COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34580545
PubMed Central
PMC8457751
DOI
10.1016/j.biocon.2021.109076
PII: S0006-3207(21)00128-2
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 lockdown, Mesocarnivores, Traffic flow, Ungulates, Wildlife crash reporting systems, Wildlife-vehicle collisions,
- Publikační typ
- časopisecké články MeSH
Millions of wild animals are killed annually on roads worldwide. During spring 2020, the volume of road traffic was reduced globally as a consequence of the COVID-19 pandemic. We gathered data on wildlife-vehicle collisions (WVC) from Czechia, Estonia, Finland, Hungary, Israel, Norway, Slovenia, Spain, Sweden, and for Scotland and England within the United Kingdom. In all studied countries WVC statistics tend to be dominated by large mammals (various deer species and wild boar), while information on smaller mammals as well as birds are less well recorded. The expected number of WVC for 2020 was predicted on the basis of 2015-2019 WVC time series representing expected WVC numbers under normal traffic conditions. Then, the forecasted and reported WVC data were compared. The results indicate varying levels of WVC decrease between countries during the COVID-19 related traffic flow reduction (CRTR). While no significant change was determined in Sweden, where the state-wide response to COVID-19 was the least intensive, a decrease as marked as 37.4% was identified in Estonia. The greatest WVC decrease, more than 40%, was determined during the first weeks of CRTR for Estonia, Spain, Israel, and Czechia. Measures taken during spring 2020 allowed the survival of large numbers of wild animals which would have been killed under normal traffic conditions. The significant effects of even just a few weeks of reduced traffic, help to highlight the negative impacts of roads on wildlife mortality and the need to boost global efforts of wildlife conservation, including systematic gathering of roadkill data.
CDV Transport Research Centre Lisenska 33a Brno 636 00 Czechia
Environmental Protection College Trg mladosti 7 3320 Velenje Slovenia
Langbein Wildlife Associates Greenleas Chapel Cleeve Minehead TA24 6HY United Kingdom
Metsähallitus Wildlife Service Finland Pohjoispuisto 7 FI 28100 Pori Finland
Norwegian Institute for Nature Research P O Box 5685 Torgarden NO 7485 Trondheim Norway
Ramat Hanadiv Nature Park Zikhron Yaakov 3095202 Israel
Slovenian Forestry Institute Večna pot 2 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Bates A.E., Primack R.B., Moraga P., Duarte C.M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 2020;248:108665. doi: 10.1016/j.biocon.2020.108665. PubMed DOI PMC
Bíl M., Andrášik R. The effect of wildlife carcass underreporting on KDE+ hotspots identification and importance. J. Environ. Manag. 2020;275:111254. doi: 10.1016/j.jenvman.2020.111254. PubMed DOI
Bíl, M., Kubeček, J., Sedoník, J., Andrášik, R., 2017. Srazenazver.cz: A system for evidence of animal-vehicle collisions along transportation networks. Biol. Conserv. 213PA, pp. 167–174. 10.1016/j.biocon.2017.07.012. DOI
Bíl M., Kubeček J., Andrášik R. Ungulate-vehicle collision risk and traffic volume on roads. Eur. J. Wildl. Res. 2020;66:59. doi: 10.1007/s10344-020-01397-8. DOI
Bíl M., Heigl F., Janoška Z., Vercayie D., Perkins S.E. Benefits and challenges of collaborating with volunteers: examples from National Wildlife Roadkill Reporting Systems in Europe. J. Nat. Conserv. 2020;54C:125798. doi: 10.1016/j.jnc.2020.125798. DOI
Bissonette, J. A., Kassar, C. A., Cook, L. J., 2008. Assessment of costs associated with deer–vehicle collisions: human death and injury, vehicle damage, and deer loss. Human–Wildlife Interactions: 2, 1, Article 9. DOI: 10.26077/ns32-mk60. DOI
Chapron G., et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science. 2014;346:1517–1519. doi: 10.1126/science.1257553. PubMed DOI
Corlett R.T., Primack R.B., Devictor V., Maas B., Goswami V.R., Bates A.E., Koh L.P., Regan T.J., Loyola R., Pakeman R.J. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 2020;246:108571. PubMed PMC
Faragó, S., László, R, 2017. Magyar Vadelhullás monitoring, 2015/2016 vadászati év. Monitoring jelentés (Hungarian Wildlife Mortality Monitoring, 2015/2016 Hunting Year. Monitoring report) University of Sopron, pp. 71.
Forman R.T., Alexander L.E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 1998;29:207–231.
Garrote G., Fernández-López J., López G., Ruiz G., Simón M.A. Prediction of Iberian lynx road–mortality in southern Spain: a new approach using the MaxEnt algorithm. Anim. Biodivers. Conserv. 2018;41(2):217–225. doi: 10.32800/abc.2018.41.0217. DOI
Grilo C., Koroleva E., Andrášik R., Bíl M., Gonzalez-Suarez M. Roadkill risk and vulnerability in European birds and mammals. Front. Ecol. Environ. 2020;18(6) doi: 10.1002/fee.2216. DOI
Hothorn, T., Brandl, R., Müller, J., 2012. Large-scale model-based assessment of deer–vehicle collision risk. PLoS One 7 (2), e29510, 10.1371. 10.1371/journal.pone.0029510. PubMed DOI PMC
Hothorn T., Müller J., Held L., Möst L., Mysterud A. Temporal patterns of deer–vehicle collisions consistent with deer activity pattern and density increase but not general accident risk. Accid. Anal. Prev. 2015;81:143–152. PubMed
Hyndman R., Athanasopoulos G., Bergmeir C., Caceres G., Chhay L., O'Hara-Wild M., Petropoulos F., Razbash S., Wang E., Yasmeen F. Forecast: forecasting functions for time series and linear models. R package version 8.13. 2020. https://pkg.robjhyndman.com/forecast/
Hyndman R.J., Athanasopoulos G. 2nd edition. Melbourne, Australia; OTexts: 2018. Forecasting: Principles and Practice.
Jacobson, S., Bliss-Ketchum, L., De Rivera, C., Smith, W. P., 2016. A behavior based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7:article e01345 doi:Ecosphere 7(4):e01345. 10.1002/ecs2.1345. DOI
Jägerbrand, A.K., Gren, I-M., Seiler, A., Johansson, Ö., 2018. Uppdatering och nya effektsamband i effektmodellen för viltolyckor. (Update on and new cause-effect relationships in wildlife-vehicle collision models). Calluna reports 2018-04-03. Calluna AB, Linköping, Sweden. http://www.calluna.se/userfiles/files/6_Uppdatering_effektmodell_viltolyckor_2018.pdf.
Kruuse, M., Enno, S-E., Oja, T. 2017, May 14–18. Using available existing data for analysing temporal patterns of traffic collisions related to large ungulates. [Conference poster presentation]. ICOET - The 2017 International Conference on Ecology & Transportation, Salt Lake City, UT, USA. DOI: 10.13140/RG.2.2.26896.61440.
Langbein J., 2011. Monitoring reported deer road casualties and related accidents in England to 2010. The Deer Initiative, Wrexham, UK. Research Report 2011/3. http://www.deercollisions.co.uk/ftp/DI%20England%20Monitoring%20DVCs%20to%202010/DI-DVC_England2011_Main_final_rev.pdf.
Langbein, J., 2019. Deer-vehicle collision (DVC) data collection and analysis 2016–2018. Scottish Natural Heritage Research Report No. 1158. https://www.nature.scot/naturescot-research-report-1158-deer-vehicle-collision-dvc-data-collection-and-analysis-2016-2018.
Langbein J., Putman R., Pokorny B. In: Ungulate Management in Europe: Problems and Practices. Putman R., Apollonio M., Andersen R., editors. Cambridge University Press; Cambridge: 2011. Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation; pp. 215–259.
Linnell J.D.C., Cretois B., Nilsen E.B., Rolandsen C.M., Solberg E.J., Veiberg V., Kaczensky P., Van Moorter B., Panzacchi M., Rauset G.R., Kaltenborn B. The challenges and opportunities of coexisting with wild ungulates in the human-dominated landscapes of Europe’s Anthropocene. Biol. Conserv. 2020;244:108500. doi: 10.1016/j.biocon.2020.108500. DOI
Mysterud A. Temporal variation in the number of car-killed red deer Cervus elaphus in Norway. Wildl. Biol. 2004;10:203–211. doi: 10.2981/wlb.2004.026. DOI
Nelli L., Langbein J., Watson P., Putman R. Mapping risk: quantifying and predicting the risk of deer-vehicle collisions on major roads in England. Mamm. Biol. 2018;91:71–78. doi: 10.1016/j.mambio.2018.03.01. DOI
Niemi M., Rolandsen C.M., Neumann W., Kukko T., Tiilikainen R., Pusenius J., Solberg E.J., Ericsson G. Temporal patterns of moose-vehicle collisions with and without personal injuries. Accid. Anal. Prev. 2017;9898:167–173. doi: 10.1016/j.aap.2016.09.024. PubMed DOI
Oslis, 2020. Osrednji slovenski lovsko-informacijski sistem. http://oslis.gozdis.si/ (in Slovene).
Pagany R. Wildlife-vehicle collisions – influencing factors, data collection and research methods. Biol. Conserv. 2020;251:108758.
Palazón S., Melero Y., Gómez A., López de Luzuriaga J., Podra M., Gosàlbez J. Causes and patterns of human-induced mortality in the critically endangered European mink Mustela lutreola in Spain. Oryx. 2012;46:614–616. doi: 10.1017/S0030605312000920. DOI
Pokorny B. Roe deer–vehicle collisions in Slovenia: situation, mitigation strategy and countermeasures. Veterinarski Arhiv. 2006;76:177–187.
Putman R., Appolonio M., Andersen R., editors. Ungulate Management in Europe: Problems and Practices. Cambridge University Press; 2011.
Rolandsen C.M., Solberg E.J., Herfindal I., Van Moorter B., Sæther B.-E. Large-scale spatiotemporal variation in road mortality of moose: is it all about population density? Ecosphere. 2011;2:1–12. doi: 10.1890/ES11-00169.1. DOI
Rutz C., Loretto M.-C., Bates A.E., Davidson S.C., Duarte C.M., Jetz W., Johnson M., Kato A., Kays R., Mueller T., Primack R.B., Ropert-Coudert Y., Tucker M.A., Wikelski M., Cagnacci F. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 2020;4:1156–1159. doi: 10.1038/s41559-020-1237-z. PubMed DOI
Schwartz A.L.W., Shilling F.M., Perkins S.E. The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 2020;66:18. doi: 10.1007/s10344-019-1357-4. DOI
Seiler A. Predicting locations of moose-vehicle collisions in Sweden. J. Appl. Ecol. 2005;42:371–382. doi: 10.1111/j.1365-2664.2005.01013.x. DOI
Seiler A., Helldin J.O. In: The Ecology of Transportation: Managing Mobility for the Environment. Davenport J., Davenport J.L., editors. Kluwer; Amsterdam: 2006. Mortality in wildlife due to transportation; pp. 165–190. DOI
Seiler, A., Willebrand, S., Olsson, M., Wahlman, H., 2019. Viltolyckskartor - Teknisk beskrivning för datahantering och produktion. (Wildlife-vehicle accident maps - technical description for data management and production.). Swedish Transport Administration, Publication 179, TVD-52097. Borlänge, Sweden. http://trafikverket.diva-portal.org/smash/record.jsf?pid=diva2%3A1366843&dswid=-5498.
Shilling F., Collinson W., Bil M., Vercayie D., Heigl F., Perkins S.E., MacDougall S. Designing wildlife-vehicle conflict observation systems to inform ecology and transportation studies. Biol. Conserv. 2020;251:108797. doi: 10.1016/j.biocon.2020.108797. DOI
Shilling F., Nguyen T., Saleh M., Kyaw M., Tapia K., Trujillo G., Bejarano M., Waetjen D.P., Peterson J., Kalisz G., Sejour R., Croston S., Ham E. A Reprieve from US Wildlife Mortality on Roads during the COVID-19 Pandemic. Biol. Conserv. 2021;256:109013. PubMed PMC
Solberg E.J., Rolandsen C.M., Herfindal I., Heim M. Moose and deer-vehicle accidents in Norway during the period 1970-2007. NINA Report. 2009;463 (In Norwegian with English summary)
van Langevelde F., Jaarsma C.F. Modeling the effect of traffic calming on local animal population persistence. Ecol. Soc. 2009;14(39)