Repurposing Cardiac Glycosides: Drugs for Heart Failure Surmounting Viruses
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
34577097
PubMed Central
PMC8469069
DOI
10.3390/molecules26185627
PII: molecules26185627
Knihovny.cz E-resources
- Keywords
- COVID-19, Na+/K+-ATPase, cardiac steroids, coronavirus, digitoxin, digoxin, drug repurposing, lanatoside C, ouabain, virus entry,
- MeSH
- Antiviral Agents pharmacology therapeutic use MeSH
- COVID-19 MeSH
- Digitoxin MeSH
- Digoxin MeSH
- Virus Internalization drug effects MeSH
- Humans MeSH
- Neoplasms drug therapy MeSH
- Ouabain MeSH
- Pandemics MeSH
- Drug Repositioning methods MeSH
- Virus Replication drug effects MeSH
- SARS-CoV-2 MeSH
- Sodium-Potassium-Exchanging ATPase MeSH
- Cardiac Glycosides metabolism therapeutic use MeSH
- Heart Failure drug therapy virology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antiviral Agents MeSH
- Digitoxin MeSH
- Digoxin MeSH
- Ouabain MeSH
- Sodium-Potassium-Exchanging ATPase MeSH
- Cardiac Glycosides MeSH
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
See more in PubMed
Ghofrani H.A., Osterloh I.H., Grimminger F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov. 2006;5:689–702. doi: 10.1038/nrd2030. PubMed DOI PMC
Upputuri B., Pallapati M.S., Tarwater P., Srikantam A. Thalidomide in the treatment of erythema nodosum leprosum (ENL) in an outpatient setting: A five-year retrospective analysis from a leprosy referral centre in India. PLoS Negl. Trop. Dis. 2020;14:e0008678. doi: 10.1371/journal.pntd.0008678. PubMed DOI PMC
Zhang X., Luo H. Effects of thalidomide on growth and VEGF-A expression in SW480 colon cancer cells. Oncol. Lett. 2018;15:3313–3320. doi: 10.3892/ol.2017.7645. PubMed DOI PMC
Zhang Z.L., Liu Z.S., Sun Q. Effects of thalidomide on angiogenesis and tumor growth and metastasis of human hepatocellular carcinoma in nude mice. World J. Gastroenterol. 2005;11:216–220. doi: 10.3748/wjg.v11.i2.216. PubMed DOI PMC
Alberts M.J., Bergman D.L., Molner E., Jovanovic B.D., Ushiwata I., Teruya J. Antiplatelet effect of aspirin in patients with cerebrovascular disease. Stroke. 2004;35:175–178. doi: 10.1161/01.STR.0000106763.46123.F6. PubMed DOI
Rothwell P.M., Fowkes F.G.R., Belch J.F.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41. doi: 10.1016/S0140-6736(10)62110-1. PubMed DOI
Digitalis Investigation Group The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med. 1997;336:525–533. doi: 10.1056/NEJM199702203360801. PubMed DOI
Reuter H., Henderson S.A., Han T., Ross R.S., Goldhaber J.I., Philipson K.D. The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 2002;90:305–308. doi: 10.1161/hh0302.104562. PubMed DOI
Wang H.Y.L., Xin W., Zhou M., Stueckle T.A., Rojanasakul Y., O’Doherty G.A. Stereochemical survey of digitoxin monosaccharides. ACS Med. Chem. Lett. 2011;2:73–78. doi: 10.1021/ml100219d. PubMed DOI PMC
Barwe S.P., Anilkumar G., Moon S.Y., Zheng Y., Whitelegge J.P., Rajasekaran S.A., Rajasekaran A.K. Novel role for Na,K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol. Biol. Cell. 2005;16:1082–1094. doi: 10.1091/mbc.e04-05-0427. PubMed DOI PMC
Fujii T., Shimizu T., Yamamoto S., Funayama K., Fujita K., Tabuchi Y., Ikari A., Takeshima H., Sakai H. Crosstalk between Na+,K+-ATPase and a volume-regulated anion channel in membrane microdomains of human cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2018;1864:3792–3804. doi: 10.1016/j.bbadis.2018.09.014. PubMed DOI
Kometiani P., Liu L., Askari A. Digitalis-induced signaling by Na+/K+-ATPase in human breast cancer cells. Mol. Pharmacol. 2005;67:929–936. doi: 10.1124/mol.104.007302. PubMed DOI
Lee D.H., Oh S.C., Giles A.J., Jung J., Gilbert M.R., Park D.M. Cardiac glycosides suppress the maintenance of stemness and malignancy via inhibiting HIF-1α in human glioma stem cells. Oncotarget. 2017;8:40233–40245. doi: 10.18632/oncotarget.16714. PubMed DOI PMC
Tverskoi A.M., Sidorenko S.V., Klimanova E.A., Akimova O.A., Smolyaninova L.V., Lopina O.D., Orlov S.N. Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K. Biochemistry. 2016;81:876–883. doi: 10.1134/S0006297916080083. PubMed DOI
Zhang H., Qian D.Z., Tan Y.S., Lee K., Gao P., Ren Y.R., Rey S., Hammers H., Chang D., Pili R., et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc. Natl. Acad. Sci. USA. 2008;105:19579–19586. doi: 10.1073/pnas.0809763105. PubMed DOI PMC
Kumar A., De T., Mishra A., Mishra A.K. Oleandrin: A cardiac glycosides with potent cytotoxicity. Pharmacogn. Rev. 2013;7:131–139. doi: 10.4103/0973-7847.120512. PubMed DOI PMC
Kohls S., Scholz-Bottcher B.M., Teske J., Zark P., Rullkotter J. Cardiac glycosides from Yellow Oleander (Thevetia peruviana) seeds. Phytochemistry. 2012;75:114–127. doi: 10.1016/j.phytochem.2011.11.019. PubMed DOI
Welsh K.J., Huang R.S.P., Actor J.K., Dasgupta A. Rapid detection of the active cardiac glycoside convallatoxin of Lily of the valley using LOCI digoxin assay. Am. J. Clin. Pathol. 2014;142:307–312. doi: 10.1309/AJCPCOXF0O5XXTKD. PubMed DOI
Qi J., Zulfiker A.M., Li C., Good D., Wei M.Q. The development of toad toxins as potential therapeutic agents. Toxins. 2018;10:336. doi: 10.3390/toxins10080336. PubMed DOI PMC
Smedley S.R., Risteen R.G., Tonyai K.K., Pitino J.C., Hu Y.M., Ahmed Z.B., Christofel B.T., Gaber M., Howells N.R., Mosey C.F., et al. Bufadienolides (lucibufagins) from an ecologically aberrant firefly (Ellychnia corrusca) Chemoecology. 2017;27:141–153. doi: 10.1007/s00049-017-0240-6. DOI
Brower L.P., McEvoy P.B., Williamson K.L., Flannery M.A. Variation in cardiac glycoside content of Monarch butterflies from natural populations in eastern north America. Science. 1972;177:426–429. doi: 10.1126/science.177.4047.426. PubMed DOI
Bejček J., Jurášek M., Spiwok V., Rimpelová S. Quo vadis cardiac glycoside research? Toxins. 2021;13:344. doi: 10.3390/toxins13050344. PubMed DOI PMC
Melero C.P., Medarde M., San Feliciano A. A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules. 2000;5:51–58. doi: 10.3390/50100051. DOI
Bejček J., Spiwok V., Kmoníčková E., Rimpelová S. Na+/K+-ATPase revisited: On its mechanism of action, role in cancer, and activity modulation. Molecules. 2021;26:1905. doi: 10.3390/molecules26071905. PubMed DOI PMC
Cui X., Xie Z. Protein interaction and Na/K-ATPase-mediated signal transduction. Molecules. 2017;22:990. doi: 10.3390/molecules22060990. PubMed DOI PMC
Chang F., Steelman L.S., Shelton J.G., Lee J.T., Navolanic P.M., Blalock W.L., Franklin R., McCubrey J.A. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review) Int. J. Oncol. 2003;22:469–480. doi: 10.3892/ijo.22.3.469. PubMed DOI
Karas K., Salkowska A., Dastych J., Bachorzd R.A., Ratajewski M. Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed. Pharmacother. 2020;127:110106. doi: 10.1016/j.biopha.2020.110106. PubMed DOI
Takara K., Takagi K., Tsujimoto M., Ohnishi N., Yokoyama T. Digoxin up-regulates multidrug resistance transporter (MDR1) mRNA and simultaneously down-regulates steroid xenobiotic receptor mRNA. Biochem. Biophys. Res. Commun. 2003;306:116–120. doi: 10.1016/S0006-291X(03)00922-7. PubMed DOI
Manna S.K., Sreenivasan Y., Sarkar A. Cardiac glycoside inhibits IL-8-induced biological responses by downregulating IL-8 receptors through altering membrane fluidity. J. Cell Physiol. 2006;207:195–207. doi: 10.1002/jcp.20555. PubMed DOI
Škubník J., Pavlíčková V., Rimpelová S. Cardiac glycosides as immune system modulators. Biomolecules. 2021;11:659. doi: 10.3390/biom11050659. PubMed DOI PMC
Jones J.E., Le Sage V., Lakdawala S.S. Viral and host heterogeneity and their effects on the viral life cycle. Nat. Rev. Microbiol. 2021;19:272–282. doi: 10.1038/s41579-020-00449-9. PubMed DOI PMC
Miller C.M., Selvam S., Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. Wiley Interdiscip. Rev. RNA. 2021;12:e1613. doi: 10.1002/wrna.1613. PubMed DOI PMC
V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170. doi: 10.1038/s41579-020-00468-6. PubMed DOI PMC
Behrens A.J., Vasiljevic S., Pritchard L.K., Harvey D.J., Andev R.S., Krumm S.A., Struwe W.B., Cupo A., Kumar A., Zitzmann N., et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 2016;14:2695–2706. doi: 10.1016/j.celrep.2016.02.058. PubMed DOI PMC
Hernaez B., Alonso C. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J. Virol. 2010;84:2100–2109. doi: 10.1128/JVI.01557-09. PubMed DOI PMC
Macovei A., Radulescu C., Lazar C., Petrescu S., Durantel D., Dwek R.A., Zitzmann N., Nichita N.B. Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J. Virol. 2010;84:243–253. doi: 10.1128/JVI.01207-09. PubMed DOI PMC
Wei X., She G., Wu T., Xue C., Cao Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Vet. Res. 2020;51:10. doi: 10.1186/s13567-020-0739-7. PubMed DOI PMC
Lagache T., Sieben C., Meyer T., Herrmann A., Holcman D. Stochastic model of acidification, activation of hemagglutinin and escape of influenza viruses from an edosome. Front. Phys. 2017;5:25. doi: 10.3389/fphy.2017.00025. DOI
Jana A.K., May E.R. Atomistic dynamics of a viral infection process: Release of membrane lytic peptides from a non-enveloped virus. Sci. Adv. 2021;7:eabe1761. doi: 10.1126/sciadv.abe1761. PubMed DOI PMC
Zaitseva E., Zaitsev E., Melikov K., Arakelyan A., Marin M., Villasmil R., Margolis L.B., Melikyan G.B., Chernomordik L.V. Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe. 2017;22:99–110.e7. doi: 10.1016/j.chom.2017.06.012. PubMed DOI PMC
Lin X.P., Mintern J.D., Gleeson P.A. Macropinocytosis in different cell types: Similarities and differences. Membranes. 2020;10:177. doi: 10.3390/membranes10080177. PubMed DOI PMC
Rasmussen I., Vilhardt F., Beemon K.L. Macropinocytosis is the entry mechanism of amphotropic murine leukemia virus. J. Virol. 2015;89:1851–1866. doi: 10.1128/JVI.02343-14. PubMed DOI PMC
Rossman J.S., Leser G.P., Lamb R.A. Filamentous influenza virus enters cells via macropinocytosis. J. Virol. 2012;86:10950–10960. doi: 10.1128/JVI.05992-11. PubMed DOI PMC
Fernandez J., Portilho D.M., Danckaert A., Munier S., Becker A., Roux P., Zambo A., Shorte S., Jacob Y., Vidalain P.O., et al. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J. Biol. Chem. 2015;290:4631–4646. doi: 10.1074/jbc.M114.613133. PubMed DOI PMC
Pawlica P., Berthoux L. Cytoplasmic dynein promotes HIV-1 uncoating. Viruses. 2014;6:4195–4211. doi: 10.3390/v6114195. PubMed DOI PMC
Rabe B., Glebe D., Kann M. Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J. Virol. 2006;80:5465–5473. doi: 10.1128/JVI.02303-05. PubMed DOI PMC
Haffar O.K., Popov S., Dubrovsky L., Agostini I., Tang H., Pushkarsky T., Nadler S.G., Bukrinsky M. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J. Mol. Biol. 2000;299:359–368. doi: 10.1006/jmbi.2000.3768. PubMed DOI
Sonntag F., Bleker S., Leuchs B., Fischer R., Kleinschmidt J.A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 2006;80:11040–11054. doi: 10.1128/JVI.01056-06. PubMed DOI PMC
Pyeon D., Pearce S.M., Lank S.M., Ahlquist P., Lambert P.F. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 2009;5:e1000318. doi: 10.1371/journal.ppat.1000318. PubMed DOI PMC
Cann A.J. Replication of viruses. Encycl. Virol. 2008:406–412. doi: 10.1016/B978-012374410-4.00486-6. DOI
Rozov A., Khusainov I., El Omari K., Duman R., Mykhaylyk V., Yusupov M., Westhof E., Wagner A., Yusupova G. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 2019;10:2519. doi: 10.1038/s41467-019-10409-4. PubMed DOI PMC
O’Carroll I.P., Rein A. Viral nucleic acids. Encycl. Cell Biol. 2016:517–524. doi: 10.1016/B978-0-12-394447-4.10061-6. DOI
Engelman A., Cherepanov P. The structural biology of HIV-1: Mechanistic and therapeutic insights. Nat. Rev. Microbiol. 2012;10:279–290. doi: 10.1038/nrmicro2747. PubMed DOI PMC
Mertens J., Casado S., Mata C.P., Hernando-Pérez M., de Pablo P.J., Carrascosa J.L., Castón J.R. A protein with simultaneous capsid scaffolding and dsRNA-binding activities enhances the birnavirus capsid mechanical stability. Sci. Rep. 2015;5:13486. doi: 10.1038/srep13486. PubMed DOI PMC
Chamanian M., Purzycka K.J., Wille P.T., Ha J.S., McDonald D., Gao Y., Le Grice S.F., Arts E.J. A cis-acting element in retroviral genomic RNA links Gag-Pol ribosomal frameshifting to selective viral RNA encapsidation. Cell Host Microbe. 2013;13:181–192. doi: 10.1016/j.chom.2013.01.007. PubMed DOI PMC
Raghava S., Giorda K.M., Romano F.B., Heuck A.P., Hebert D.N. The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog. 2011;7:e1002116. doi: 10.1371/journal.ppat.1002116. PubMed DOI PMC
Jiang H., White E.J., Ríos-Vicil C.I., Xu J., Gomez-Manzano C., Fueyo J. Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J. Virol. 2011;85:4720–4729. doi: 10.1128/JVI.02032-10. PubMed DOI PMC
Jolly C., Sattentau Q.J. Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J. Virol. 2007;81:7873–7884. doi: 10.1128/JVI.01845-06. PubMed DOI PMC
Bigalke J.M., Heuser T., Nicastro D., Heldwein E.E. Membrane deformation and scission by the HSV-1 nuclear egress complex. Nat. Commun. 2014;5:4131. doi: 10.1038/ncomms5131. PubMed DOI PMC
Ipinmoroti A.O., Matthews Q.L. Extracellular vesicles: Roles in human viral infections, immune-diagnostic, and therapeutic applications. Pathogens. 2020;9:1056. doi: 10.3390/pathogens9121056. PubMed DOI PMC
Kucharska I., Ding P., Zadrozny K.K., Dick R.A., Summers M.F., Ganser-Pornillos B.K., Pornillos O. Biochemical reconstitution of HIV-1 assembly and maturation. J. Virol. 2020;94:e01844-19. doi: 10.1128/JVI.01844-19. PubMed DOI PMC
Mattei S., Anders M., Konvalinka J., Kräusslich H.-G., Briggs J.A.G., Müller B. Induced maturation of human immunodeficiency virus. J. Virol. 2014;88:13722–13731. doi: 10.1128/JVI.02271-14. PubMed DOI PMC
Nie Y., Bai F., Chaudhry M.A., Pratt R., Shapiro J.I., Liu J. The Na/K-ATPase α1 and c-Src form signaling complex under native condition: A crosslinking approach. Sci. Rep. 2020;10:6006. doi: 10.1038/s41598-020-61920-4. PubMed DOI PMC
Choi Y., Bowman J.W., Jung J.U. Autophagy during viral infection—A double-edged sword. Nat. Rev. Microbiol. 2018;16:341–354. doi: 10.1038/s41579-018-0003-6. PubMed DOI PMC
Burkard C., Verheije M.H., Haagmans B.L., van Kuppeveld F.J., Rottier P.J., Bosch B.J., de Haan C.A. ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells. J. Virol. 2015;89:4434–4448. doi: 10.1128/JVI.03274-14. PubMed DOI PMC
Lingemann M., McCarty T., Liu X., Buchholz U.J., Surman S., Martin S.E., Collins P.L., Munir S. The alpha-1 subunit of the Na+,K+-ATPase (ATP1A1) is required for macropinocytic entry of respiratory syncytial virus (RSV) in human respiratory epithelial cells. PLoS Pathog. 2019;15:e1007963. doi: 10.1371/journal.ppat.1007963. PubMed DOI PMC
Yang C.W., Chang H.Y., Lee Y.Z., Hsu H.Y., Lee S.J. The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol. Appl. Pharmacol. 2018;356:90–97. doi: 10.1016/j.taap.2018.07.028. PubMed DOI PMC
Yang C.W., Hsu H.Y., Chang H.Y., Lee Y.Z., Lee S.J. Natural cardenolides suppress coronaviral replication by downregulating JAK1 via a Na+/K+-ATPase independent proteolysis. Biochem. Pharmacol. 2020;180:114112. doi: 10.1016/j.bcp.2020.114122. PubMed DOI PMC
Cho J., Lee Y.J., Kim J.H., Kim S.i., Kim S.S., Choi B.S., Choi J.-H. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci. Rep. 2020;10:16200. doi: 10.1038/s41598-020-72879-7. PubMed DOI PMC
Plante K.S., Plante J.A., Fernandez D., Mirchandani D., Bopp N., Aguilar P.V., Sastry K.J., Newman R.A., Weaver S.C. Prophylactic and therapeutic inhibition of in vitro SARS-CoV-2 replication by oleandrin. bioRxiv. 2020 doi: 10.1101/2020.07.15.203489. DOI
E Souza K.F.C.S., Moraes B.P.T., de Paixão I.C.N.P., Burth P., Silva A.R., Gonçalves-de-Albuquerque C.F. Na+/K+-ATPase as a target of cardiac glycosides for the treatment of SARS-CoV-2 infection. Front. Pharmacol. 2021;12:624704. doi: 10.3389/fphar.2021.624704. PubMed DOI PMC
Plante K.S., Dwivedi V., Plante J.A., Fernandez D., Mirchandani D., Bopp N., Aguilar P.V., Park J.G., Tamayo P.P., Delgado J., et al. Antiviral activity of oleandrin and a defined extract of Nerium oleander against SARS-CoV-2. Biomed. Pharmacother. 2021;138:111457. doi: 10.1016/j.biopha.2021.111457. PubMed DOI PMC
Edwards M.R., Pietzsch C., Vausselin T., Shaw M.L., Bukreyev A., Basler C.F. High-throughput minigenome system for identifying small-molecule inhibitors of ebola virus replication. ACS Infect. Dis. 2015;1:380–387. doi: 10.1021/acsinfecdis.5b00053. PubMed DOI PMC
Dowall S.D., Bewley K., Watson R.J., Vasan S.S., Ghosh C., Konai M.M., Gausdal G., Lorens J.B., Long J., Barclay W., et al. Antiviral screening of multiple compounds against ebola virus. Viruses. 2016;8:277. doi: 10.3390/v8110277. PubMed DOI PMC
Du X.H., Zuo X.Y., Meng F., Wu F., Zhao X., Li C.F., Cheng G.H., Qin F.X.F. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem. Biophys. Res. Commun. 2020;522:862–868. doi: 10.1016/j.bbrc.2019.11.065. PubMed DOI
Griffiths P., Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 2021 doi: 10.1038/s41579-021-00582-z. PubMed DOI PMC
Kapoor A., Cai H.Y., Forman M., He R., Shamay M., Arav-Boger R. Human cytomegalovirus inhibition by cardiac glycosides: Evidence for involvement of the hERG gene. Antimicrob. Agents Chemother. 2012;56:4891–4899. doi: 10.1128/AAC.00898-12. PubMed DOI PMC
Wang L., Wible B.A., Wan X., Ficker E. Cardiac glycosides as novel inhibitors of human ether-a-go-go-related gene channel trafficking. J. Pharmacol. Exp. Ther. 2007;320:525–534. doi: 10.1124/jpet.106.113043. PubMed DOI
Pillozzi S., Brizzi M.F., Balzi M., Crociani O., Cherubini A., Guasti L., Bartolozzi B., Becchetti A., Wanke E., Bernabei P.A., et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia. 2002;16:1791–1798. doi: 10.1038/sj.leu.2402572. PubMed DOI
Charlton F.W., Pearson H.M., Hover S., Lippiat J.D., Fontana J., Barr J.N., Mankouri J. Ion channels as therapeutic targets for viral infections: Further discoveries and future perspectives. Viruses. 2020;12:844. doi: 10.3390/v12080844. PubMed DOI PMC
Cai H.Y., Wang H.Y.L., Venkatadri R., Fu D.X., Forman M., Bajaj S.O., Li H.Y., O’Doherty G.A., Arav-Boger R. Digitoxin analogues with improved anticytomegalovirus activity. ACS Med. Chem. Lett. 2014;5:395–399. doi: 10.1021/ml400529q. PubMed DOI PMC
Cohen T., Williams J.D., Opperman T.J., Sanchez R., Lurain N.S., Tortorella D. Convallatoxin-induced reduction of methionine import effectively inhibits human cytomegalovirus infection and replication. J. Virol. 2016;90:10715–10727. doi: 10.1128/JVI.01050-16. PubMed DOI PMC
Mettenleiter T.C., Klupp B.G., Granzow H. Herpesvirus assembly: A tale of two membranes. Curr. Opin. Microbiol. 2006;9:423–429. doi: 10.1016/j.mib.2006.06.013. PubMed DOI
Dodson A.W., Taylor T.J., Knipe D.M., Coen D.M. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. Virology. 2007;366:340–348. doi: 10.1016/j.virol.2007.05.001. PubMed DOI PMC
Su C.T., Hsu J.T.A., Hsieh H.P., Lin P.H., Chen T.C., Kao C.L., Lee C.N., Chang S.Y. Anti-HSV activity of digitoxin and its possible mechanisms. Antivir. Res. 2008;79:62–70. doi: 10.1016/j.antiviral.2008.01.156. PubMed DOI
Cornelius F., Kanai R., Toyoshima C. A Structural view on the functional importance of the sugar moiety and steroid hydroxyls of cardiotonic steroids in binding to Na,K-ATPase. J. Biol. Chem. 2013;288:6602–6616. doi: 10.1074/jbc.M112.442137. PubMed DOI PMC
Burt F.J., Rolph M.S., Rulli N.E., Mahalingam S., Heise M.T. Chikungunya: A re-emerging virus. Lancet. 2012;379:662–671. doi: 10.1016/S0140-6736(11)60281-X. PubMed DOI
Ashbrook A.W., Lentscher A.J., Zamora P.F., Silva L.A., May N.A., Bauer J.A., Morrison T.E., Dermody T.S. Antagonism of the sodium-potassium ATPase impairs chikungunya virus infection. mBio. 2016;7:e00693-16. doi: 10.1128/mBio.00693-16. PubMed DOI PMC
Cheung Y.Y., Chen K.C., Chen H.X., Seng E.K., Chu J.J.H. Antiviral activity of lanatoside C against dengue virus infection. Antivir. Res. 2014;111:93–99. doi: 10.1016/j.antiviral.2014.09.007. PubMed DOI
Norris M.J., Malhi M., Duan W., Ouyang H., Granados A., Cen Y., Tseng Y.C., Gubbay J., Maynes J., Moraes T.J. Targeting intracellular ion homeostasis for the control of respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 2018;59:733–744. doi: 10.1165/rcmb.2017-0345OC. PubMed DOI
Hover S., Foster B., Barr J., Mankouri J. Viral dependence on cellular ion channels—An emerging anti-viral target? J. Gen. Virol. 2017;98:345–351. doi: 10.1099/jgv.0.000712. PubMed DOI
Asor R., Khaykelson D., Ben-nun-Shaul O., Oppenheim A., Raviv U. Effect of calcium ions and disulfide bonds on swelling of virus particles. ACS Omega. 2019;4:58–64. doi: 10.1021/acsomega.8b02753. PubMed DOI PMC
Wibowo J.T., Kellermann M.Y., Köck M., Putra M.Y., Murniasih T., Mohr K.I., Wink J., Praditya D.F., Steinmann E., Schupp P.J. Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Mar. Drugs. 2021;19:81. doi: 10.3390/md19020081. PubMed DOI PMC
Wang K., Xie S., Sun B. Viral proteins function as ion channels. Biochim. Biophys. Acta. 2011;1808:510–515. doi: 10.1016/j.bbamem.2010.05.006. PubMed DOI PMC
Guo J., Jia X.Y., Liu Y., Wang S.B., Cao J.Y., Zhang B., Xiao G.F., Wang W. Inhibition of Na+/K+ ATPase blocks Zika virus infection in mice. Commun. Biol. 2020;3:380. doi: 10.1038/s42003-020-1109-8. PubMed DOI PMC
Van den Hoogenhof M.M.G., Pinto Y.M., Creemers E.E. RNA Splicing. Circ. Res. 2016;118:454–468. doi: 10.1161/CIRCRESAHA.115.307872. PubMed DOI
Meyer F. Chapter Eight—Viral interactions with components of the splicing machinery. In: San Francisco M., San Francisco B., editors. Progress in Molecular Biology and Translational Science. Elsevier; Amsterdam, The Netherlands: 2016. pp. 241–268. PubMed DOI
Wong R.W., Balachandran A., Ostrowski M.A., Cochrane A. Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog. 2013;9:e1003241. doi: 10.1371/journal.ppat.1003241. PubMed DOI PMC
Wong R.W., Lingwood C.A., Ostrowski M.A., Cabral T., Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci. Rep. 2018;8:850. doi: 10.1038/s41598-018-19298-x. PubMed DOI PMC
Singh S., Shenoy S., Nehete P.N., Yang P., Nehete B., Fontenot D., Yang G., Newman R.A., Sastry K.J. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia. 2013;84:32–39. doi: 10.1016/j.fitote.2012.10.017. PubMed DOI
Prinsloo G., Meyer J.J.M., Hussein A.A., Munoz E., Sanchez R. A cardiac glucoside with in vitro anti-HIV activity isolated from Elaeodendron croceum. Nat. Prod. Rep. 2010;24:1743–1746. doi: 10.1080/14786410903211912. PubMed DOI
Hartley C., Hartley M., Pardoe I., Knight A. Ionic contra-viral therapy (ICVT); a new approach to the treatment of DNA virus infections. Arch. Virol. 2006;151:2495–2501. doi: 10.1007/s00705-006-0824-x. PubMed DOI
Grosso F., Stoilov P., Lingwood C., Brown M., Cochrane A. Suppression of adenovirus replication by cardiotonic steroids. J. Virol. 2017;91:e01623-16. doi: 10.1128/JVI.01623-16. PubMed DOI PMC
Krammer F., Smith G.J.D., Fouchier R.A.M., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G., et al. Influenza. Nat. Rev. Dis. Primers. 2018;4:3. doi: 10.1038/s41572-018-0002-y. PubMed DOI PMC
Amarelle L., Katzen J., Shigemura M., Welch L.C., Cajigas H., Peteranderl C., Celli D., Herold S., Lecuona E., Sznajder J.I. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019;316:L1094–L1106. doi: 10.1152/ajplung.00173.2018. PubMed DOI PMC
Pollard B.S., Blancol J.C., Pollard J.R. Classical drug digitoxin inhibits influenza cytokine storm, with implications for Covid-19 therapy. In Vivo. 2020;34:3723–3730. doi: 10.21873/invivo.12221. PubMed DOI PMC
Bertol J.W., Rigotto C., de Padua R.M., Kreis W., Barardi C.R.M., Braga F.C., Simoes C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antivir. Res. 2011;92:73–80. doi: 10.1016/j.antiviral.2011.06.015. PubMed DOI
Wangteeraprasert R., Lipipun V., Gunaratnam M., Neidle S., Gibbons S., Likhitwitayawuid K. Bioactive compounds from Carissa spinarum. Phytother. Res. 2012;26:1496–1499. doi: 10.1002/ptr.4607. PubMed DOI
Boff L., Munkert J., Ottoni F.M., Schneider N.F.Z., Ramos G.S., Kreis W., de Andrade S.F., de Souza J.D., Braga F.C., Alves R.J., et al. Potential anti-herpes and cytotoxic action of novel semisynthetic digitoxigenin-derivatives. Eur. J. Med. Chem. 2019;167:546–561. doi: 10.1016/j.ejmech.2019.01.076. PubMed DOI
Boff L., Schneider N.F.Z., Munkert J., Ottoni F.M., Ramos G.S., Kreis W., Braga F.C., Alves R.J., de Padua R.M., Simoes C.M.O. Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch. Virol. 2020;165:1385–1396. doi: 10.1007/s00705-020-04562-1. PubMed DOI PMC
Rimpelová S., Zimmerman T., Drašar P.B., Dolenský B., Bejček J., Kmoníčková E., Cihlářová P., Gurská S., Kuklíková L., Hajdůch M., et al. Steroid glycosides hyrcanoside and deglucohyrcanoside: On isolation, structural identification and anticancer activity. Foods. 2021;10:136. doi: 10.3390/foods10010136. PubMed DOI PMC
Bejček J., Spiwok V., Kmoníčková E., Ruml T., Rimpelová S. Cardiac glycosides: On their therapeutic potential for cancer treatment. Chem. Listy. 2021;115:4–12.