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci. Rep. 2020;10:6006. doi: 10.1038/s41598-020-61920-4. PubMed DOI PMC

Choi Y., Bowman J.W., Jung J.U. Autophagy during viral infection—A double-edged sword. Nat. Rev. Microbiol. 2018;16:341–354. doi: 10.1038/s41579-018-0003-6. PubMed DOI PMC

Burkard C., Verheije M.H., Haagmans B.L., van Kuppeveld F.J., Rottier P.J., Bosch B.J., de Haan C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015;89:4434–4448. doi: 10.1128/JVI.03274-14. PubMed DOI PMC

Lingemann M., McCarty T., Liu X., Buchholz U.J., Surman S., Martin S.E., Collins P.L., Munir S. The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog. 2019;15:e1007963. doi: 10.1371/journal.ppat.1007963. PubMed DOI PMC

Yang C.W., Chang H.Y., Lee Y.Z., Hsu H.Y., Lee S.J. The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol. Appl. Pharmacol. 2018;356:90–97. doi: 10.1016/j.taap.2018.07.028. PubMed DOI PMC

Yang C.W., Hsu H.Y., Chang H.Y., Lee Y.Z., Lee S.J. Natural cardenolides suppress coronaviral replication by downregulating JAK1 via a Na+/K+-ATPase independent proteolysis. Biochem. Pharmacol. 2020;180:114112. doi: 10.1016/j.bcp.2020.114122. PubMed DOI PMC

Cho J., Lee Y.J., Kim J.H., Kim S.i., Kim S.S., Choi B.S., Choi J.-H. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci. Rep. 2020;10:16200. doi: 10.1038/s41598-020-72879-7. PubMed DOI PMC

Plante K.S., Plante J.A., Fernandez D., Mirchandani D., Bopp N., Aguilar P.V., Sastry K.J., Newman R.A., Weaver S.C. Prophylactic and therapeutic inhibition of in vitro SARS-CoV-2 replication by oleandrin. bioRxiv. 2020 doi: 10.1101/2020.07.15.203489. DOI

E Souza K.F.C.S., Moraes B.P.T., de Paixão I.C.N.P., Burth P., Silva A.R., Gonçalves-de-Albuquerque C.F. Na+/K+-ATPase as a target of cardiac glycosides for the treatment of SARS-CoV-2 infection. Front. Pharmacol. 2021;12:624704. doi: 10.3389/fphar.2021.624704. PubMed DOI PMC

Plante K.S., Dwivedi V., Plante J.A., Fernandez D., Mirchandani D., Bopp N., Aguilar P.V., Park J.G., Tamayo P.P., Delgado J., et al. Antiviral activity of oleandrin and a defined extract of Nerium oleander against SARS-CoV-2. Biomed. Pharmacother. 2021;138:111457. doi: 10.1016/j.biopha.2021.111457. PubMed DOI PMC

Edwards M.R., Pietzsch C., Vausselin T., Shaw M.L., Bukreyev A., Basler C.F. High-throughput minigenome system for identifying small-molecule inhibitors of ebola virus replication. ACS Infect. Dis. 2015;1:380–387. doi: 10.1021/acsinfecdis.5b00053. PubMed DOI PMC

Dowall S.D., Bewley K., Watson R.J., Vasan S.S., Ghosh C., Konai M.M., Gausdal G., Lorens J.B., Long J., Barclay W., et al. Antiviral screening of multiple compounds against ebola virus. Viruses. 2016;8:277. doi: 10.3390/v8110277. PubMed DOI PMC

Du X.H., Zuo X.Y., Meng F., Wu F., Zhao X., Li C.F., Cheng G.H., Qin F.X.F. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem. Biophys. Res. Commun. 2020;522:862–868. doi: 10.1016/j.bbrc.2019.11.065. PubMed DOI

Griffiths P., Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 2021 doi: 10.1038/s41579-021-00582-z. PubMed DOI PMC

Kapoor A., Cai H.Y., Forman M., He R., Shamay M., Arav-Boger R. Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the hERG gene. Antimicrob. Agents Chemother. 2012;56:4891–4899. doi: 10.1128/AAC.00898-12. PubMed DOI PMC

Wang L., Wible B.A., Wan X., Ficker E. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking. J. Pharmacol. Exp. Ther. 2007;320:525–534. doi: 10.1124/jpet.106.113043. PubMed DOI

Pillozzi S., Brizzi M.F., Balzi M., Crociani O., Cherubini A., Guasti L., Bartolozzi B., Becchetti A., Wanke E., Bernabei P.A., et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia. 2002;16:1791–1798. doi: 10.1038/sj.leu.2402572. PubMed DOI

Charlton F.W., Pearson H.M., Hover S., Lippiat J.D., Fontana J., Barr J.N., Mankouri J. Ion channels as therapeutic targets for viral infections: Further discoveries and future perspectives. Viruses. 2020;12:844. doi: 10.3390/v12080844. PubMed DOI PMC

Cai H.Y., Wang H.Y.L., Venkatadri R., Fu D.X., Forman M., Bajaj S.O., Li H.Y., O’Doherty G.A., Arav-Boger R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med. Chem. Lett. 2014;5:395–399. doi: 10.1021/ml400529q. PubMed DOI PMC

Cohen T., Williams J.D., Opperman T.J., Sanchez R., Lurain N.S., Tortorella D. Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J. Virol. 2016;90:10715–10727. doi: 10.1128/JVI.01050-16. PubMed DOI PMC

Mettenleiter T.C., Klupp B.G., Granzow H. Herpesvirus assembly: A tale of two membranes. Curr. Opin. Microbiol. 2006;9:423–429. doi: 10.1016/j.mib.2006.06.013. PubMed DOI

Dodson A.W., Taylor T.J., Knipe D.M., Coen D.M. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology. 2007;366:340–348. doi: 10.1016/j.virol.2007.05.001. PubMed DOI PMC

Su C.T., Hsu J.T.A., Hsieh H.P., Lin P.H., Chen T.C., Kao C.L., Lee C.N., Chang S.Y. Anti-HSV activity of digitoxin and its possible mechanisms. Antivir. Res. 2008;79:62–70. doi: 10.1016/j.antiviral.2008.01.156. PubMed DOI

Cornelius F., Kanai R., Toyoshima C. A Structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J. Biol. Chem. 2013;288:6602–6616. doi: 10.1074/jbc.M112.442137. PubMed DOI PMC

Burt F.J., Rolph M.S., Rulli N.E., Mahalingam S., Heise M.T. Chikungunya: A re-emerging virus. Lancet. 2012;379:662–671. doi: 10.1016/S0140-6736(11)60281-X. PubMed DOI

Ashbrook A.W., Lentscher A.J., Zamora P.F., Silva L.A., May N.A., Bauer J.A., Morrison T.E., Dermody T.S. Antagonism of the sodium-potassium ATPase impairs chikungunya virus infection. mBio. 2016;7:e00693-16. doi: 10.1128/mBio.00693-16. PubMed DOI PMC

Cheung Y.Y., Chen K.C., Chen H.X., Seng E.K., Chu J.J.H. Antiviral activity of lanatoside C against dengue virus infection. Antivir. Res. 2014;111:93–99. doi: 10.1016/j.antiviral.2014.09.007. PubMed DOI

Norris M.J., Malhi M., Duan W., Ouyang H., Granados A., Cen Y., Tseng Y.C., Gubbay J., Maynes J., Moraes T.J. Targeting intracellular ion homeostasis for the control of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 2018;59:733–744. doi: 10.1165/rcmb.2017-0345OC. PubMed DOI

Hover S., Foster B., Barr J., Mankouri J. Viral dependence on cellular ion channels—An emerging anti-viral target? J. Gen. Virol. 2017;98:345–351. doi: 10.1099/jgv.0.000712. PubMed DOI

Asor R., Khaykelson D., Ben-nun-Shaul O., Oppenheim A., Raviv U. Effect of calcium ions and disulfide bonds on swelling of virus particles. ACS Omega. 2019;4:58–64. doi: 10.1021/acsomega.8b02753. PubMed DOI PMC

Wibowo J.T., Kellermann M.Y., Köck M., Putra M.Y., Murniasih T., Mohr K.I., Wink J., Praditya D.F., Steinmann E., Schupp P.J. Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Mar. Drugs. 2021;19:81. doi: 10.3390/md19020081. PubMed DOI PMC

Wang K., Xie S., Sun B. Viral proteins function as ion channels. Biochim. Biophys. Acta. 2011;1808:510–515. doi: 10.1016/j.bbamem.2010.05.006. PubMed DOI PMC

Guo J., Jia X.Y., Liu Y., Wang S.B., Cao J.Y., Zhang B., Xiao G.F., Wang W. Inhibition of Na+/K+ ATPase blocks Zika virus infection in mice. Commun. Biol. 2020;3:380. doi: 10.1038/s42003-020-1109-8. PubMed DOI PMC

Van den Hoogenhof M.M.G., Pinto Y.M., Creemers E.E. RNA Splicing. Circ. Res. 2016;118:454–468. doi: 10.1161/CIRCRESAHA.115.307872. PubMed DOI

Meyer F. Chapter Eight—Viral interactions with components of the splicing machinery. In: San Francisco M., San Francisco B., editors. Progress in Molecular Biology and Translational Science. Elsevier; Amsterdam, The Netherlands: 2016. pp. 241–268. PubMed DOI

Wong R.W., Balachandran A., Ostrowski M.A., Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9:e1003241. doi: 10.1371/journal.ppat.1003241. PubMed DOI PMC

Wong R.W., Lingwood C.A., Ostrowski M.A., Cabral T., Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 2018;8:850. doi: 10.1038/s41598-018-19298-x. PubMed DOI PMC

Singh S., Shenoy S., Nehete P.N., Yang P., Nehete B., Fontenot D., Yang G., Newman R.A., Sastry K.J. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia. 2013;84:32–39. doi: 10.1016/j.fitote.2012.10.017. PubMed DOI

Prinsloo G., Meyer J.J.M., Hussein A.A., Munoz E., Sanchez R. A cardiac glucoside with in vitro anti-HIV activity isolated from Elaeodendron croceum. Nat. Prod. Rep. 2010;24:1743–1746. doi: 10.1080/14786410903211912. PubMed DOI

Hartley C., Hartley M., Pardoe I., Knight A. Ionic contra-viral therapy (ICVT); a new approach to the treatment of DNA virus infections. Arch. Virol. 2006;151:2495–2501. doi: 10.1007/s00705-006-0824-x. PubMed DOI

Grosso F., Stoilov P., Lingwood C., Brown M., Cochrane A. Suppression of adenovirus replication by cardiotonic steroids. J. Virol. 2017;91:e01623-16. doi: 10.1128/JVI.01623-16. PubMed DOI PMC

Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., et al. Influenza. Nat. Rev. Dis. Primers. 2018;4:3. doi: 10.1038/s41572-018-0002-y. PubMed DOI PMC

Amarelle L., Katzen J., Shigemura M., Welch L.C., Cajigas H., Peteranderl C., Celli D., Herold S., Lecuona E., Sznajder J.I. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019;316:L1094–L1106. doi: 10.1152/ajplung.00173.2018. PubMed DOI PMC

Pollard B.S., Blancol J.C., Pollard J.R. Classical drug digitoxin inhibits influenza cytokine storm, with implications for Covid-19 therapy. In Vivo. 2020;34:3723–3730. doi: 10.21873/invivo.12221. PubMed DOI PMC

Bertol J.W., Rigotto C., de Padua R.M., Kreis W., Barardi C.R.M., Braga F.C., Simoes C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antivir. Res. 2011;92:73–80. doi: 10.1016/j.antiviral.2011.06.015. PubMed DOI

Wangteeraprasert R., Lipipun V., Gunaratnam M., Neidle S., Gibbons S., Likhitwitayawuid K. Bioactive compounds from Carissa spinarum. Phytother. Res. 2012;26:1496–1499. doi: 10.1002/ptr.4607. PubMed DOI

Boff L., Munkert J., Ottoni F.M., Schneider N.F.Z., Ramos G.S., Kreis W., de Andrade S.F., de Souza J.D., Braga F.C., Alves R.J., et al. Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur. J. Med. Chem. 2019;167:546–561. doi: 10.1016/j.ejmech.2019.01.076. PubMed DOI

Boff L., Schneider N.F.Z., Munkert J., Ottoni F.M., Ramos G.S., Kreis W., Braga F.C., Alves R.J., de Padua R.M., Simoes C.M.O. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch. Virol. 2020;165:1385–1396. doi: 10.1007/s00705-020-04562-1. PubMed DOI PMC

Rimpelová S., Zimmerman T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlářová P., Gurská S., Kuklíková L., Hajdůch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC

Bejček J., Spiwok V., Kmoníčková E., Ruml T., Rimpelová S. Cardiac glycosides: On their therapeutic potential for cancer treatment. Chem. Listy. 2021;115:4–12.

Newest 20 citations...

See more in
Medvik | PubMed

Cardiac Glycosides as Autophagy Modulators

. 2021 Nov 28 ; 10 (12) : . [epub] 20211128

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...