Trained Immunity as an Adaptive Branch of Innate Immunity
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
61388971
RVO
CEP Register
PubMed
34639025
PubMed Central
PMC8508929
DOI
10.3390/ijms221910684
PII: ijms221910684
Knihovny.cz E-resources
- Keywords
- NK cells, basophils, glucan, macrophages, trained immunity,
- MeSH
- Adaptive Immunity * MeSH
- beta-Glucans metabolism MeSH
- Immunity, Cellular MeSH
- Killer Cells, Natural immunology metabolism MeSH
- Homeostasis immunology MeSH
- Leukocytes immunology metabolism MeSH
- Humans MeSH
- Lymphocytes immunology metabolism MeSH
- Macrophages immunology metabolism MeSH
- Monocytes immunology metabolism MeSH
- Disease Susceptibility MeSH
- Immunity, Innate * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- beta-Glucans MeSH
The concept of trained immunity has become one of the most interesting and potentially commercially and clinically relevant ideas of current immunology. Trained immunity is realized by the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-protect against other infectious agents. It remains possible, however, that some of the observed changes are simply caused by increased levels of immune reactions resulting from supplementation with immunomodulators, such as glucan. In addition, the question of whether we can talk about trained immunity in cells with a life span of only few days is still unresolved.
Department of Pathology University of Louisville Louisville KY 40202 USA
Laboratory of Immunotherapy Institute of Microbiology CAS 142 20 Prague Czech Republic
See more in PubMed
Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011;30:16–34. doi: 10.3109/08830185.2010.529976. PubMed DOI
Medzhitov R., Janeway C., Jr. Innate immune recognition: Mechanisms and pathways. Immunol. Rev. 2000;173:89–97. doi: 10.1034/j.1600-065X.2000.917309.x. PubMed DOI
Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040. PubMed DOI
Santoni G., Cardinali C., Morelli M.B., Santoni M., Nabissi M., Amantini C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation. 2015;12:21. doi: 10.1186/s12974-015-0239-2. PubMed DOI PMC
Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. PubMed DOI
Matzinger P. The evolution of the danger theory. Interview by Lauren Constable, Commissioning Editor. Expert Rev. Clin. Immunol. 2012;8:311–317. doi: 10.1586/eci.12.21. PubMed DOI PMC
Cooper D., Eleftherianos I. Memory and specificity in the insect immune system: Current perspectives and future challenges. Front. Immunol. 2017;8:539. doi: 10.3389/fimmu.2017.00539. PubMed DOI PMC
Coustau C., Kurtz J., Moret Y. A novel mechanism of immune memory unveiled at the invertebrate-parasite interface. Trends Parasitol. 2016;32:353–355. doi: 10.1016/j.pt.2016.02.005. PubMed DOI
Kurtz J. Specific memory within innate immune systems. Trends Immunol. 2005;26:186–192. doi: 10.1016/j.it.2005.02.001. PubMed DOI
Kurtz J., Franz K. Innate defence: Evidence for memory in invertebrate immunity. Nature. 2003;425:37–38. doi: 10.1038/425037a. PubMed DOI
Conrath U., Beckers G.J., Langenbach C.J., Jaskiewicz M.R. Priming for enhanced defense. Annu. Rev. Phytopathol. 2015;53:97–119. doi: 10.1146/annurev-phyto-080614-120132. PubMed DOI
Kachroo A., Robin G.P. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 2013;16:527–533. doi: 10.1016/j.pbi.2013.06.019. PubMed DOI
Palmieri B., Vadala M., Palmieri L. Immune memory: An evolutionary perspective. Hum. Vaccines Immunother. 2021;17:1604–1606. doi: 10.1080/21645515.2020.1846396. PubMed DOI PMC
Gourbal B., Pinaud S., Beckers G.J.M., Van Der Meer J.W.M., Conrath U., Netea M.G. Innate immune memory: An evolutionary perspective. Immunol. Rev. 2018;283:21–40. doi: 10.1111/imr.12647. PubMed DOI
Purvis A., Hector A. Getting the measure of biodiversity. Nature. 2000;405:212–219. doi: 10.1038/35012221. PubMed DOI
Milutinovic B., Kurtz J. Immune memory in invertebrates. Semin. Immunol. 2016;28:328–342. doi: 10.1016/j.smim.2016.05.004. PubMed DOI
Reimer-Michalski E.M., Conrath U. Innate immune memory in plants. Semin. Immunol. 2016;28:319–327. doi: 10.1016/j.smim.2016.05.006. PubMed DOI
Netea M.G., Joosten L.A., Latz E., Mills K.H., Natoli G., Stunnenberg H.G., O’Neill L.A., Xavier R.J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098. PubMed DOI PMC
Netea M.G., van der Meer J.W. Trained immunity: An ancient way of remembering. Cell Host Microbe. 2017;21:297–300. doi: 10.1016/j.chom.2017.02.003. PubMed DOI
Netea M.G., Quintin J., van der Meer J.W. Trained immunity: A memory for innate host defense. Cell Host Microbe. 2011;9:355–361. doi: 10.1016/j.chom.2011.04.006. PubMed DOI
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 2016;16:35–50. doi: 10.1038/nri.2015.8. PubMed DOI
Sharma D., Kanneganti T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016;213:617–629. doi: 10.1083/jcb.201602089. PubMed DOI PMC
Guo H., Callaway J.B., Ting J.P. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Menu P., Vince J.E. The NLRP3 inflammasome in health and disease: The good, the bad and the ugly. Clin. Exp. Immunol. 2011;166:1–15. doi: 10.1111/j.1365-2249.2011.04440.x. PubMed DOI PMC
Bekkering S., Quintin J., Joosten L.A., van der Meer J.W., Netea M.G., Riksen N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 2014;34:1731–1738. doi: 10.1161/ATVBAHA.114.303887. PubMed DOI
Thorburn A.N., Macia L., Mackay C.R. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity. 2014;40:833–842. doi: 10.1016/j.immuni.2014.05.014. PubMed DOI
Hirano M., Das S., Guo P., Cooper M.D. The evolution of adaptive immunity in vertebrates. Adv. Immunol. 2011;109:125–157. doi: 10.1016/B978-0-12-387664-5.00004-2. PubMed DOI
Sima P., Vetvicka V. Evolution of Immune Functions. CRC Press; Boca Raton, FL, USA: 1990.
Větvicčka V., šíma P. Evolutionary Mechanisms of Defense Reactions. Birkhauser Verlag; Basel, Switzerland: Boston, MA, USA: 1998. p. 21.196 p.
Netea M.G., Dominguez-Andres J., Barreiro L.B., Chavakis T., Divangahi M., Fuchs E., Joosten L.A.B., van der Meer J.W.M., Mhlanga M.M., Mulder W.J.M., et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020;20:375–388. doi: 10.1038/s41577-020-0285-6. PubMed DOI PMC
Mack M., Schneider M.A., Moll C., Cihak J., Bruhl H., Ellwart J.W., Hogarth M.P., Stangassinger M., Schlondorff D. Identification of antigen-capturing cells as basophils. J. Immunol. 2005;174:735–741. doi: 10.4049/jimmunol.174.2.735. PubMed DOI
Denzel A., Maus U.A., Rodriguez Gomez M., Moll C., Niedermeier M., Winter C., Maus R., Hollingshead S., Briles D.E., Kunz-Schughart L.A., et al. Basophils enhance immunological memory responses. Nat. Immunol. 2008;9:733–742. doi: 10.1038/ni.1621. PubMed DOI
Ohnmacht C., Voehringer D. Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. J. Immunol. 2010;184:344–350. doi: 10.4049/jimmunol.0901841. PubMed DOI
Schwartz C., Voehringer D. Basophils: Important emerging players in allergic and anti-parasite responses. Bioessays. 2011;33:423–426. doi: 10.1002/bies.201100028. PubMed DOI
Glatman Zaretsky A., Engiles J.B., Hunter C.A. Infection-induced changes in hematopoiesis. J. Immunol. 2014;192:27–33. doi: 10.4049/jimmunol.1302061. PubMed DOI PMC
Kaufmann E., Sanz J., Dunn J.L., Khan N., Mendonca L.E., Pacis A., Tzelepis F., Pernet E., Dumaine A., Grenier J.C., et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell. 2018;172:176–190.e19. doi: 10.1016/j.cell.2017.12.031. PubMed DOI
Mitroulis I., Ruppova K., Wang B., Chen L.S., Grzybek M., Grinenko T., Eugster A., Troullinaki M., Palladini A., Kourtzelis I., et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell. 2018;172:147–161.e12. doi: 10.1016/j.cell.2017.11.034. PubMed DOI PMC
Grainger J.R., Grencis R.K. Neutrophils worm their way into macrophage long-term memory. Nat. Immunol. 2014;15:902–904. doi: 10.1038/ni.2990. PubMed DOI
Chen F., Wu W., Millman A., Craft J.F., Chen E., Patel N., Boucher J.L., Urban J.F., Jr., Kim C.C., Gause W.C. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 2014;15:938–946. doi: 10.1038/ni.2984. PubMed DOI PMC
Bouchery T., Kyle R., Camberis M., Shepherd A., Filbey K., Smith A., Harvie M., Painter G., Johnston K., Ferguson P., et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 2015;6:6970. doi: 10.1038/ncomms7970. PubMed DOI
Murray P.J., Wynn T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011;11:723–737. doi: 10.1038/nri3073. PubMed DOI PMC
Bistoni F., Verducci G., Perito S., Vecchiarelli A., Puccetti P., Marconi P., Cassone A. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. J. Med. Vet. Mycol. 1988;26:285–299. doi: 10.1080/02681218880000401. PubMed DOI
Garcia-Valtanen P., Guzman-Genuino R.M., Williams D.L., Hayball J.D., Diener K.R. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo. Immunol. Cell Biol. 2017;95:601–610. doi: 10.1038/icb.2017.13. PubMed DOI PMC
Bando J.K., Colonna M. Innate lymphoid cell function in the context of adaptive immunity. Nat. Immunol. 2016;17:783–789. doi: 10.1038/ni.3484. PubMed DOI PMC
Ebbo M., Crinier A., Vely F., Vivier E. Innate lymphoid cells: Major players in inflammatory diseases. Nat. Rev. Immunol. 2017;17:665–678. doi: 10.1038/nri.2017.86. PubMed DOI
Cortez V.S., Robinette M.L., Colonna M. Innate lymphoid cells: New insights into function and development. Curr. Opin. Immunol. 2015;32:71–77. doi: 10.1016/j.coi.2015.01.004. PubMed DOI PMC
Spits H., Artis D., Colonna M., Diefenbach A., Di Santo J.P., Eberl G., Koyasu S., Locksley R.M., McKenzie A.N., Mebius R.E., et al. Innate lymphoid cells—A proposal for uniform nomenclature. Nat. Rev. Immunol. 2013;13:145–149. doi: 10.1038/nri3365. PubMed DOI
Kansler E.R., Li M.O. Innate lymphocytes-lineage, localization and timing of differentiation. Cell. Mol. Immunol. 2019;16:627–633. doi: 10.1038/s41423-019-0211-7. PubMed DOI PMC
Askenase M.H., Han S.J., Byrd A.L., Morais da Fonseca D., Bouladoux N., Wilhelm C., Konkel J.E., Hand T.W., Lacerda-Queiroz N., Su X.Z., et al. Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity. 2015;42:1130–1142. doi: 10.1016/j.immuni.2015.05.011. PubMed DOI PMC
O’Leary J.G., Goodarzi M., Drayton D.L., von Andrian U.H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 2006;7:507–516. doi: 10.1038/ni1332. PubMed DOI
Sun J.C., Beilke J.N., Lanier L.L. Adaptive immune features of natural killer cells. Nature. 2009;457:557–561. doi: 10.1038/nature07665. PubMed DOI PMC
Sun J.C., Madera S., Bezman N.A., Beilke J.N., Kaplan M.H., Lanier L.L. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 2012;209:947–954. doi: 10.1084/jem.20111760. PubMed DOI PMC
Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Ifrim D.C., Saeed S., Jacobs C., van Loenhout J., de Jong D., Stunnenberg H.G., et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA. 2012;109:17537–17542. doi: 10.1073/pnas.1202870109. PubMed DOI PMC
Yona S., Kim K.W., Wolf Y., Mildner A., Varol D., Breker M., Strauss-Ayali D., Viukov S., Guilliams M., Misharin A., et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91. doi: 10.1016/j.immuni.2012.12.001. PubMed DOI PMC
Pan W., Hao S., Zheng M., Lin D., Jiang P., Zhao J., Shi H., Yang X., Li X., Yu Y. Oat-derived β-glucans induced trained immunity through metabolic reprogramming. Inflammation. 2020;43:1323–1336. doi: 10.1007/s10753-020-01211-2. PubMed DOI
Keating S.T., Groh L., van der Heijden C., Rodriguez H., Dos Santos J.C., Fanucchi S., Okabe J., Kaipananickal H., van Puffelen J.H., Helder L., et al. The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep. 2020;31:107548. doi: 10.1016/j.celrep.2020.107548. PubMed DOI PMC
Quintin J. Fungal mediated innate immune memory, what have we learned? Semin. Cell Dev. Biol. 2019;89:71–77. doi: 10.1016/j.semcdb.2018.05.023. PubMed DOI
Arts R.J., Novakovic B., Ter Horst R., Carvalho A., Bekkering S., Lachmandas E., Rodrigues F., Silvestre R., Cheng S.C., Wang S.Y., et al. Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab. 2016;24:807–819. doi: 10.1016/j.cmet.2016.10.008. PubMed DOI PMC
Mills E.L., O’Neill L.A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 2016;46:13–21. doi: 10.1002/eji.201445427. PubMed DOI
Di Luzio N.R., Williams D.L. Protective effect of glucan against systemic Staphylococcus aureus septicemia in normal and leukemic mice. Infect. Immun. 1978;20:804–810. doi: 10.1128/iai.20.3.804-810.1978. PubMed DOI PMC
Marakalala M.J., Williams D.L., Hoving J.C., Engstad R., Netea M.G., Brown G.D. Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. Microbes Infect. 2013;15:511–515. doi: 10.1016/j.micinf.2013.03.002. PubMed DOI PMC
Quintin J., Saeed S., Martens J.H.A., Giamarellos-Bourboulis E.J., Ifrim D.C., Logie C., Jacobs L., Jansen T., Kullberg B.J., Wijmenga C., et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12:223–232. doi: 10.1016/j.chom.2012.06.006. PubMed DOI PMC
Krahenbuhl J.L., Sharma S.D., Ferraresi R.W., Remington J.S. Effects of muramyl dipeptide treatment on resistance to infection with Toxoplasma gondii in mice. Infect. Immun. 1981;31:716–722. doi: 10.1128/iai.31.2.716-722.1981. PubMed DOI PMC
Munoz N., Van Maele L., Marques J.M., Rial A., Sirard J.C., Chabalgoity J.A. Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect. Immun. 2010;78:4226–4233. doi: 10.1128/IAI.00224-10. PubMed DOI PMC
Ribes S., Meister T., Ott M., Redlich S., Janova H., Hanisch U.K., Nessler S., Nau R. Intraperitoneal prophylaxis with CpG oligodeoxynucleotides protects neutropenic mice against intracerebral Escherichia coli K1 infection. J. Neuroinflammation. 2014;11:14. doi: 10.1186/1742-2094-11-14. PubMed DOI PMC
Zhang B., Chassaing B., Shi Z., Uchiyama R., Zhang Z., Denning T.L., Crawford S.E., Pruijssers A.J., Iskarpatyoti J.A., Estes M.K., et al. Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18. Science. 2014;346:861–865. doi: 10.1126/science.1256999. PubMed DOI PMC
Van der Meer J.W., Barza M., Wolff S.M., Dinarello C.A. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal gram-negative infection. Proc. Natl. Acad. Sci. USA. 1988;85:1620–1623. doi: 10.1073/pnas.85.5.1620. PubMed DOI PMC
Tribouley J., Tribouley-Duret J., Appriou M. Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni. C. R. Seances Soc. Biol. Fil. 1978;172:902–904. PubMed
Van’t Wout J.W., Poell R., van Furth R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand. J. Immunol. 1992;36:713–719. doi: 10.1111/j.1365-3083.1992.tb03132.x. PubMed DOI
Bistoni F., Vecchiarelli A., Cenci E., Puccetti P., Marconi P., Cassone A. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun. 1986;51:668–674. doi: 10.1128/iai.51.2.668-674.1986. PubMed DOI PMC
Vecchiarelli A., Cenci E., Puliti M., Blasi E., Puccetti P., Cassone A., Bistoni F. Protective immunity induced by low-virulence Candida albicans: Cytokine production in the development of the anti-infectious state. Cell Immunol. 1989;124:334–344. doi: 10.1016/0008-8749(89)90135-4. PubMed DOI
Barton E.S., White D.W., Cathelyn J.S., Brett-McClellan K.A., Engle M., Diamond M.S., Miller V.L., Virgin H.W.t. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447:326–329. doi: 10.1038/nature05762. PubMed DOI
Arts R.J.W., Moorlag S., Novakovic B., Li Y., Wang S.Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23:89–100.e5. doi: 10.1016/j.chom.2017.12.010. PubMed DOI
Walk J., de Bree L.C.J., Graumans W., Stoter R., van Gemert G.J., van de Vegte-Bolmer M., Teelen K., Hermsen C.C., Arts R.J.W., Behet M.C., et al. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun. 2019;10:874. doi: 10.1038/s41467-019-08659-3. PubMed DOI PMC
Kleinnijenhuis J., Quintin J., Preijers F., Benn C.S., Joosten L.A., Jacobs C., van Loenhout J., Xavier R.J., Aaby P., van der Meer J.W., et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun. 2014;6:152–158. doi: 10.1159/000355628. PubMed DOI PMC
Freyne B., Donath S., Germano S., Gardiner K., Casalaz D., Robins-Browne R.M., Amenyogbe N., Messina N.L., Netea M.G., Flanagan K.L., et al. Neonatal BCG vaccination influences cytokine responses to Toll-like receptor ligands and heterologous antigens. J. Infect. Dis. 2018;217:1798–1808. doi: 10.1093/infdis/jiy069. PubMed DOI PMC
Jensen K.J., Larsen N., Biering-Sorensen S., Andersen A., Eriksen H.B., Monteiro I., Hougaard D., Aaby P., Netea M.G., Flanagan K.L., et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: A randomized-controlled trial. J. Infect. Dis. 2015;211:956–967. doi: 10.1093/infdis/jiu508. PubMed DOI PMC
Redelman-Sidi G., Glickman M.S., Bochner B.H. The mechanism of action of BCG therapy for bladder cancer—A current perspective. Nat. Rev. Urol. 2014;11:153–162. doi: 10.1038/nrurol.2014.15. PubMed DOI
Stewart J.H.t., Levine E.A. Role of bacillus Calmette-Guerin in the treatment of advanced melanoma. Expert Rev. Anticancer Ther. 2011;11:1671–1676. doi: 10.1586/era.11.163. PubMed DOI
Powles R.L., Russell J., Lister T.A., Oliver T., Whitehouse J.M., Malpas J., Chapuis B., Crowther D., Alexander P. Immunotherapy for acute myelogenous leukaemia: A controlled clinical study 2 1/2 years after entry of the last patient. Br. J. Cancer. 1977;35:265–272. doi: 10.1038/bjc.1977.38. PubMed DOI PMC
Villumsen M., Sorup S., Jess T., Ravn H., Relander T., Baker J.L., Benn C.S., Sorensen T.I., Aaby P., Roth A. Risk of lymphoma and leukaemia after bacille Calmette-Guerin and smallpox vaccination: A Danish case-cohort study. Vaccine. 2009;27:6950–6958. doi: 10.1016/j.vaccine.2009.08.103. PubMed DOI
Walk J., Keramati F., de Bree L.C.J., Arts R.J.W., Blok B., Netea M.G., Stunnenberg H.G., Sauerwein R.W. Controlled human malaria infection induces long-term functional changes in monocytes. Front. Mol. Biosci. 2020;7:604553. doi: 10.3389/fmolb.2020.604553. PubMed DOI PMC
Petit J., Embregts C.W.E., Forlenza M., Wiegertjes G.F. Evidence of trained immunity in a fish: Conserved features in carp macrophages. J. Immunol. 2019;203:216–224. doi: 10.4049/jimmunol.1900137. PubMed DOI PMC
Adams K., Weber K.S., Johnson S.M. Exposome and Immunity Training: How Pathogen Exposure Order Influences Innate Immune Cell Lineage Commitment and Function. Int. J. Mol. Sci. 2020;21:8462. doi: 10.3390/ijms21228462. PubMed DOI PMC
Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C., Ferrucci L., Gilroy D.W., Fasano A., Miller G.W., et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019;25:1822–1832. doi: 10.1038/s41591-019-0675-0. PubMed DOI PMC
Miura N.N., Ohno N., Aketagawa J., Tamura H., Tanaka S., Yadomae T. Blood clearance of (1-->3)-β-D-glucan in MRL lpr/lpr mice. FEMS Immunol. Med. Microbiol. 1996;13:51–57. doi: 10.1016/0928-8244(95)00083-6. PubMed DOI
Schwartz B., Vetvicka V. Review: β-glucans as effective antibiotic alternatives in poultry. Molecules. 2021;26:3560. doi: 10.3390/molecules26123560. PubMed DOI PMC
Sima P., Richter J., Vetvicka V. Glucans as new anticancer agents. Anticancer Res. 2019;39:3373–3378. doi: 10.21873/anticanres.13480. PubMed DOI
Leonhardt J., Grosse S., Marx C., Siwczak F., Stengel S., Bruns T., Bauer R., Kiehntopf M., Williams D.L., Wang Z.Q., et al. Candida albicans β-glucan differentiates human monocytes into a specific subset of macrophages. Front. Immunol. 2018;9:2818. doi: 10.3389/fimmu.2018.02818. PubMed DOI PMC
Vetvicka V., Vetvickova J. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality. J. Immunotoxicol. 2009;6:30–35. doi: 10.1080/15476910802604317. PubMed DOI
Sima P., Vetvicka V., Vannucci L. Ambiguous role of immunity in malignant neoplasms. J. Tumor. 2020;8:560–564.
Namakula R., de Bree L.C.J., TH A.T., Netea M.G., Cose S., Hanevik K. Monocytes from neonates and adults have a similar capacity to adapt their cytokine production after previous exposure to BCG and β-glucan. PLoS One. 2020;15:e0229287. doi: 10.1371/journal.pone.0229287. PubMed DOI PMC
Moorlag S., Khan N., Novakovic B., Kaufmann E., Jansen T., van Crevel R., Divangahi M., Netea M.G. β-Glucan induces protective trained immunity against Mycobacterium tuberculosis infection: A key role for IL-1. Cell Rep. 2020;31:107634. doi: 10.1016/j.celrep.2020.107634. PubMed DOI PMC
Walachowski S., Tabouret G., Fabre M., Foucras G. Molecular analysis of a short-term model of β-glucans-trained immunity highlights the accessory contribution of GM-CSF in priming mouse macrophages response. Front. Immunol. 2017;8:1089. doi: 10.3389/fimmu.2017.01089. PubMed DOI PMC
Kalafati L., Kourtzelis I., Schulte-Schrepping J., Li X., Hatzioannou A., Grinenko T., Hagag E., Sinha A., Has C., Dietz S., et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell. 2020;183:771–785.e12. doi: 10.1016/j.cell.2020.09.058. PubMed DOI PMC
Isoda N., Eguchi Y., Nukaya H., Hosho K., Suga Y., Suga T., Nakazawa S., Sugano K. Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepatogastroenterology. 2009;56:437–441. PubMed
Wu L., Zhao J., Zhang X., Liu S., Zhao C. Antitumor effect of soluble β-glucan as an immune stimulant. Int. J. Biol. Macromol. 2021;179:116–124. doi: 10.1016/j.ijbiomac.2021.02.207. PubMed DOI
Geller A., Shrestha R., Yan J. Yeast-derived β-glucan in cancer: Novel uses of a traditional therapeutic. Int. J. Mol. Sci. 2019;20:3618. doi: 10.3390/ijms20153618. PubMed DOI PMC
Mourits V.P., Arts R.J.W., Novakovic B., Matzaraki V., de Bree L.C.J., Koeken V., Moorlag S., van Puffelen J.H., Groh L., van der Heijden C., et al. The role of Toll-like receptor 10 in modulation of trained immunity. Immunology. 2020;159:289–297. doi: 10.1111/imm.13145. PubMed DOI PMC
Wang J., Jin Z., Zhang W., Xie X., Song N., Lv T., Wu D., Cao Y. The preventable efficacy of β-glucan against leptospirosis. PLoS Negl. Trop. Dis. 2019;13:e0007789. doi: 10.1371/journal.pntd.0007789. PubMed DOI PMC
Vetvicka V., Fernandez-Botran R. β-Glucan and parasites. Helminthologia. 2018;55:177–184. doi: 10.2478/helm-2018-0021. PubMed DOI PMC
Dos Santos J.C., Barroso de Figueiredo A.M., Teodoro Silva M.V., Cirovic B., de Bree L.C.J., Damen M., Moorlag S., Gomes R.S., Helsen M.M., Oosting M., et al. β-glucan-induced trained immunity protects against Leishmania braziliensis infection: A crucial role for IL-32. Cell Rep. 2019;28:2659–2672.e6. doi: 10.1016/j.celrep.2019.08.004. PubMed DOI
Paris S., Chapat L., Martin-Cagnon N., Durand P.Y., Piney L., Cariou C., Bergamo P., Bonnet J.M., Poulet H., Freyburger L., et al. β-glucan as trained immunity-based adjuvants for rabies vaccines in dogs. Front. Immunol. 2020;11:564497. doi: 10.3389/fimmu.2020.564497. PubMed DOI PMC
Verwoolde M.B., van den Biggelaar R., van Baal J., Jansen C.A., Lammers A. Training of primary chicken monocytes results in enhanced pro-inflammatory responses. Vet. Sci. 2020;7:115. doi: 10.3390/vetsci7030115. PubMed DOI PMC
Verwoolde M.B., van den Biggelaar R., de Vries Reilingh G., Arts J.A.J., van Baal J., Lammers A., Jansen C.A. Innate immune training and metabolic reprogramming in primary monocytes of broiler and laying hens. Dev. Comp. Immunol. 2021;114:103811. doi: 10.1016/j.dci.2020.103811. PubMed DOI
Angulo M., Reyes-Becerril M., Cepeda-Palacios R., Angulo C. Oral administration of Debaryomyces hansenii CBS8339-β-glucan induces trained immunity in newborn goats. Dev. Comp. Immunol. 2020;105:103597. doi: 10.1016/j.dci.2019.103597. PubMed DOI
Libran-Perez M., Costa M.M., Figueras A., Novoa B. β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus) Fish Shellfish Immunol. 2018;82:173–182. doi: 10.1016/j.fsi.2018.08.005. PubMed DOI
Zhang Z., Chi H., Dalmo R.A. Trained innate immunity of fish is a viable approach in larval aquaculture. Front. Immunol. 2019;10:42. doi: 10.3389/fimmu.2019.00042. PubMed DOI PMC
Chang M.X., Zhang J. Alternative pre-mRNA splicing in mammals and teleost fish: A effective strategy for the regulation of immune responses against pathogen infection. Int. J. Mol. Sci. 2017;18:1530. doi: 10.3390/ijms18071530. PubMed DOI PMC
Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) Proc. Natl. Acad. Sci. USA. 2020;117:17720–17726. doi: 10.1073/pnas.2008410117. PubMed DOI PMC
Netea M.G., Giamarellos-Bourboulis E.J., Dominguez-Andres J., Curtis N., van Crevel R., van de Veerdonk F.L., Bonten M. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969–977. doi: 10.1016/j.cell.2020.04.042. PubMed DOI PMC
Geller A., Yan J. Could the induction of trained immunity by β-glucan serve as a defense against COVID-19? Front. Immunol. 2020;11:1782. doi: 10.3389/fimmu.2020.01782. PubMed DOI PMC
Bono C., Martinez A., Megias J., Gozalbo D., Yanez A., Gil M.L. Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs In Vivo and Promotes Differentiation Toward Trained Macrophages via an Indirect Cell-Autonomous Mechanism. mBio. 2020;11:e00781-20. doi: 10.1128/mBio.00781-20. PubMed DOI PMC